Climate-informed management & monitoring for military installations in southern California:

Toward implementation of adaptation strategies

Carolyn Enquist, USGS, DOI Southwest Climate Science Center Dawn M. Lawson, Department of the Navy, SPAWAR SSC Pacific Rob Wolf, Tierra Data, Inc. Christy Wolf, Department of the Navy, Detachment Fallbrook

5 February 2016 - FFACCTs

First Fridays All Climate Change Talks

Federal response

- 2009: Department of Interior's Secretarial Order #3289 (2009) Coordinated Strategy
- 2012: DOI Climate Science Centers (CSCs) & Landscape Conservation Cooperatives (LCCs)
- 2014: US Department of Agriculture Climate Hubs

Guidance & tools

Environmental Management (2012) 50:341-351 DOI 10.1007/s00267-012-9893-7

PROFILE Cross et al. 2012

The Adaptation for Conservation Targets (ACT) Framework: A Tool for Incorporating Climate Change into Natural Resource Management

Molly S. Cross · Erika S. Zavaleta · Dominique Bachelet · Marjorie L. Brooks · Carolyn A. F. Enquist · Erica Fleishman · Lisa J. Graumlich · Craig R. Groves · Lee Hannah · Lara Hansen · Greg Hayward · Marni Koopman · Joshua J. Lawler · Jay Malcolm · John Nordgren · Brian Petersen · Erika L. Rowland · Daniel Scott · Sarah L. Shafer · M. Rebecca Shaw · Gary M. Tabor

"Climate change makes **monitoring and adaptive management** more important than ever....Only after we have established robust monitoring schemes will we be able to effectively modify our strategies over time." (USFWS)

The Challenge

Integrate AM & climate change adaptation into natural resources management programs and plans in practical ways that support:

- Addressing existing threats & requirements
- Making climate informed decisions

Climate-informed Adaptive Management Track (monitor) action effectiveness & ecological response

Climate Informed Monitoring & Management

Indicators: Linking Essential Variables

Essential Climate Variable (ECVs)

Temperature (T, Winter Minimum, Summer maximum, mean)

Precipitation (PPT)

Evapotranspiration (ET)

Wind speed (WS)

Surface flow & discharge (SFD)

Groundwater (GD)

Soil moisture (SM)

Relative humidity (RH)

(EBVs) Variables al. 2013 **Biological** et Pereira **Essential**

Genetic composition	Allelic diversity				
	Co-ancestry				
	Population genetic differentiation				
	Breed and variety diversity				
Spacios	Species distribution				
	Population abundance				
populations	Population structure by age/size class				
	Phenology				
	Body mass				
Spacios traits	Natal dispersal distance				
Species traits	Migratory behavior				
	Demographic traits				
	Physiological traits				
Community	Taxonomic diversity				
composition	Species interactions				
Ecosystem	Habitat structure				
LUSYSLEIN	Ecosystem extent and fragmentation				
structure	Ecosystem composition by functional type				
	Net primary productivity				
Ecosystem	Secondary productivity				
function	Nutrient retention				
	Disturbance regime				

Climate Informed Monitoring (CIM)

A process to evaluate and optimize existing and identify new efforts relative to climate-informed management goals & objectives; identify gaps & opportunities

Putting CIM into practice:

Climate Adaptation Efforts on DoD Installations in southern California

DoD 2014 Climate Adaptation Road Map

"Our first step in planning....identify the effects of climate change on DoD with tangible and specific metrics using the best available science."

DoDI 4715.03 (dtd 2011) Natural Resources Conservation Program Instruction from Enclosure 3 procedures for INRMP preparation

"Utilize existing tools to assess the potential impacts of climate change...[and will] take steps to implement adaptive management to ensure the long-term sustainability of those resources."

DEPARTMENT OF DEFENSE 2014 CLIMATE CHANGE ADAPTATION ROADMAP

Natural Resource Manager's Plates Are Full

- Military Readiness
 - Threatened & Endangered Species
 - Ecosystem Services, Biodiversity

Climate Informed Management & Monitoring

Case Study: Naval Weapons Station Det. Fallbrook

INRMP

2013

28&

leta

Key Strategies Identified

- 1. Conduct targeted herbicide applications for control or eradication of exotics.
- 2. Identify refugial habitat for target species
- 3. Conduct targeted grazing to reduce the biomass of annual exotics & wildfire threat to target spp habitat.
- 4. Work with fire department to develop presuppression & suppression actions for refugia.

5. Develop a strategic climate-informed monitoring plan as a key adaptation action...Determine what to monitor & when

Case Study: **Marine Corps Base Camp Pendleton**

mcb camp pendleton CLIMATE INFORMED MONITORING WORKSH

Teer

Climate Informed Management & Monitoring

0

Bonita

Workshop Goal

To develop methods and a process

- for evaluating, adjusting, and optimizing existing & identifying new monitoring efforts
- to ensure robust information for making climate-informed management decisions

Existing Monitoring Effort	Ecological Impact	Indicators	Existing Monitoring Variable(s)	Climate Informed Monitoring Approach
Fuel Moisture Sampling		An exa	mple	

Existing Monitoring Effort	Ecological Impact	Indicators	Existing Monitoring Variable(s)	Climate Informed Monitoring Approach
Fuel Moisture Sampling	 Fog could decline Increase in shrub seedling mortality Decrease in shrub seed production & survival Extended drought short-term changes in dead fuel load from die-back Exacerbated drought stress 			
	 Changes in phenology 			

Existing Monitoring Effort	Ecological Impact	Indicators	Existing Monitoring Variable(s)	Climate Informed Monitoring Approach
Fuel Moisture Sampling	 Fog could decline Increase in shrub seedling mortality Decrease in shrub seed production & survival Extended drought short-term changes in dead fuel load from die-back Exacerbated drought stress 	Temp & PPT Phenology (green up and brown down)	Fuel moisture (live & dead ARTCAL & MALLAU) Currently monitor on a weekly basis to compute a Fire Danger Rating	
	Changes in phenology			

Existing Monitoring Effort	Ecological Impact	Indicators	Existing Monitoring Variable(s)	Climate Informed Monitoring Approach
Fuel Moisture Sampling	 Fog could decline Increase in shrub seedling mortality Decrease in shrub seed production & survival Extended drought short-term changes in dead fuel load from die-back Exacerbated drought stress Changes in phenology 	Temp & PPT Phenology (green up and brown down)	Fuel moisture (live & dead ARTCAL & MALLAU) Monitor on a weekly basis to compute a Fire Danger Rating	 Continue to: Continue to monitor year round Modify by: Add fuels phenology Add Soil Moisture to understand moisture stress Utilizing remote-sensed cloud imagery (GOES) to characterize spatial structure of radiation (solar) Management Implications of Ecological Impact: Consider changing window for management fuels treatments

What's happening now?

- Navy Detachment Fallbrook:
 - Incorporating CIMM in management plan (INRMP) revision
 - Developing monitoring summaries for use in CIMM process
 - Installed a weather station
- Marine Corps Base Camp Pendleton:
 - Initiated plant phenology monitoring to couple with fuel moisture surveys
 - Assessing other recommendations from workshop

The importance of monitoring & evaluation

"Monitoring of environmental conditions and the outcomes associated with management actions aimed at preparing for CC are <u>essential</u> for evaluating progress toward climate change adaptation." Hansen et al. 2013

	Impacts Assessment	Vulnerability Assessment	Planning	Capacity Building	Implementation	Resources/ Tools	Monitoring/ Evaluation
Federal							
Tribal							
Region	1. The second		1				
State							
Local							

Activity levels of stages of adaptations process relating to natural resources in the U.S.

Hansen et al. 2013, State of Adaptation Report

"Adapt, improvise, and overcome." – T.C. Cummings

Cli

Thank you!

Contact information: Carolyn A.F. Enquist Deputy Director cenquist@usgs.gov

