# The terminal portion of the plant hydraulic continuum: branch and leaf vulnerabilities to hydraulic dysfunction

D.M. Johnson<sup>1</sup>, K.A. McCulloh<sup>2</sup>, F.C. Meinzer<sup>1</sup>, and B. Lachenbruch<sup>2</sup>

<sup>1</sup>US Forest Service, Corvallis, OR; <sup>2</sup> Oregon State Univ., Corvallis, OR

# Background

- In order to:
  - − 1) prevent runaway embolism
  - 2) allow maximum carbon gain
- Entire hydraulic pathway has to be tightly coordinated, from stomata upstream
- However, few studies have looked at the entire pathway
- Objective compare branch and leaf resistance to hydraulic dysfunction
  - Overarching compare properties of entire axial pathway from root to leaf









### Air-injection method













**State College, PA** 

Virginia pine Tulip poplar Red oak









Plastic bag covered with aluminum foil

Very tall, old tree





# Patterns of daily $K_{\text{leaf}}$ loss







# Oaks????

| Reference            | Species                 | PLC at midday WP |
|----------------------|-------------------------|------------------|
| This study           | Q. rubra                | 50%              |
| Tognetti et al 1998  | Q. pubescens<br>Q. ilex | 60-80%<br>60-80% |
| Taneda & Sperry 2008 | Q. gambellii            | 84%              |

# Summary

- Stems were generally more conservative than leaves
- Many leaves lost conductance midday
- Several oaks did lose branch conductivity and in *Q. rubra*, branches were more vulnerable than leaves
- There may be a tradeoff between maximum conductivity and vulnerability

# Acknowledgements

- Field Work and Collaboration: Logan Barnart, Barb Lachenbruch, Jane Wubbels, Tom Adams, Myriam Loloum, Sylvain du Perloux, Dave Woodruff
- Eissenstat Lab at Penn State University
- USDA Forest Service
- Oregon State University (College of Forestry)
- National Science Foundation