A hierarchy of forest communities for assessing and projecting global change effects across the US

Jennifer Costanza John Coulston, Dave Wear June 2, 2017

NC STATE UNIVERSITY

Forest species composition is important and can be affected by global change drivers like climate and land-use change.

USDA Forest Service Resources Planning Act Assessment (2020)

Future of America's Forests and Rangelands

Forest Service 2010 Resources Planning Act Assessment

Our goal:

Project changes in forest conditions, including species composition, into the future

Under scenarios of climate and land-use change for the continental US

Based on recent observed changes and variation across space from forest inventory data

Need:

A baseline, consistent characterization of forest communities to facilitate monitoring, assessment, and projection of global change effects

Method:

Establish an empirical, hierarchical, classification of forest community composition in the continental US

USDA Forest Service Forest Inventory and Analysis (FIA) data

130,000+ forest plots across the continental US

Calculated for every plot: Relative importance value by species (abundance and basal area)

Hierarchical clustering of FIA plots by tree species composition

Use indicator species analysis to select levels of the hierarchy

Indicator species for a given cluster:

- occur within the cluster and nowhere else (high fidelity)
- occur in a high proportion of plots assigned to a given cluster (representativeness)
- Permutation test allows calculation of p-values (significance)

Hierarchical clustering of tree species composition with indicator species analysis

Pick levels of hierarchy such that:

Every cluster has at least one significant indicator species

Minimize total pvalues

29 broad assemblages

Examples of 147 specific assemblages

Slash pine-longleaf pine 2,934 plots

Hierarchical characterization

Multiple levels of classification

Example: assessing climate change impacts using dominant species

Dominant species are likely to be ecologically important (Hildebrand et al. 2008)

Dominance structure in a community is likely to be altered by global change drivers

Changes in dominance can be an early warning of impacts

Example: assessing climate change impacts using dominant species

Within a cluster, find the dominant species based on species dominance index (SDI):

High mean importance across all plots in the cluster

Tendency to occur with few other species

Overlay modeled habitat suitability from Climate Change Tree Atlas

(Climate Change Research Group 2014)

For 5 clusters in the East US: extract projected change in habitat suitability for dominant species

e.g., slash pine-longleaf pine assemblage

Loblolly pinesweetgum avg: 1.6% change

elm

Sugar maple-red maple Avg: -48.2% change

Slash pine-longleaf pine Avg: 3.3% change

Example 2: how well do environmental variables predict the distributions of broad assemblages?

Using bioclimate (8), soil (8), and topographic (5) variables

Advantages of the classification

- Consistent across the country
- Based on empirical observations
- FIA measurements are repeated through time to allow monitoring and study of change
- Hierarchy allows multi-scale studies
- Dendrogram allows questions based on the similarity in species composition between clusters

(some?) Caveats

- Not directly related to other popular classifications such as FIA forest types, forest type groups, National Vegetation Classification [but we are comparing them]
- Not tailored to a particular area
- Based on non-rare tree species
- Not spatially explicit ie, no wall-to-wall raster map

Planned next steps

- Use re-measured FIA plots to examine past changes in cluster (among-community change) and dominance (within-community change), in relation to disturbances and climate variables
- Project observed changes into the future under climate and land use change scenarios as part of the USDA Forest Service 2020 Resources Planning Act (RPA) Assessment
- Link with spatial projections of landscape change to project spatial patterns of forest species composition nationwide

Summary

- We developed a hierarchical, empirical classification of species assemblages based on inventory plots for the continental US
- Dominant species provide one example of how the classification can inform assessment of potential climate change impacts on forest communities
- The classification can be used as the basis for monitoring, assessment, and projection of global change effects on forests

Thank you

- L. Iverson and M. Peters USDA Forest Service Climate Change Atlas projections
- R. Li FIA database queries
- K. Riitters spatial data extraction

Contact me: Jen Costanza jennifer_costanza@ncsu.edu