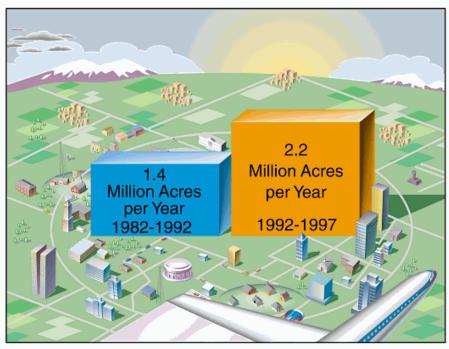
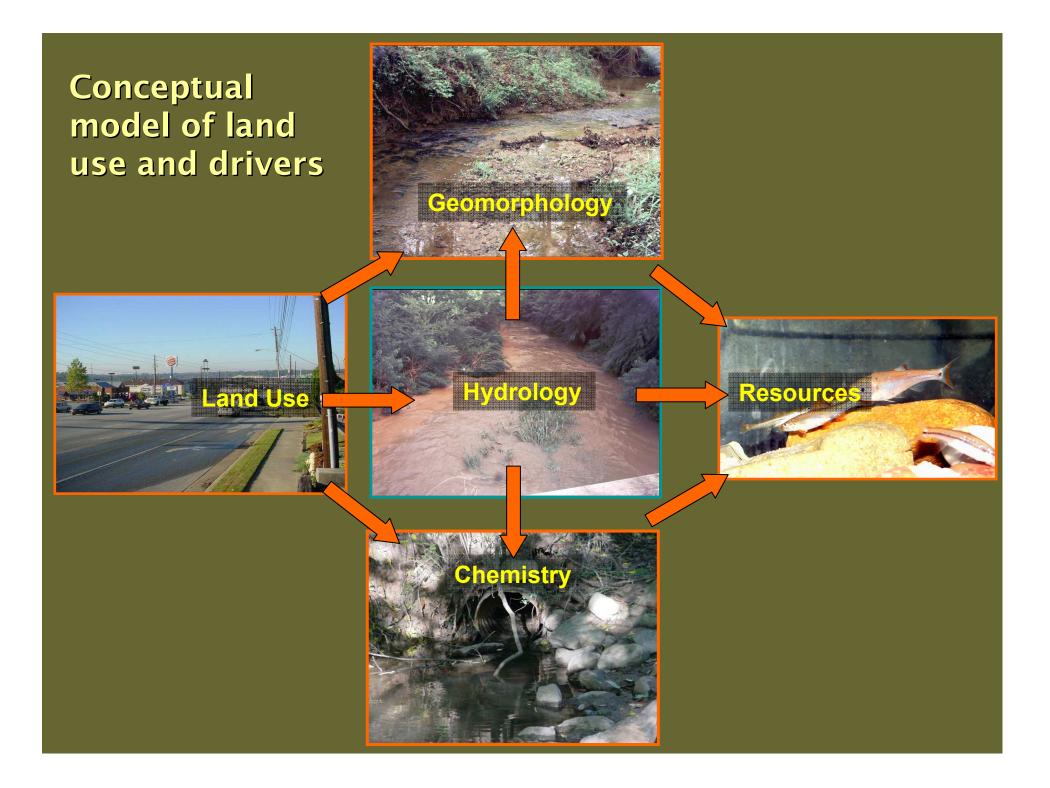
Understanding the water / forest relationship: the influence of forest cover removal on aquatic resources in the Southeastern United States

Brian Helms¹, Latif Kalin², Chelsea Nagy², Graeme Lockaby², and Denise Stoeckel²

¹Department of Biological Sciences ²School of Forestry and Wildlife Sciences Auburn University, Auburn, AL



Contemporary land use/cover


- Mixed species forests
- Agriculture
 - Row crop
 - Pasture
 - Animal production
- Silviculture
 - Pine plantations
- Urbanization

Land Converted to Development

Source: USDA, Natural Resources Conservation Service 1997 National Resources Inventory Revised December 2000

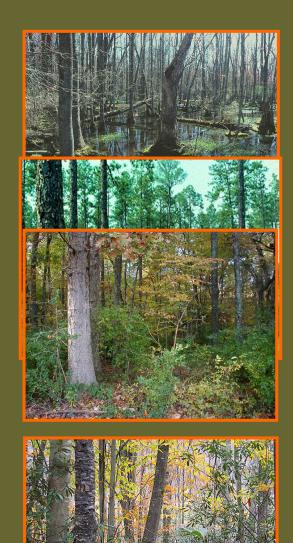
Difficulties in prediction and management

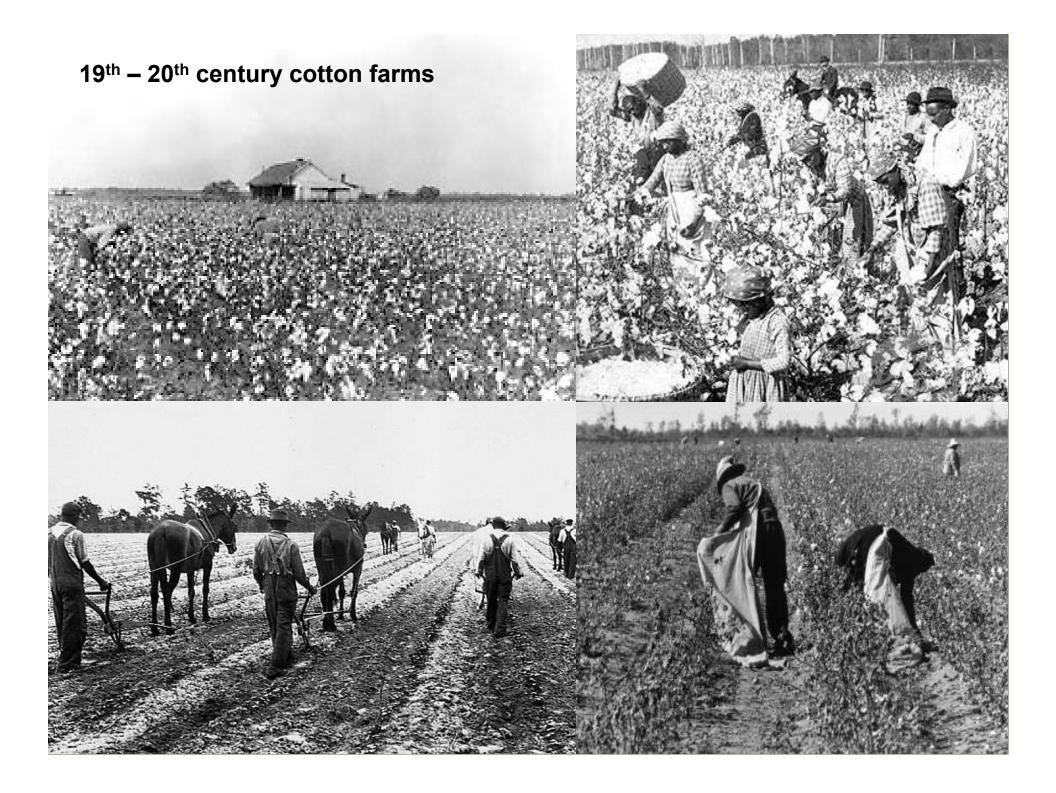
- Variation within and between regions

 Types of forest
 - Extent / rates of conversion
- Processes destabilization
 - Hydrological
 - Geomorphological
- Lagging ecological responses

 Unknown times
- Unknown effectiveness of management

96 R.


Ecoregions in the SE


Coastal Plain

- Extensively logged early 19th century
- Large ag tracts
- Increase in forest cover, silviculture
- Urbanization restricted to coast lines

Piedmont

- Intense ag $18^{th} 20^{th}$ century
- Considerable erosion, reforestation
- Increase in silviculture, pasture
- Rapid urban growth last 30 years
- Appalachian Mountains
 - Logging and ag late 19th early 20th century
 - Extensive mining and industrialization
 - Industrialization and urbanization since '70s
 - Considerable reforestation

Categories of influence

Hydrology / geomorphology
Biogeochemistry and sediment
Aquatic biota
Human and environmental health

2 scenarios
– Forest to agriculture
– Forest to urban

Hydrological Response

- Forest to agriculture
 - Increase watershed discharge 10-20%
 - $-\uparrow$ overland flow, \downarrow evapotranspiration
 - $-\uparrow$ storm and base flows
- Forest to urban
 - $-\uparrow$ discharge 3-5% for every 1% \uparrow impervious surface
 - \uparrow storm and base flows
 - Unstable hydrographs
 - Early detection
- Reduced water storage capacity
 - $-\uparrow$ overland flow, \downarrow infiltration
 - $-\uparrow$ water export

Biogeochemistry and Sediment

- Forest to agriculture
 - $-\uparrow$ sediment erosion and deposition
 - $-\uparrow NO_3$ (6-12X), NH_4
 - $-\uparrow$ total P loads
 - $-\downarrow DOC$

- Forest to urban
 - $-\uparrow$ sediment erosion, deposition and transport
 - $-2-4X \uparrow NO_3$,
 - Inconsistent NH₄,P, phosphate and DOC
 - Effects seen early in development

Aquatic biota

- Forest to agriculture
 - ↑ algal biomass
 - $-\downarrow$ insect diversity, richness, and shredders
 - $-\downarrow$ mussel survivorship,
 - Variable fish, herpetofauna responses
- Forest to urban
 - Varied algal response
 - Macroinvertebrates track TDS and habitat quality
 - $-\downarrow$ mussel abundance, often extirpation
 - $-\downarrow$ fish and salamander diversity and abundance
- Ecosystem stress syndrome
 - $-\downarrow$ species diversity, endemism
 - \uparrow tolerant, widespread species
 - \uparrow species stress and disease
 - Urban stronger per capita influence than agriculture

Environmental and human health

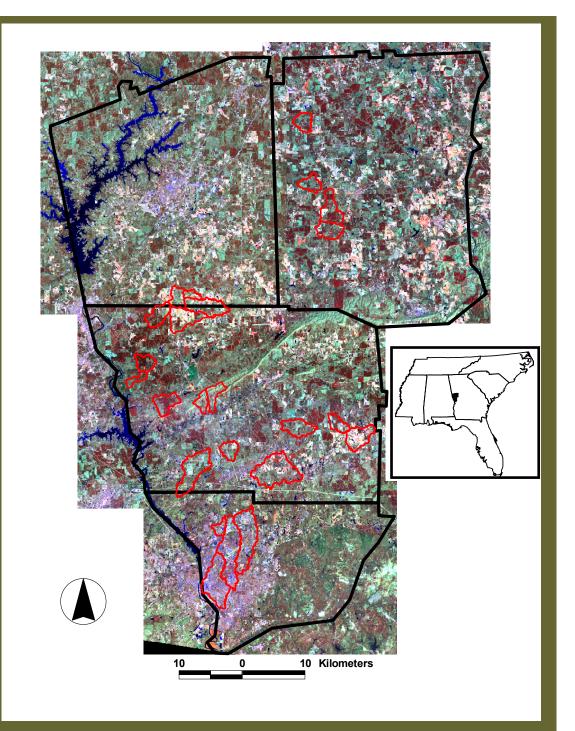
• Forest to agriculture

- $-\uparrow$ pesticides, herbicides
- \uparrow water-borne pathogens
- NH₄ toxicity
- Variable bacterial response

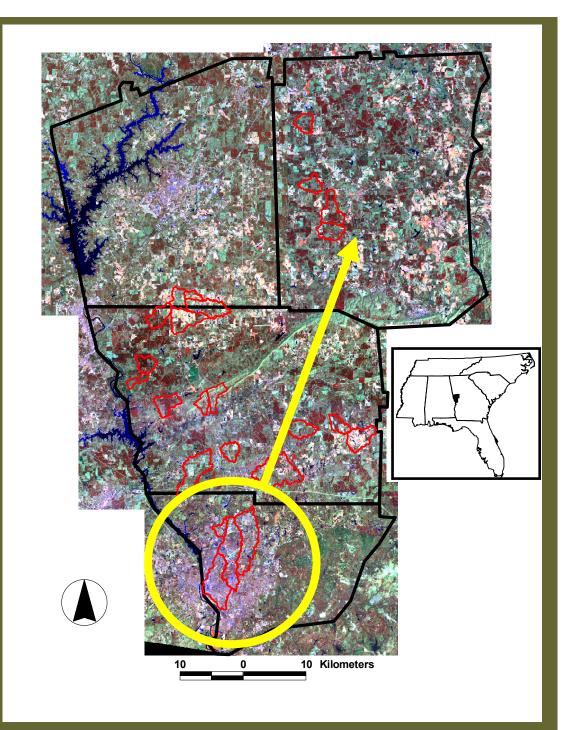
Forest to urban

- \uparrow heavy metals, pesticides
- $-\uparrow$ bacterial populations
- − ↑ pharmaceuticals, organic wastewater contaminants
 - Caffeine, Ibuprofen, disinfectants
- \uparrow mussel, fish toxicity
- Stormwater runoff major source

Ecoregional differences


- DOC
- NH₄
- NO₃
- Runoff Potential
- Algal assemblages
- Fish diversity

- Forest conversion effects increase with gradient
 - Appalachian > Piedmont > Coastal Plain
 - Stronger response, response at lower disturbance level
 - Land use, landscape history?
- Paucity of Coastal Plain studies


West Georgia Project

- Middle
 Chattahoochee River
 Drainage, western
 GA, USA
- Lower Piedmont
 Ecoregion
- Urbanization gradient from Columbus NE

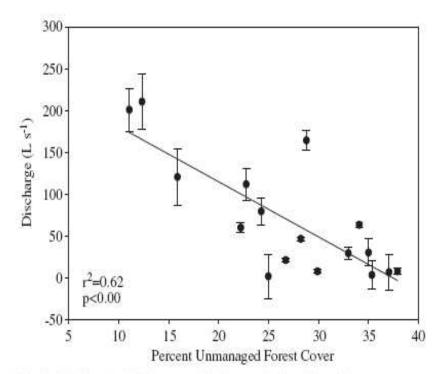
West Georgia Project

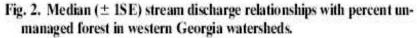
- Middle
 Chattahoochee River
 Drainage, western
 GA, USA
- Lower Piedmont
 Ecoregion
- Urbanization gradient from Columbus NE

Study Area: 18 watersheds

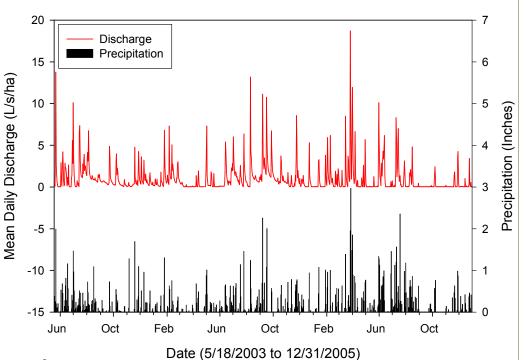
- To determine the influence of changing LU/LC on
 - Hydrology
 - Geomorphology
 - Water quality
 - Physicochemistry
 - Microbial populations
 - Biotic assemblages

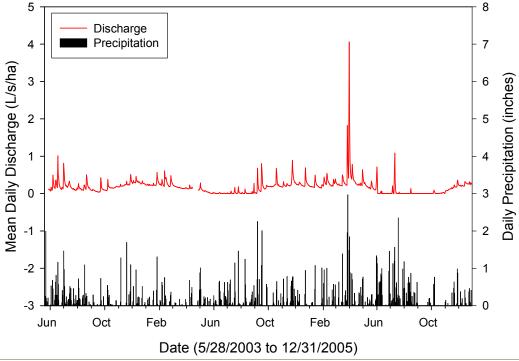
Hydrology


Table 4. Pearson's correlation coefficients for 15-min hydrology variables by the dominant land cover within 18 western Georgia streams.

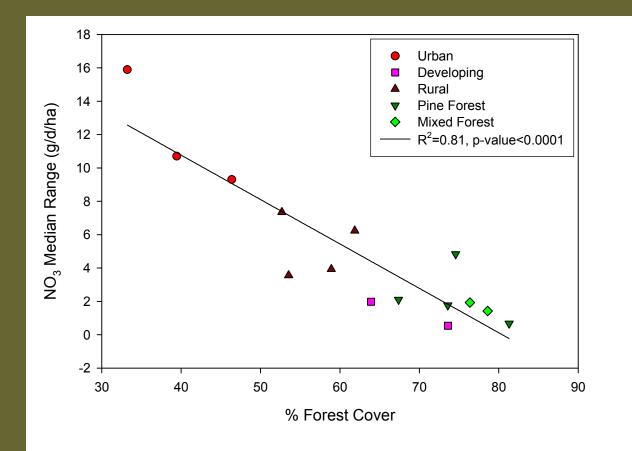

Variable	Variable description	IS	Managed forest	Unmanaged forest	Pasture	Forest types combined
Max	Maximum discharge (L s ⁻¹)	0.66**‡	-0.64**	-0.47*	0.20	-0.61**
Max ha	Maximum discharge/watershed area (L s ⁻¹ ha ⁻¹)	0.54*†	-0.45	-0.46*	0.15	-0.49 ^a
3xMed	Hours the discharge is above 3x median flow	0.65**	-0.43	-0.26	-0.20	-0.34
5xMed	Hours the discharge is above 5x median flow	0.64**	-0.52*	-0.34	-0.03	-0.48 ^a
7xMed	Hours the discharge is above 7x median flow	0.57**	-0.47*	-0.35	0.04	-0.40
>95th	# of times the discharge exceeds 95th percentile	0.52*	-0.46*	-0.36	0.16	-0.43
>99th	# of times the discharge exceeds 99th percentile	0.60**	-0.41	-0.54*	0.15	-0.50 ^a

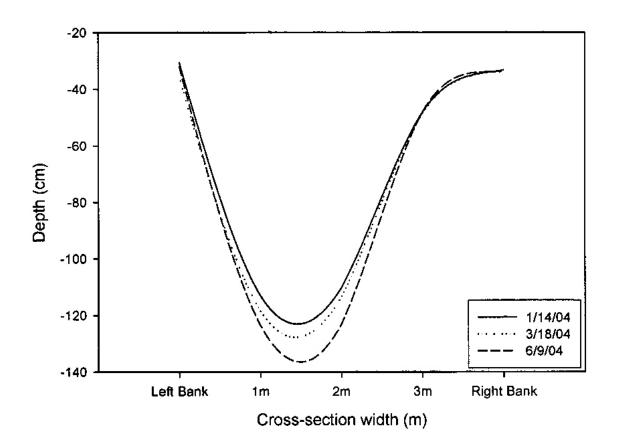
 \dagger^* Represents significant relationship at $\alpha = 0.05$.


 \ddagger^{**} Represents significant relationship at $\alpha = 0.01$.



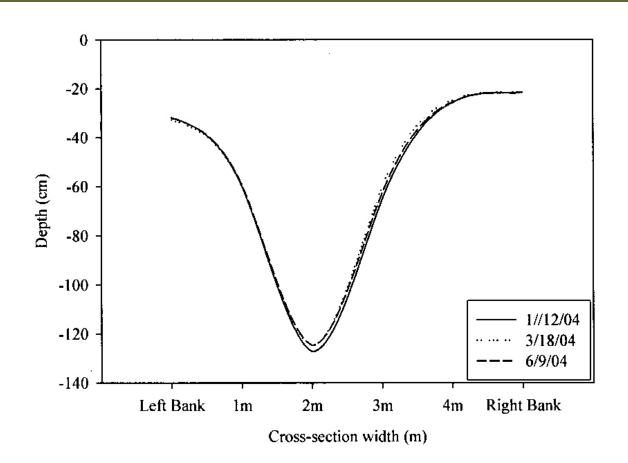
Hydrology of an urbanized watershed: flashy, peak flows correspond to rainfall events




Hydrology of a forested watershed: stable, higher discharge in winter and spring

Spearman correlation coefficients between water quality parameters and land cover percentages for baseflow and stormflow							
	Baseflow			Stormflow			
Variable	% IS	% Forest	% Ag	% IS	% Forest	% Ag	
Conc. (mg/L)							
TDS	0.71	-0.47	-0.49	0.65	-0.46	-0.38	
TSS	0.03	-0.19	0.16	0.31	-0.27	-0.04	
CI	0.81	-0.77	-0.28	0.60	-0.62	-0.07	
NO ₃	0.22	-0.58	0.15	0.35	-0.66	0.09	
SO₄	0.48	-0.28	-0.65	0.59	-0.40	-0.45	
Na	0.53	-0.21	-0.35	0.39	-0.16	-0.15	
NH4	0.07	-0.26	0.08	0.52	-0.61	-0.20	
К	0.47	-0.53	-0.26	0.50	-0.63	-0.14	
Р	0.13	-0.17	0.07	0.07	0.03	-0.05	
DOC	0.48	-0.25	-0.25	0.40	-0.10	-0.20	
Fecal Coliforms (MPN/100mL)	0.39	-0.35	-0.29	0.43	-0.35	-0.34	
Bold values significant at alpha=0.05, IS=Impervious Surface							

Nitrate yield median ranges for 2003-2005 across a forest cover gradient



Cross-section of an urban stream channel in WestGA

Figure 4. Cross-section of an urban channel in the erosional phase of development (dominant land use: 48% urban, 31% forested, and 19% pasture).

Cross-section of a mixed forest stream channel in WestGA

Figure 5. Cross-section of stable channel in a watershed dominated by mixed forest (dominant land use: 94% forested, 6% pasture).

Fecal coliform

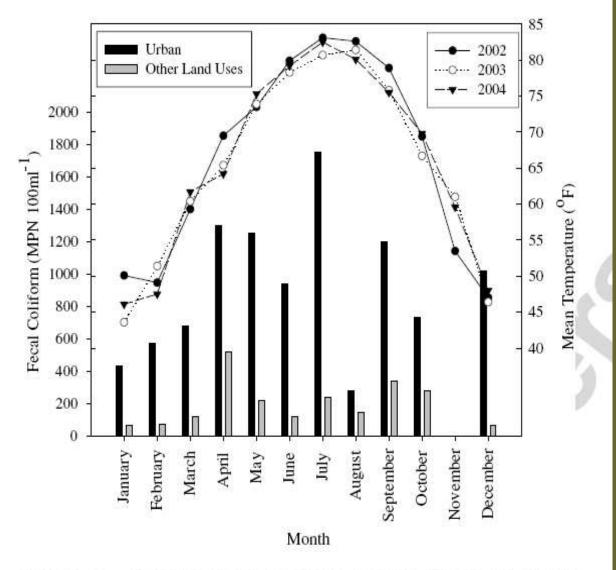
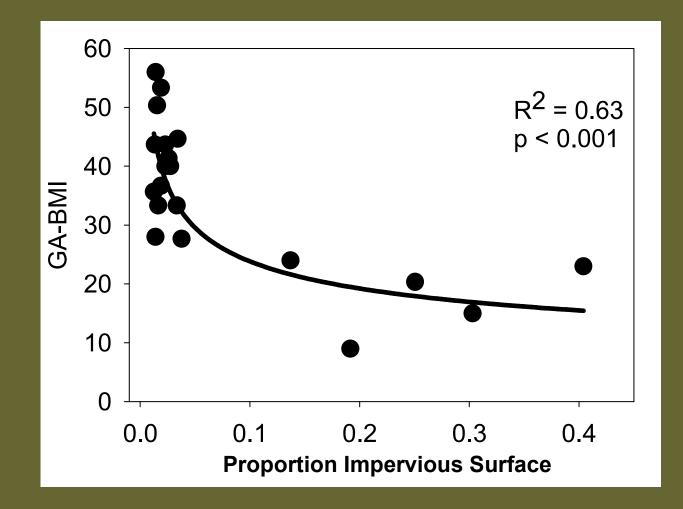


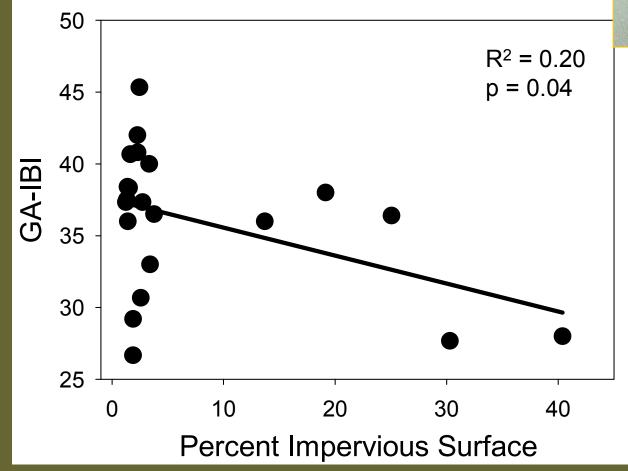
Figure 3 Monthly fecal coliform counts (bars) of urban watersheds versus all other land uses combined in relation to mean annual air temperature (trend lines).


High levels of fecal coliform in urban streams

Observations with > 15,000 colonies / 100 ml

Obs	Date	Land Use	ID	FC	
1	11/4/2004	Developing	SB2	35,000	
2	1/20/2005	Urban	BR	25,000	
3	3/17/2005	Urban	BR	20,000	
4	4/8/2005	Urban	BR	16,000	
5	6/2/2005	Urban	BR	17,000	
6	11/16/2005	Urban	BU2	70,000	

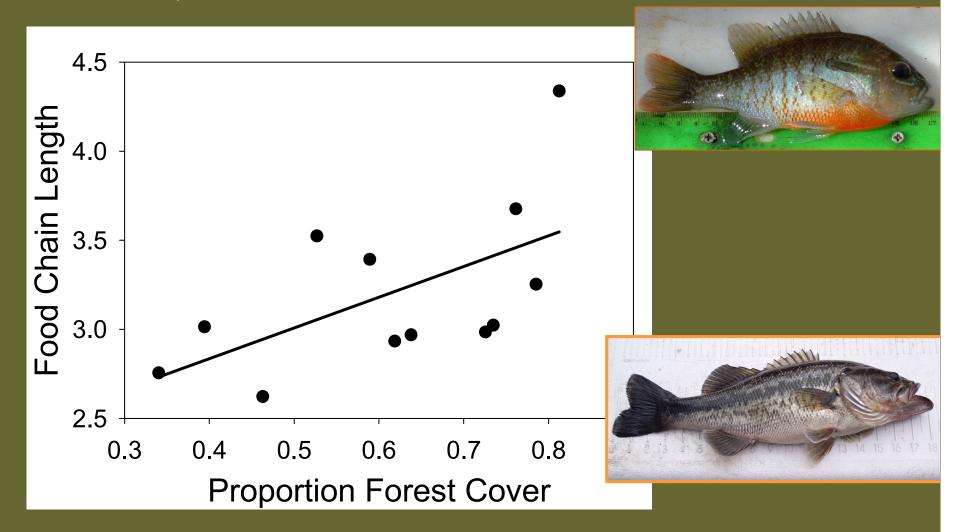
NVERTS – LU/LC relationships Georgia Benthic Macroinvertebrate Index www.gaepd.org



- % Shredders
- % Scrapers
- # Swimmers
- % Plecoptera
- % Oligochaete
- # Coleoptera

Acroneuria sp.

Fish — Index Biotic Integrity (IBI) Georgia Department of Natural Resources



- % Tolerant - # Sensitive - % D.E.L.T.

% Insectivorous% Omnivorous% Lithophils

Food webs –Max Trophic Position

 $(\delta^{15}N_{top consumer} - \delta^{15}N_{base}) + \lambda / 3.4$

Summary

Hydrology & geomorphology

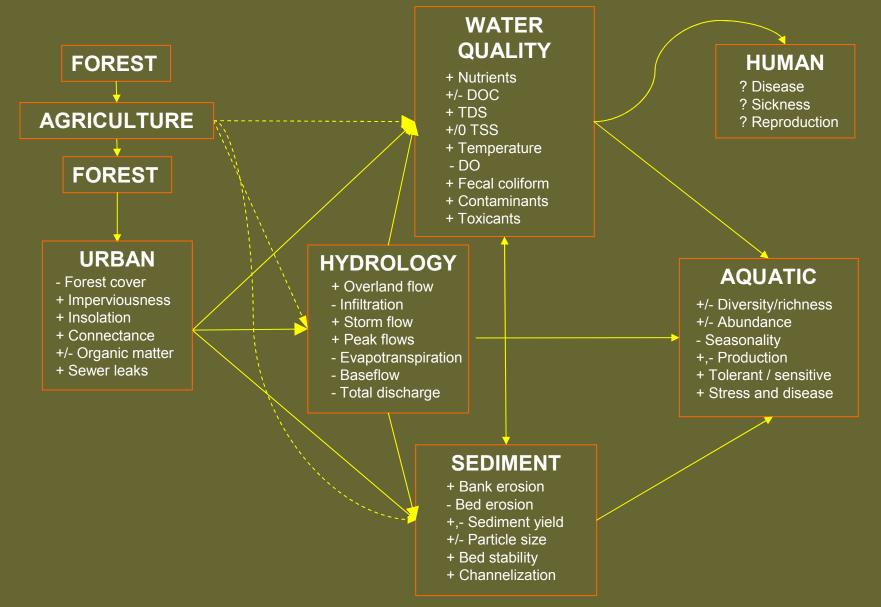
- \uparrow stability with forest cover
- Water quality
 - $-\downarrow$ nitrates, sediments with forest
 - \uparrow stability with forest cover
 - $-\uparrow$ fecal coliforms with urbanization

Biota

- \uparrow integrity with forest
- Different response shapes
- \uparrow FCL with forest cover
- Strong linkages with DO, habitat, hydrology

Conclusions – Forest conversion

- Elevated discharge
 - 5:1 increase with impervious surface
 - Proportionally higher in CP
- Biotic changes
 - Macroinvertebrates best indicator
 - CP assemblages more resilient
- Water quality changes
 - Elevated nutrients, sediments
 - Local, regional differences
- Human health concerns
 - Elevated levels and exposure to contaminants
 - Need more directed study


Conclusions – Forest conversion

- Impervious surface thresholds?
 - <5 10% for chemistry, biota
 - Higher in CP
 - May be overly simplistic

- Management techniques work!
 BMPs, SMZs, erosion and runoff control
 - Add value to restoration efforts
- Needs / Implications
 - Spatial arrangement of development
 - Land use history
 - Coastal Plain and epidemiological studies
 - Management / restoration couplings

Forest to Urban Conversion

Acknowledgements

- Ge Sun
- Paul Barten
- Jim Vose
- Jon Schoonover
- Jackie Crim
- Kyle Barrett

- Photo Credits
 - GA DNR
 - VA DCR
 - New Deal Network
 - NC Business History
 - Grey Villet
 - Corbis