# Looking back to inform the future

Climate change adaptation lessons from long-term silviculture studies on USFS experimental forests

> Brian Palik USDA Forest Service Northern Research Station









### **Objectives:**

Highlight the important role of long-term silvicultural studies on FS-Experimental Forests for developing response strategies in the face of an uncertain climate future

- -Context: what we do and don't know and what will we need to do (as silviculturist)?
- -Considerations: for silviculture in the face of climate change and uncertainty
- -Silvicultural strategies: to create more resilient forests (lessons from EF research)



### What do we know?:

CO<sub>2</sub> is increasing, temperature is increasing; precipitation patterns will change; storm patterns will be different

### What we don't know:

Exact magnitude of temperature increases; magnitude and timing of precipitation changes; degree of change in storm events

## **Uncertainty is High**

#### Mauna Loa CO2 increases





#### What do we know?

e.g., Northern Lake States: warmer temperatures; increased precipitation, except in summer

Potentially: -greater growing season moisture deficit and plant stress

-shorter and less severe spring and fall fire seasons -greater potential for severe wildfire in summer

Still, there is uncertainty





Source: 2013 National Climate Assessment (In prep)

Silviculture will need to adapt to changing and *uncertain* climate conditions

Silvicultural objectives will include managing for adaptation to climate change, but within a framework of *uncertainty* 

But is managing in the face of uncertainty all that new?



### **Uncertainty of:**

-markets

- -natural disturbance
- -pests & pathogens
- -social demands

There is always uncertainty; So what is new?

Silvicultural planning (in the face of an uncertain climate future):

1. As usual: develop objectives, strategies, and prescriptions in the context of landscape, Forest, and project goals

2. And bring climate change considerations into the discussion now

This is what is new



### Silvicultural considerations: in the face of an uncertain climate future

1. Projected future habitat suitability of component species

-warmer temperatures; dryer growing season conditions

**2. Changing threats with changing climate** 

-dryer growing season conditions; greater plant stress; altered pest behavior; more storms

What does long-term silviculture research on EF's tells us about adaptation strategies, relative to these new considerations?

### e.g., Great Lakes Mixed-Pine Forests

# Minnesota Early Settlement Vegetation

What are the predicted changes in habitat suitability for tree species that are components of this ecosystem?

Red pine, jack pine, other species?

Legend Aspen-birch (eventually succeed to hardwoods) Aspen-birch (eventually succeed to conifers) Aspen-oak land Big woods - oaks, elm, basswood, ash, maple, etc. Brush prairie Conifer and bog swamps Jack pine barrens Lakes Prairie Mixed hardwood and pine Mixed white pine and Norway pine Oak opening and barrens Open muskeg Pine flats (hemlock, spruce, fir, cedar, & white pine River bottom forest Wet prairie White pine

Great Lakes Ecological Assessment

Vegetative cover map was derived from notes and maps from General Land Office surveys conducted in Minnesota (1847-1907). Map was digitized by the Minnesota DNR

### Great Lakes Pine Forest: component species Source

**Source: NRS Tree Atlas** 

Declining: red pine, jack pine, trembling aspen, balsam fir, eastern white pine, paper birch, northern red oak,

Staying the same: bur oak

**Increasing: red maple** 



Consideration of potential changes should be part of the discussion now---but with uncertainty in mind!

### **Consideration:** *changing (but uncertain) habitat suitability*

### How to incorporate this into silviculture

Silvicultural Strategy: Manage for complexity Restore structure and composition by reducing disparities from reference conditions

### Start with all the parts!



Silvicultural strategy: Restore structure and composition (complexity) by reducing disparities from reference conditions

#### e.g., Great Lakes Pine Forests

Managed: 62 year-old Growing Stock Experiment , Cutfoot EF, Chippewa NF

- **1. Mostly red pine**
- 2. Even-aged (one cohort)
- **3. Narrow range of tree sizes**
- 4. Higher stocking
- 5. Minimal dead wood
- 6. Dense understories

#### Reference: Sunken Lake Old Growth Cutfoot EF, Chippewa NF

- **1. Mixed-species**
- 2. Uneven-aged (three cohorts)
- 3. Wide dia. range w/ large trees
- 4. Lower stocking
- 5. Large dead wood
- 6. Open/dense understories



#### **Complex Forests:**

- -are more resistant to invasion
- -store more carbon
- -provide habitat variety
- -have greater product diversity
- -provide options with uncertainty



### Additional considerations:

**1. Projected future habitat suitability of component species** 

-due to warmer conditions; dryer growing season conditions

2. Changing threats with changing climate -dryer growing season conditions; greater moisture stress; altered pest behavior; more storms, great fire risk



### **Changing threats: Increased plant stress**

Source: 2013 National Climate Assessment (In prep)



Warmer temperatures; similar or reduced precipitation:

drier soils, greater moisture stress, decreased tree vigor

#### Consideration: changing threats (moisture stress) with climate change

#### Silvicultural strategy: stand-scale treatments to reduce tree stress

#### Life boating species at risk in the near to mid-term: to facilitate transition to new species

1.How do at-risk species respond to temp., precip., drought?

- -growth -mortality -establishment
- 2. Can silvicultural treatments be used to alter the response?

#### The Need:

- -A long-term record of growth, mortality, establishment
- -A diversity of conditions (forest type, soil, etc.)
- -Know history of treatments



### **USFS Experimental Forest Network (silviculture EF's particularly)!**



### Density Management

### Traditional use: influencing growth and yield



### **Density Management**



But what about thinning to control moisture stress?

-Thinning increases resource availability, including soil moisture

- -Improves tree vigor
- -Greater pest resistance
- -Maintain stands at optimal stocking to confer drought resistance and resilience

1. Drought resistance: ability to experience drought without change in stand-level growth

# 2. Drought resilience: ability to return to pre-drought levels of growth

#### Long-Term Red Pine Thinning Experiment (55 yrs)







30 ft<sup>2</sup> ac<sup>-1</sup>







Control

150 ft<sup>2</sup> ac<sup>-1</sup>

### **Quantifying drought response**

# **Examine known drought periods**

1948, 1961, 1988

![](_page_19_Figure_3.jpeg)

### **Drought response: resistance**

![](_page_20_Figure_1.jpeg)

### **Drought response: resilience**

![](_page_21_Figure_1.jpeg)

The specifics of climate change are uncertain; managers must incorporate uncertainty into their planning

Start with the normal planning process (nothing new there) and add additional considerations specific to climate uncertainty: changing habitat suitability and changing threats (e.g., moisture stress)

A key to planning for uncertainty is to develop conditions that provide options: stands containing all native species and a diversity of age structures provide more options.....restoration of complex stands is the first line of defense

Potential exists to manage stands with silvicultural to reduce threats (e.g., soil moisture stress): life boating at-risk species in the near- to mid-term

FS-R & D, through long-term experiments on EF's, is the undisputed leader in efforts to develop adaptation strategies

![](_page_22_Picture_6.jpeg)

![](_page_22_Picture_7.jpeg)

Center for Research on Ecosystem Change