Urban Forest Effects on Atmospheric Carbon

David J. Nowak US Forest Service Northern Research Station Syracuse, NY

Conclusion

If I could only plant one tree to combat climate change, I would plant it an urban area

Trees Effects on Climate Change

- Sequester carbon
- Release carbon
- Alter climate
- Alter carbon emissions

Urban Tree Carbon Storage and Sequestration

- 206 trees/ac cover
- 34.2 tC/ac cover (stored)
- 1.2 tC/ac cover/yr (growth)

Forest vs. Urban

Tree Cover

Urban / Community Land

US Forests = 33% of area 749 million acres C storage = 20.2 billion tonnes US Urban Forests = 3.6%* 68 million acres 35% tree cover C storage = 643 million t

*conterminous US

Nowak, D.J., E.J. Greenfield, R. Hoehn, and E. LaPoint. 2013. Carbon storage and sequestration by trees in urban and community areas of the United States. Environmental Pollution. 178: 229-236.

Projected urban land increase (2010-2060): +2 million acres/year

- 2010 = 67.8 million acres (3.6%)
- 2060 = 163.1 million acres (8.7%)

Increase greater than size of Montana

Carbon Release

Sequestration – 1 tree (red maple; 40-year life span)

Nowak, D.J., J.C. Stevens, S.M. Sisinni, and C.J. Luley. 2002. Effects of urban tree management and species selection on atmospheric carbon dioxide. J. Arboric. 28(3):113-122.

Sequestration – 1 tree

Sequestration – 1 tree

Sequestration – 2 trees

Sequestration – 2 trees

Sequestration – 2 trees

Multiple Generations

Tree size, life span/growth rate and decomposition rate affect magnitude of net effects

Carbon Release - Waste Wood Utilization

- Accelerated burning / chipping
- Normal decomposition
- Decelerated long-term wood products
- Avoided utilize wood for energy
- Long-term storage soils

UN: Cities contribute 70 percent of global greenhousegas emissions

A new UN report shows that cities are major contributors to climate change. But are they also the solution?

Winter Winds

Alter Building Energy Use

Coniferous windbreaks protect house from cold winter winds.

Trees close to house on east and west protect against summer sun.

> Trees on south side should be deciduous to permit winter sun while shielding the summer sun.

Winds

Avoid dense trees in the direction of summer winds that block desired cooling breezes.

Altered energy use = altered emissions Emissions changes in addition to sequestration

Image Source: Lawrence Berkeley Lab

National Building Energy Conservation

- 36 million MWh energy production avoided annually (\$4.3 billion)
- 228 million MBTU energy production avoided annually (\$2.9 billion)

Pollutant	Tonnes avoided/year	\$ millions/year
Carbon dioxide	19,800,000	425
Carbon monoxide	16,200	26
Course PM	1,720	97
Fine PM	4,190	590
Methane	459	0.2
Nitrogen oxides	17,100	161
Sulfur dioxide	45,300	405
VOCs	1,100	<u>1</u>
Total		1,705

Preliminary results

Energy Effect

Tree Maintenance

Multiple Generations

Maintenance Effect

4

Long-lived large trees have longest time to reach last positive point (LPP)

Management Recommendations

- Maintain storage and sequestration
 - Sustain large, healthy trees
- Plant long-lived species
- Use low maintenance, urban adapted species
- Consider projected climate change / insects
- Minimize fossil fuel use
- Plant trees in energy conservation location and use wood for energy or products
- Provide trees ample water

Urban Vegetation Benefits

Air quality improvement Water quality improvement Greenhouse gas reduction **Building energy use conservation** Oxygen production Health benefits **Cooler air temperatures UV** radiation reduction Wildlife habitat Products: timber, food, fiber, ethanol Social / Aesthetics Noise reduction **Economic:** jobs

*

Gathering your own data

- * Field measurements
 - Carbon storage
 - Annual sequestration
 - * Energy effects
 - Projections thru time

www.itreetools.org

Conclusion

- If I could only plant one tree to combat climate change, I would plant it an urban area
- But I would minimize carbon use to maintain the forest and utilize the wood after death