Spruce and Peatland Responses Under Climatic and Environmental change

First Friday All Climate Change Talks

1 May 2015

Randy Kolka USDA Forest Service Northern Research Station

E-mail: rkolka@fs.fed.us

http://mnspruce.ornl.gov

SPRUCE

- An experiment to assess the response of northern-peatland, high-carbon ecosystems to whole-ecosystem increases in temperature and exposures to elevated atmospheric CO₂ concentrations.
- Funded by the Office of Biological and Environmental Research within the US Dept. of Energy's Office of Science.
- A cooperative venture between ORNL and the USDA Forest Service with interested university cooperators.

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Key Science Questions

- Will <u>deep</u> belowground warming in the future release 10,000 years of accumulated carbon from peatlands that store 1/3 of the earth's terrestrial carbon? At what rate?
- Will releases of C be in the form of CO₂ or CH₄ with 30 times the warming potential?
- Are peatland ecosystems and organisms vulnerable to atmospheric and climatic change? What changes are likely?
- Will ecosystem services (e.g., regional water balance) be compromised or enhanced by atmospheric and climatic change?

WHY ARE NORTHERN PEATLANDS IMPORTANT?

- Culturally and aesthetically important.
- As habitat for fauna and unique flora.
- As sources of forest products, horticultural peat, and biofuels.
- As records of past environmental conditions,
- Storage of organic matter (i.e. carbon).
 - Regulate greenhouse gases in the atmosphere.
 - Have feedbacks on global climate.

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Why study the response of a peatland to warming and elevated CO₂?

- \rightarrow Conduct research on an understudied ecosystem
- → They systems has a potential to show dramatic carbon cycle and organismal responses under projected environmental and atmospheric change
- → An ecosystem located at the southern extent of the boreal forest considered vulnerable to climate change.
- → It is expected to generate important greenhouse gas feedbacks to the atmosphere (both CO_2 and CH_4)
- → Provide quantitative data to enhance ecosystem and global circulation models with a limited capacity to capture high-carbon wetland response

WHAT IS A HIGH-CARBON, VULNERABLE, ECOSYSTEM?

- Seasonal and annual air temperatures will be warmer and atmospheric greenhouse gas concentrations will be higher by the end of the century.
- Temperature shifts will be greater at higher latitudes.
- Peatlands along the northern- and southernmost fringes are expected to be most vulnerable to shifts in ecosystem regimes.

An 8 ha peatland at the Marcell Experimental Forest

11,200 ton of = Amount of C emitted from stored C 4100 Hummer H3's in 1 year

Marcell Experimental Forest

MEF Long-Term Data Bases

- Streamflow (1960)
- Water Quality (1982)
- Water Table (1960)
- Climate (1960)
- Precipitation Quality (1977)
- Soil Temperature (1989)
- Soil Moisture (1960)
- Frost (1960)
- **Snowpack (1960)**
- Upland Runoff (1972)
- 40+ Thesis/Dissertations, 320+ papers
- http://nrs.fs.fed.us/ef/marcell/data/

MEF Research Program

- Peatland Hydrology and Soils
- Forest Management Effects on Water Quality and Quantity
- Biogeochemical Cycles
- Mercury
- Climate Change/Carbon Science

MEF Synthesis of 50 Years of Research

 Kolka, R.K., S.S. Sebestyen, E.S. Verry, and K.N. Brooks (Eds.). 2011. *Peatland Biogeochemistry and Watershed Hydrology at the Marcell Experimental Forest.* CRC Press, Boca Raton, FL, 488 pp.

Edited by Randall K. Kolka, Stephen D. Sebestyen, Elon S. Verry, and Kenneth N. Brooks

Project Setting – S1 Bog at the MEF

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

The SPRUCE *Picea-Sphagnum* Bog

PFTs:

Trees (*Picea, Larix*) Shrubs (Spp) *Sphagnum* (Spp) Aerobic Microbes Anaerobic Microbes

Soil: Histosol 2 to 3 m deep with seasonally variable water table.

S2-Bog Profile

Terrestrial vs. Peatland Ecosystem Carbon

Peatlands contain 15 times more C than occurs in a healthy regrowth forest of the Eastern US. Ecosystems

Experimental Goal: Whole-Ecosystem Warming

- A new warming approach that encompasses target ecosystem diversity, and enables decade-long observations and sampling
- An approach for long-lived and 'tall' stature vegetation able to produce plausible future conditions both above and belowground
- An approach to manipulate intact ecosystems (i.e., from the tops of the trees through deep soil microbial communities).

A method for whole-ecosystem warming

- 12-m diameter internal study area.
- +8-m tall aboveground chamber.
- Deep soil Heating to -2 to -3 meters within peat.
- Belowground environment enclosed in a subsurface chamber. (Hanson et al. 2011, Barbier et al. 2012)

LLE FOR THE U.S. DEPARTMENT OF ENERGY

PAST FOREST MANAGEMENT EXPERIMENT

1968

RR Bay photo

1969

RR Bay photo

1974

S1-Bog Infrastructure Development

October 2011

May 2012

August 2012

November 2014

Site Status – April 16, 2015

- April 16 All above/below chamber structures built, glass has been installed, currently working on the duct/heater systems and runoff system.
- Plan is to "flip the switch", mid to late June Open House Celebration August 26

Our experimental treatments are not explicit scenarios for the future, but rather a range of temperature and elevated CO₂ environments intended to inform mechanisms of response

Multiple levels of warming at ambient and elevated CO₂ levels:

- Soil and air temperature levels from +0 to +9° $\,$ C
 - +0, +2.25, +4.50, +6.75, and +9 ° C
 - Unchambered Controls
- Elevated CO₂ approaching 900 ppm which is over twice current levels, but consistent with end-of-century projections for atmospheric [CO₂].

Warming Treatment Assignments to a Regression Design (half will receive elevated CO₂)

Regression design with elevated CO₂ will be applied to characterize the shape of temperature response curves for a range of response variables

10- Planned Experimental Units

1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.1 1.1 1.2 0.9 0.8 0.7 0 1 2 3 4 5 6 7 8 9 Temperature Differential (°C)

Five temperature treatments with and without elevated carbon dioxide

ENVIRONMENTAL MONITORING AND SCIENTIFIC MEASUREMENTS

Data will be archived for sharing with scientists, educators, and the public.

- Environmental monitoring: temperature, precipitation, wind speed/direction, solar radiation.
- Tree, shrub, grass/sedge, and *Sphagnum* growth; respiration; mortality; community composition; primary productivity; root growth; litter fall; and seed dispersal.
- Soil microbial community composition and function.
- Phenology.
- Plant tissue chemistry.
- Foliar gas exchange.
- · Decomposition rates.

- Trace gas (carbon dioxide, methane) and water vapor emissions.
- Precipitation, runoff, and pore water chemistry for nutrients, organic matter, pH, alkalinity, ions, and trace metals.
- Peat volume, chemistry, and physical properties.
- Availability and cycling of carbon, nutrients, and mercury.
- Surface runoff and water table levels.
- High-resolution microtopography surveys.

SPRUCE "Hypothesized Responses"

Pretreatment Observations:

Setting the Stage for a Decade-Long Manipulation

Peat Profile Characterization – All Chambers

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Peat C Age Characterization

 The mean net C accumulation rate throughout the 10,000-year peat development period was 21 g C m⁻² y⁻¹.

S1-Bog 2012-2014 C-Cycle Interpolations (Multi-year range for C Fluxes in gC m⁻² y⁻¹)

Modeling Wetland Processes

A Challenge for Global Circulation Models

Community Land Model (CLM) and SPRUCE

An improved land model for global wetlands (CLM-Wetlands) is being developed and tested with SPRUCE

Water table height warming response

CO₂ flux warming response

Methane warming response

- Currently uses CLM4Me model (Riley et al., 2011).
- More mechanistic treatment of microbes, methane production (Xu et al., in review) currently being calibrated with SPRUCE pre-treatment data.
- Large uncertainties

Nitrogen warming response

Net N mineralization (gN m⁻² day⁻¹)

- Strong increases in hollow N mineralization driven by combination of peat warming and expansion of aerobic layer.
- Less significant changes in hummock as drying occurs in deeper layer with less modeled available labile C.
- Drives significant vegetation growth in hollows, leaf area begins less than 50% of hummocks, catches up in 10 years.
- Suggestion of long term decline late in the period as litter quality declines.

Warming response of carbon stocks

- Significant increase of vegetation carbon in the hollows, slight decline in hummocks.
- More significant decline of soil organic matter carbon in hollows
- Hollows slight net sink, hummocks become moderate source
- Large model uncertainties: Sphagnum response, shading/canopy radiation changes, Changes in C allocation strategies, mortality.

Deep Peatland Heating

- Deep Peat Heating was initiated in 2014 to take advantage of installed infrastructure, get a head-start on the the slow belowground warming process, and enable testing of the sensitivity of deep and old carbon stocks to warming.
- By September 9th the deep peat heating protocol had produced a wide range of temperatures by depth allowing for the assessment of a range of variable responses to deep peat heating (e.g., DOC, enzyme activity, microbial community composition, available nutrients).

DPH Treatment Development at -2 m

Warming levels were achieved over a 25-day (+ 2.25 °C) to a 60day (+9 °C) period in general agreement with *a priori* energy balance model simulations.

- DPH which had limited impact on surface temperatures in the aerobic surface layers did <u>not</u> enhance dark CO₂ efflux rates.
- Following a couple of months of heating, ground-level net surface flux of CH₄ was correlated to deep soil temperature differences.

TIMELINE

2009	2010	\leftrightarrow	2014	2015	\leftrightarrow	2024	\rightarrow
DESIGN CONSTR		JCTION	IMPLEMENTATION			COMPLETION	
Research discussions begin	Field testing to deve and protoco	lop sensors ols		Experiment begins		Experimer ends	nt
Research proposed, reviewed, & approved	NEPA assessment prepared, reviewed released, & approve	t , ed		Collect data, anal archi	lyze samples, pos ve samples	st data, r	Decommission and emove infrastructure
DOE funds the project through ORNL	Design, prototype, site,	initiate monito and construct	ring, prepare	Report a	nd publish initial results	Report and Revise glol re	publish final findings bal climate models to flect results

SPRUCE ORGANIZATION CHART

Purdue University – Qianlai Zhuang University of Alberta – Robert Grant University of Minesota – Brandy Toner, Ed Nater, Olga Furman University of New Hampshire – Erik Hobbie University of Oregon – Scott Bridgham University of Tennessee – Aimee Classen University of Tonto-Scarborough – Carl Mitchell, Kristine Haynes USDA Forest Service – Erik Lilleskov, Sarah Jovan

SPRUCE

Independently-Funded Collaborators

- The response of soil carbon storage and microbially mediated carbon turnover to simulated climatic disturbance in a northern peatland forest: revisiting the concept of soil organic matter recalcitrance. Principal Investigators: Joel E. Kostka, <u>Georgia Institute of Technology</u> & Jeff Chanton, <u>Florida State University</u> (2012-2013)
- 2. Toward a predictive understanding of the response of belowground microbial carbon turnover to climate change drivers in a boreal peatland. Principal Investigators: Joel E. Kostka <u>Georgia Institute of Technology</u> & Jeffrey P. Chanton, William T. Cooper <u>Florida State University</u> (2014 to present)
- 3. Understanding the mechanisms underlying heterotrophic CO₂ and CH₄ fluxes in a peatland with deep soil warming and atmospheric CO₂ enrichment. Principal Investigators: Scott D. Bridgham, <u>University of Oregon &</u> Jason Keller, <u>Chapman University</u> (2013 to present, with renewal pending)
- 4. Can microbial ecology inform ecosystem level c-n cycling response to climate change? Principal Investigators: Kirsten Hofmockel, <u>Iowa State University</u> & Erik Hobbie, <u>University of New Hampshire</u> (2014 to present)
- 5. Mercury and sulfur dynamics in the spruce experiment. Principal Investigators: Brandy Toner and Ed Nater, University of Minnesota & Randy Kolka and Steve Sebestyen, USDA Forest Service MN (2103 to present)
- 6. Improving models to predict phenological responses to global change. Principal Investigator: Andrew D. Richardson, <u>Harvard University</u> (2013 to present)
- 7. Lichen community responses to warming. Principal Investigators: Bruce McCune, Oregon State University, Sarah Jovan, USDA Forest Service OR (2013 to present)
- 8. Fungal, bacterial, and archaeal communities mediating C cycling and trace gas flux in peatland ecosystems subject to climate change. Principal Investigator: Erik Lilleskov, <u>USDA Forest Service MI and Michigan</u> <u>Technological University</u> with <u>Joint Genome Institute Support</u> (2013 to present)

SPRUCE Collaborators Continued

- 9. Effects of experimental warming & elevated CO₂ on trace gas emissions from a northern Minnesota black spruce peatland: measurement and modeling. Principal Investigator: Adrian Finzi, <u>Boston University</u> (2014present)
- 10. Functioning of wetlands as a source of atmospheric methane: a multi-scale and multi-disciplinary approach. Principal Investigator: Karis McFarlane and Xavier Mayali, Mike Singleton, Ate Visser, Jennifer Pett-Ridge, Brad Esser, Tom Guilderson Lawrence Livermore National Laboratory (2014-present)
- 11. Using microbial enzyme decomposition models to study the effects of peat warming and/or CO₂ enrichment on peatland decomposition. Principal Investigator: Brian H. Hill and Colleen M. Elonen, Terri M. Jicha, Mary F. Moffett <u>US Environmental Protection Agency</u> (2014-present)
- 12. Peatland Mercury Cycling in a Changing Climate: A Large-Scale Field Manipulation Study. Carl Mitchell, University of Toronto Scarborough (2014-present)
- 13. The role of the Sphagnum microbiome in carbon and nutrient cycling in peatlands JGI's Community Science Program. Joel E. Kostka and Gen Glass <u>Georgia Institute of Technology</u>, David Weston <u>Oak Ridge</u> <u>National Laboratory</u>, Erik Lilleskov <u>USDA Forest Service – Houghton, MI</u>, Jon Shaw <u>Duke University</u>, and Susannah Tringe at the <u>Joint Genome Institute</u>. (2015-present)
- 14. Soil fauna biodiversity sampling at SPRUCE. Zoë Lindo University of Western Ontario. (starting in 2015)
- 15. Monitoring warming and elevated CO₂ induced changes in photosynthetic efficiency via canopy spectral reflectance. Michael J. Falkowski <u>University of Minnesota</u>, Evan Kane <u>Michigan Technological University</u>, Brian Benscoter <u>Florida Atlantic University</u>, & Randy Kolka <u>US Forest Service</u>.
- **16. Wood decomposition rates and functional types in a shifting climate**. Jonathan Schilling and Jason Oliver, <u>University of Minnesota</u>, Randy Kolka, <u>United States Forest Service</u> (starting in 2015)

SPRUCE Effort Investment

Institution - Job Category	Personnel Effort FTEs
Oak Ridge National Laboratory	
Science Staff	3.9 to 4.3
Technical Staff	3.4 to 3.9
USDA Forest Service (In-Kind Effort)	
Science Staff	0.5
Technical Staff	0.75
SPRUCE Collaborators	14 Groups / 20 Institutions

SPRUCE Development Investment

2010 through 2015 Site Development	Cost (\$K)
ORNL In-House Costs [NEPA, Prototypes, MN Construction Managed through ORNL]	\$1,254K
Subcontracted Effort [e.g., boardwalks, electric, enclosures, etc.]	\$9 ,22 5K
Total Development \$	\$10,479K
Total Annual Operations Cost	\$1,400K
[e.g., boardwalks, electric, enclosures, etc.] Total Development \$ Total Annual Operations Cost	\$10,47 \$1,40

Take-Home Messages

- Large-scale manipulations like SPRUCE provide a reality check for prediction models where <u>analogs in the historical and observational</u> record are not available for end-of-century warming and atmospheric <u>CO₂ levels.</u>
- Together, large-scale manipulations, landscape observations through time and model projections provide key inputs for National and IPCC Assessment activities.