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The relationship between native and exotic richness has mostly been studied with respect to space (i.e.,
positive at larger scales, but negative or more variable at smaller scales) and its temporal patterns have
rarely been investigated. Although some studies have monitored the temporal trends of both native and
exotic richness, how these two groups of species might be related to each other and how their relative
proportions vary through time in a local community remains unclear. Re-analysis of early post-fire
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. . small spatial scales, the native-exotic correlations varied through time. Both exotic richness and exotic
Degree of invasion . R . . .. . . .
Disturbance fraction (i.e., the proportion of exotic species in the flora) quickly increased and then gradually declined,

during the initial stages of succession following fire disturbance. This result sheds new light on habitat
invasibility and has implications for timing the implementation of effective management actions to
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prevent and/or mitigate species invasions.
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1. Introduction

A major indicator of ecosystem health is the level or degree of
invasion by exotic (i.e., introduced, nonnative, or alien) species
(Williamson, 1996; Lu et al., 2015). A common practical approach to
computing this indicator is to assess the native-exotic richness
relationship, which reflects the interactions between these two
groups of species or the impact of exotics on natives (Sax, 2002;
Shea and Chesson, 2002; Figueroa et al., 2011). The vast majority
of past research on biotic invasions has focused on spatial patterns,
including the positive relationship between native and exotic
richness at larger spatial scales and negative association at smaller
scales (but see Shea and Chesson, 2002; Sandel and Corbin, 2010). A
recent synthesis further revealed that, even over small spatial
scales, the correlations between natives and exotics are not only
inconsistent, but may be highly variable (Guo, 2015). Because the
importance of time has become increasingly recognized, recent
efforts have studied the temporal patterns of exotic richness and/or
abundance in terms of density, cover, or biomass (Tognetti et al.,
2010; Tognetti and Chaneton, 2012) and interactions between in-
dividual exotic species and the native plant community
(Kulmatiski, 2006; Tognetti et al., 2010; Martin-Forés et al., 2016).
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With accumulated data concerning biological invasions during
the past several decades, a growing number of studies have
examined temporal trends in native and exotic species richness
(Rejmanek, 1989; Heard et al., 2012; McLane et al., 2012; Clark et al.,
2013). Since both native and exotic species richness is likely to be
controlled by resource availability, which varies more drastically
after major disturbances (Davis et al., 2000), potential changes in
the native-exotic relationship would be better examined during
succession (Rejmanek, 1989; Davis et al., 2000; Anderson, 2007).

Earlier studies on habitat invasibility or degree of invasion have
used the number of exotic species present in a community as an
indicator of change (reviewed by Rejmdanek, 1989; Levine and
D'Antonio, 1999; Lonsdale, 1999). More recent studies have used
the exotic fraction (i.e., proportion of exotic species among the
invaded flora) or the native-exotic richness relationship as another
indicator (Sax, 2002; Sandel and Corbin, 2010; Clark et al., 2013;
Guo et al,, 2015). Since exotic richness in the same community
often changes through time, some observed inconsistencies in
spatial patterns (i.e., positive, negative, and no relationship be-
tween native and exotic species) at smaller scales could be caused
by successional dynamics. First, if the study area supports the same
type of community but covers a mosaic of patches that are in
different stages of succession (e.g., burned at different times or with
different severity), the native-exotic richness relationship would be
spatially variable. Second, even at the same location (or patch), the
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native-exotic relationship could vary because of succession and/or
long-term continuing invasion by additional exotic species facili-
tated by ongoing human activities and climate change.

To assess how the exotic species richness fraction varies through
time, I re-analyzed an existing successional dataset from the Santa
Monica Mountains of southern California, USA, where fire is
frequent and serves as a major promotor for exotic species invasion
(Grace and Keeley, 2006; Keeley, 2006). I then examined the ways
in which natives and exotics might be related to each other during
succession and also made comparisons with corresponding spatial
patterns. I hypothesized that the same community may show
different native-exotic correlations and degrees of invasion (exotic
fraction), at different points in time during early post-fire succes-
sion. After disturbance, the richness of both native and exotic
species should first increase because of facilitation and/or increased
availability of resources and then decline when accumulated
biomass leads to resource limitation (Fig. 1; Shugart, 1984; Guo,
2003; De Miguel et al., 2010; Martin-Forés et al., 2016). Although
exotic species richness usually follows the same trend as overall
species richness after disturbances, how the exotic fraction may
change remains an open question. A specific goal is to provide
empirical evidence that, even at the same location, native-exotic
correlations can change drastically during a short period of time,
thus shedding new light on successional dynamics that will aid
ecosystem managers in addressing species diversity-community
invasibility challenges.

2. Methods

I used early post-fire successional data (1994—1997) from a
southern California chaparral community in the Santa Monica
Mountains to examine temporal changes of native-exotic richness
correlations in the plant community. This chaparral community
was burned during November 1993, just before the normal rainy
season. The study site was located at a 310-acre University of Cal-
ifornia Nature Reserve, surrounded by extensive natural areas
which are protected by various conservation management organi-
zations. Established for research, teaching, and public service, the
reserve had no major catastrophic disturbance events (i.e., natural
or anthropogenic) during the study period. Soils are primarily
loams or clay loams, but texture and other soil properties vary
substantially across the study site. Prior to the fire, vegetation was
dominated (~100% cover) by evergreen chaparral, with dense
stands of Quercus berberidifolia Liebm. and a mixture of shrubs such
as Arctostaphylos glandulosa Eastw., Adenostoma fasciculatum Hook.
& Arn. and Ceanothus megacarpus Nutt. (Keeley, 1996; Potts et al.,
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Fig. 1. Hypothetical temporal trajectories in species richness (native, exotic, or both,
depending on specific ecosystems), biomass, and exotic fraction associated with
native-exotic relationship during succession (see Shugart, 1984; Guo, 2003). Note that
the changes in exotic fraction may be different from that of exotic richness, as it reflects
the relative value of exotic vs. native richness in a particular flora.

2010).

In March 1994, permanent plots (n = 30) and quadrats (n = 60)
were established at three locations, one on the north-facing slope
and two on the south-facing slope of the study site. Each location
was divided into 10 contiguous permanent plots (each 10 x 10 m).
Within each plot, two 1 x 1 m permanent quadrats were placed in
opposite corners. Vegetation data were collected from May to July
of 1994—1997, during the seasonal peaks of herbaceous biomass. In
each permanent quadrat, foliar cover for each species was
measured and number of individuals per species and total number
of species were determined. At the end of each field season,
aboveground plant materials were cut at ground level from
different sets of neighboring quadrats (1 x 1 m), one to four meters
away from the permanent quadrats. Harvested plant materials
were then sorted by species, oven-dried, and weighed. For details
about the field sampling, see Guo (2001). The number of species for
all native and exotic plants based on their growth forms were also
separately counted on each permanent plot.

For purposes of this study, the temporal patterns of native vs.
exotic plant richness and exotic fraction, as well as the temporal
native-exotic richness relationships, were examined using regres-
sion analyses, based on data from both north-facing and south-
facing slopes. Exotic fraction was calculated as the proportion of
exotic species richness relative to species richness of the entire
flora. Mixed effects models were used to evaluate the effects of
aspect (north-facing vs. south-facing slopes), time (years after fire),
and their interaction on temporal changes in native and exotic
richness as well as exotic fraction using SAS Proc MIXED (SAS
Institute, 2014).

3. Results

Similar to findings from many other successional studies, early
post-fire data for chaparral in the Santa Monica Mountains showed
that both native and exotic plant species richness increased during
the first two years after fire and then gradually declined. This
overall trend in species richness was consistent with predictions in
Fig. 1. Results of the mixed effects modeling revealed significant
differences in patterns of native richness, exotic richness, and exotic
fraction through time (i.e., across successional years). In addition,
slope aspect (north-facing vs. south-facing) and the Aspect x Year
interaction significantly affected native richness, but not exotic
richness and exotic fraction (Table 1; Fig. 2).

During the first four years after fire, the native-exotic relation-
ship changed with time, at the same location and spatial scale (e.g.,
the same permanent plots). Specifically, the native-exotic richness
correlations were non-significant in the first post-fire year, positive
during the second year, and non-significant again in the third year
(Fig. 2 upper). During this same period, exotic fraction exhibited
similar variation as the total number of exotic plant species; that is,
it initially increased after fire then gradually declined as native
species regained dominance at the site (Fig. 2 lower).

4. Discussion

Higher native species richness on the north-facing slope is not
surprising and corresponds with earlier studies (Keeley and Keeley,
1981; Guo, 2001; Grace and Keeley, 2006). However, plots on both
slopes show similar levels of exotic species richness and exotic
fraction, which may imply that both slopes experienced similar
levels of disturbance and propagule pressure across early succes-
sion years. Nevertheless, mixed effects modeling reveals that both
native and exotic richness as well as exotic fraction vary signifi-
cantly with time during early succession as expected based on
related studies (Westman, 1981; Keeley, 1996; Anderson, 2007;
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Table 1

Results from mixed effects modeling of effects of slope aspects (north-vs. south-facing slopes), sampling year, and the aspect x year interaction on native richness, exotic
richness, and exotic fraction on Santa Monica Mountains, southern California, USA. *P < 0.05, **P < 0.01, ***P < 0.001.

Native richness

Exotic richness Exotic fraction

Source df F F F
Aspect 1,116 26.53*** 1.85 0.69
Year 1,116 19.47** 38.17*** 40.00***
Aspect X Year 1,116 26.50"** 1.86 0.70
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Fig. 2. Temporal variation in the native-exotic richness correlations (upper), exotic richness (lower — open bars), and exotic fraction (lower — solid bars) measured on the per-
manent plots through time. The solid curve indicates the diversity trend for all species through time. Data from early (first four years) post-fire succession of a chaparral community

(burned in 1993) on Santa Monica Mountains in southern California (Guo, 2001).

Tognetti et al., 2010; Han et al., 2016; Hanan et al., 2016) (Table 1,
Fig. 2).

This study, along with a recently published study by Martin-
Forés et al. (2016), helps to fill a knowledge gap by showing that,
just as native-exotic correlations vary across communities and
spatial scales, they also vary through time, even when the spatial
scale is constant. In early post-fire California chaparral succession,
exotics—especially short-lived herbs—usually emerge first, fol-
lowed by native and exotic perennials, and then dominant native
species—especially shrubs. Consequently, native-exotic relation-
ships in the same community are expected to vary accordingly; that
is, a positive association during early stages when habitat is rela-
tively open, potentially becoming negative in late stages when
stand density increases and shrub dominance is re-established
(Fig. 1)(Rejmanek, 1989). This study indicates that in this partic-
ular California chaparral community, although the overall temporal
patterns in native and exotic species richness are similar during
early post-fire succession (Figs. 1 and 2; Guo, 2001), when the rates
of change differ between native and exotic species, their temporal
correlations also change.

Clearly, varying native-exotic correlations in different develop-
mental stages of the same community should be treated as an

important cause of inconsistencies in small-scale invasion patterns
(Martin-Forés et al., 2016). This causal mechanism has been mostly
missing from the major factors previously identified in spatial
studies. Long-term continuing invasion under global change would
further increase the number of exotic species in many regions and
habitats with time, thus altering the native-exotic relationships.
Previous research reports that disturbance usually increases the
chances of exotic invasion and establishment (Williamson, 1996).
Yet, disturbances occur at different levels of intensity and each level
may impose different effects on both native and exotic species.
Disturbance at intermediate levels could facilitate the coexistence
of natives and exotics by reducing dominance and competition
(Guo, 2003; Figueroa et al., 2011). Therefore, although native di-
versity could enhance invasion resistance to some degree, it may
not be sufficient to expel exotic species and form negative native-
exotic richness correlations. This is especially the case when in
early succession, some exotic species may actually be beneficial by
reducing soil erosion or reducing animal predation on native spe-
cies. Species-rich habitats resist invasion through occupying both
the number of niches and the fullness (in abundance and distri-
bution) of each niche.

Two related issues deserve further attention. First, like many
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spatial studies of native-exotic correlations, the correlations may
not necessarily show causality. Both groups of species may only
show similar responses to changes in area and other environmental
conditions associated with the succession process. In addition to
altering microclimate and soil conditions, invasion mechanisms
affecting succession include germination or re-sprouting of previ-
ously existing/resident species and colonization of new species
from neighboring areas through seed dispersal after fire. Second,
most data and associated studies only show the patterns in
aboveground vegetation, and belowground patterns and processes
have mostly been ignored. In reality, the seeds of many exotic (and
native) plants are present belowground in seed banks, and overall
patterns in the entire (aboveground and belowground) community
may not be consistent with what can be seen only in aboveground
vegetation.

In summary, while native-exotic richness correlations for Cali-
fornia chaparral depend on time during early succession, these
patterns remain largely unexamined or unconfirmed in other re-
gions and ecosystems (lannone et al., 2015). Exotic richness and
fraction (of usually short-lived herbs) typically show sharp in-
creases right after disturbances and gradually decline as native
species (mostly woody shrubs) become dominant. This finding has
significant practical relevance, in terms of when and where to
implement management actions that mitigate the expansion of
invasive species more efficiently (Keeley, 2006).
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