The world forest sink closes the global carbon cycle

Yude Pan, Ricarhd Birdsey, Jingyun Fang, Richard Houghton, Pekka Kauppi, Werner A. Kurz, Oliver L. Phillips, Anatoly Shvidenko, Simon L. Lewis Josep Canadell, Philippe Ciais, Robert B. Jackson, Steven Pacala, David McGuire, Shilong Piao, Aapo Rautiainen, Stephen Sitch, Daniel Hayes

Overview

Data sources and methods

- Regional carbon estimates and dynamics
- Forest sink and the global carbon cycle
- Uncertainty, data gaps and future improvements

Global Forest Carbon Analyses

Data sources

Forest inventories for boreal and temperate regions

Tropical land-use change (emission and regrowth) (R. Houghton)

FAO area statistics for the tropics

IPCC accounting methods

Stockchange method for boreal and temperate forests

The good practice guidance (IPCC, 2003)

Definition of forests: Forests remain forests plus new forests

Variable carbon density method for tropical intact forests

Estimated carbon stocks and changes for 15 regions

Po Ma

4 boreal regions

8 temperate regions

3 tropical regions

Estimated carbon stocks and changes for 5 carbon pools Living biomass, dead wood, litter, soil

harvested wood products

Estimated carbon stock and changes for 2 time periods

Stocks: 1990, 2000 & 2007 Fluxes: 1990-1999 & 2000-2007

Area of Forests and Land-use Change

Global Total Forest Area

2007: 4063 Mha

1135

767

212

557

1392

1990: 4190 Mha

Chopbia be seg bolivable doficer sets: Everes transport to a set of the doficer sets: Everes teas: I and **defore a tege**, **Sep Buraiteg LbOrean**, ission teng paratter for the set of the The area covered by this study represents 95% of the world's forests

- Temperate
- Tropic intact
- Tropic regrowth
 - Lost area
- Excluded area

Annual C sinks in established forests

Tennigentine Cost de Cost Sir de Bankeennet dripter van Roeused in biomainse solding to restand in the second se

Carbon Sinks in Biomass and other Pools

Carbon Sinks and Sources (Pg C yr¹) in the World's Forests

Pan et al. (2011) Science

Global Forest Carbon Balance, 2000-2007

Forest land

LUC in tropics

Biome	(Pg C yr ¹)	Land class	(Pg C yr ¹)		
Boreal	0.5 ± 0.1	Deforestation	-28 ± 05		
Temperate	0.8 ± 0.1	emissions	2.0 ± 0.0		
Tropical (intact)	1.0 ± 0.5	Regrowth (after LUC)	1.7 ± 0.5		
Total	2.3 ± 0.5	Total	-1.1 ± 0.7		
1.3 Pg C yr ¹			-0.1 Pg C yr ¹		
Global <i>net</i> forest sink = 1.2 ± 0.9					
(Net sinks in temperate and boreal zones)					

The Global Carbon Budgets (1990-2007)

The Global Carbon Budget (PgC yr¹)

Sources and Sinks		1990-1999	2000-2007		
Sources:					
Fossil fuel and cement (1)		6.5±0.4	7.6±0.4		
Land-use change (2)		1.5±0.7	1.1±0.7		
	Total sources	8.0±0.8	8.7±0.8		
Sinks:					
Atmosphere (2)		3.2±0.1	4.1±0.1		
	Ocean (3)	2.2±0.4	2.3±0.4		
(//////////////////////////////////////	Forest land (4)	2.5±0.4	2.3±0.5		
	Total sinks	7.9±0.6	8.7±0.7		
Residual (5):		0.1±1.0	0.0±1.0		

Data gaps, uncertainty, and suggested improvements in global forest monitoring

Land monitoring should be greatly expanded in the tropics and in un-sampled regions of northern boreal forests

A globally consistent approach to remote sensing and forest inventory is required to combine ground truth of forest C densities from inventories and reliable forest area from remote sensing

Improved methods and greater sampling intensity are needed to estimate non-living C pools, including soil, litter, and dead wood

Better data are required in most regions for estimating lateral C transfers in harvested wood products and rivers.

New insight and perspective

- The total C sink in the world's forests outside areas of tropical land-use change was 2.4 Pg C yr¹, or about 1/3 of annual fossil fuel emissions. The global forest sink is comparable to the entire terrestrial carbon sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks
- The global forests play the large role in regulating atmospheric carbon levels (gross carbon uptake is ~ 4.0 Pg.C yr¹, though a net sink is only 1.1 Pg.C yr¹). The tropics is the most dynamic area for C exchange, but also with the greatest uncertainty in the estimates

New insight and perspective (continued)

- The forest C sink is found in every continent on Earth, suggesting overall favorable conditions for forest growth, which may imply a global driver such as rising atmospheric CO₂ fertilizing growth.
- Extensive areas of relatively young forests have potential to continue sequestering carbon in the future.
- Tropical biomass and boreal soils hold largest carbon pools and sinks. Warming and increased wildfires in the boreal zone, deforestation and extreme droughts, coincident with fires in the tropics, are likely the greatest risks to the continued large C sink in the world's forests.

