The Importance of Headwater Forest Wetlands in North Carolina Water Quality and Biotic Communities

> NC Division of Water Quality Rick Savage – <u>rick.savage@ncdenr.gov</u> Ginny Baker – <u>virginia.baker@ncdenr.gov</u>

Headwater Wetlands

- Definition Typically small bowl-shaped wetlands that grade into 1st order streams.
- Location Upper reaches of watersheds in the Coastal Plain, Piedmont, and Mountain regions of NC.
- Importance Protects downstream aquatic resources by acting as a natural filtering system for water quality.

Spring Garden

Batchelor

Kelly Rd

Nahunta

Study Objectives

- Design and implement a wetland monitoring program for NC which assesses the change of wetland quality and function along a disturbance gradient.
- To characterize physical, chemical, and biological features of headwater wetlands.
- To determine whether headwater wetlands effectively improve water quality and how watershed development affects water quality.
- Develop Indices of Biotic Integrity (IBIs) specific for NC- A summary index composed of multiple biological indicators called metrics.

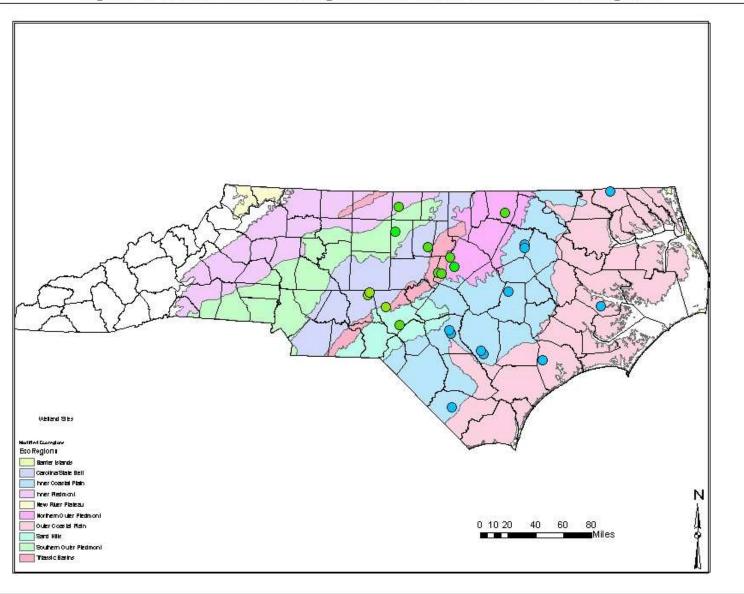
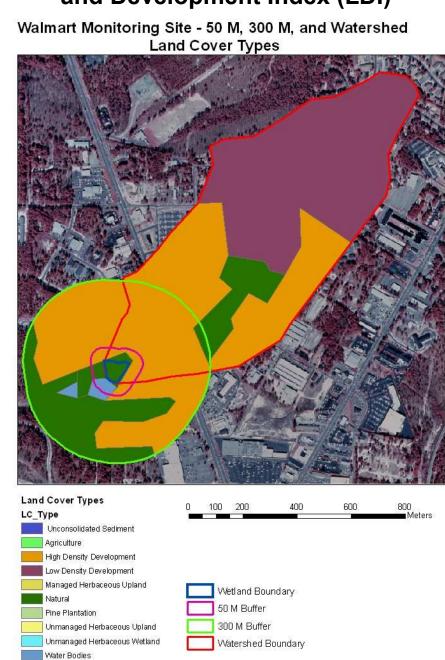



Figure 1 Wetland Monitoring Sites in North Carolina Ecoregions

Wetland Monitoring Methods

- Level I Use of remote sensing techniques and / or GIS mapping.
- Level II Rapid on the ground wetland assessments.
- Level III Intensive, long-term, on the ground survey methods (biological, chemical, and physical monitoring).

N

Level I - GIS Analysis Disturbance Measurement and Development Index (LDI)

Level II- Rapid Assessment Method ORAM

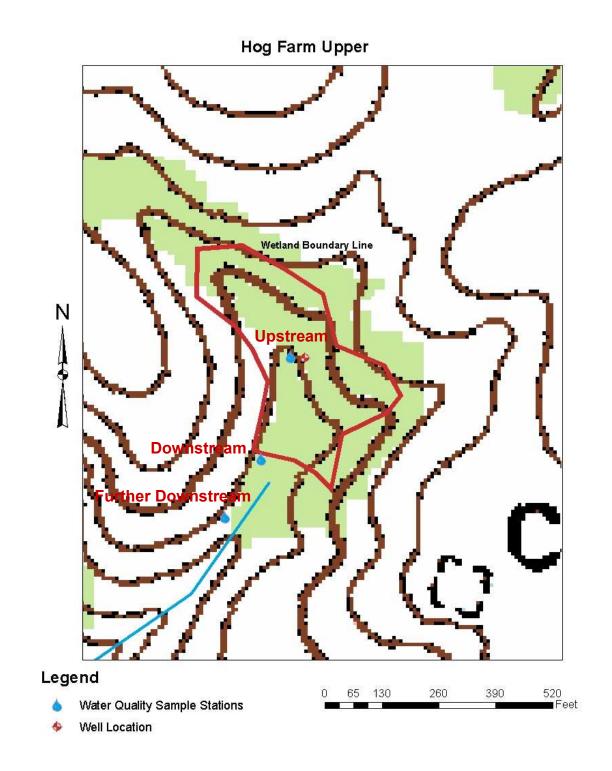
Ohio Rapid Assessment Method (ORAM) v. 5.0

- 1. Wetland Area
- 2. Upland buffers and surrounding land-use
- 3. Hydrology
- 4. Habitat Alteration and Development
- 5. Plant Communities, Interspersion, microtopograpy

Level III Intensive Monitoring Methods

- Physical and Chemical Attributes
 - Water Quality
 - Hydrology
 - Soils
- Biotic Communities
 - Amphibians
 - Macroinvertebrates
 - Plants

Physical and Chemical Surveys

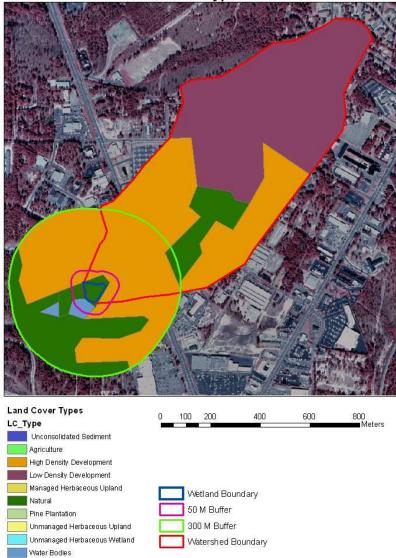


Water Quality

Soils

Watershed Affect on Headwater Wetland Water Quality

N


$LUI_{Total} = \sum %Lui * LUIi$

- LUI_{Total} = LUI Ranking for landscape unit *i*
- %Lu_i = percent of the total area of influence in the land use *i*
- land use i LUI_I=landscape development intensity coefficient for land use

Headwater Wetland Landcover Type and LUI Coefficient Values

<u>Land Cover Type</u> <u>Coefficient (LUI_I)</u>	<u>LUI</u>
Natural Areas	1
Water Bodies	1
Unmanaged Herbaceous Upland	2
Unmanaged Herbaceous Wetland	2
Managed Herbaceous Wetland	2
Cultivated	4
Unconsolidated Sediment	4
Low Intensity Development	5
High Iर्क्सensity Development	8
High Intensity Development	8

Walmart Monitoring Site - 50 M, 300 M, and Watershed Land Cover Types

To Determine the Watershed affect on Headwater Wetland Water Quality

<u>Results</u>

 Significant correlation between Watershed LUI scores and magnesium, Nitrite + Nitrate, and Fecal Caliform (p-value<0.05) for all water quality samples (surface and pore water) and surface water quality samples.

Conclusion

• There is a direct correlation between the headwater wetland water quality and the condition of the surrounding watershed.

Headwater Wetland Water Quality – with ORAM as disturbance gradient

Analysis Method

- Ohio Rapid Assessment Method (ORAM v. 5.0, Ohio EPA 2001) was used to calculate a disturbance score for each site. ORAM assesses a site's size, 50m-buffer condition, hydrology, habitat, and plant community quality and interspersion, and microtopography.
- Correlation Analysis was run for each site's ORAM score against each site's 19 different water quality parameter results.

<u>Results</u>

- Significant correlation (p<0.05) between ORAM scores and calcium, magnesium, N+N, Special Conductivity, and Zinc for all water quality samples (surface and pore water and surface only).
- Significant correlation (p<0.05) between ORAM scores and ammonia, fecal coliform, and zinc for surface water quality samples only.

Water Quality Station Comparisons to Determine Headwater Wetland Filtering Capacity

- Water Quality Sampling Stations
 - UP Upstream
 - DN Downstream (located 200 feet down stream from Upstream water quality station)
 - FD Further Downstream (located another 200 feet down stream from Downstream water quality station, 5 sites in Coastal Plain only, sampled last 2 quarters)
- Water Quality Station Comparisons
 - ➤ UP-DN Upstream compared to Downstream
 - UP-FD Upstream compared to Further Downstream
 - DN-FD Downstream compared to Further Downstream

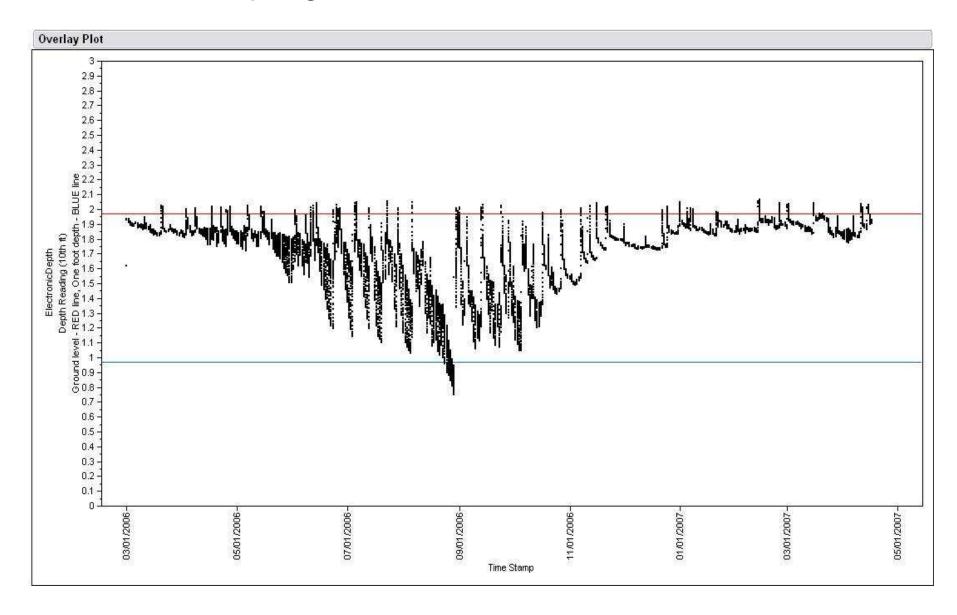
Regional Sample Station Location Comparison by Site of Water												
Quality Parameter Means												
All Water Quality Results												
	Piedmont	(Coastal Pla	in								
Station Comparisons	UP-DN	UP-DN	Total Stations									
Improvement	130	117	73	66	386							
No Improvement	mprovement 94 88 17 2											
Total Stations	90	609										
Chi Square Results P=0.016												
Station	Piedmont	(Coastal Pla	in								
	Comparisons UP-DN UP-DN UP-FD DN-FD											
eempaneene		UP-DN	UP-FD	DN-FD	Total Stations							
•	104	UP-DN 104	UP-FD 55	DN-FD 66	Total Stations 329							
Improvement												
Improvement No Improvement	104	104	55	66	329							
Improvement No Improvement Total Stations Chi Square Results	104 91 195	104 101	55 35	66 24	329 251							
Improvement No Improvement Total Stations	104 91 195	104 101	55 35 90	66 24 90	329 251							
Improvement No Improvement Total Stations	104 91 195	104 101 205	55 35 90	66 24 90	329 251							

Headwater Water Quality Individual Site Analysis

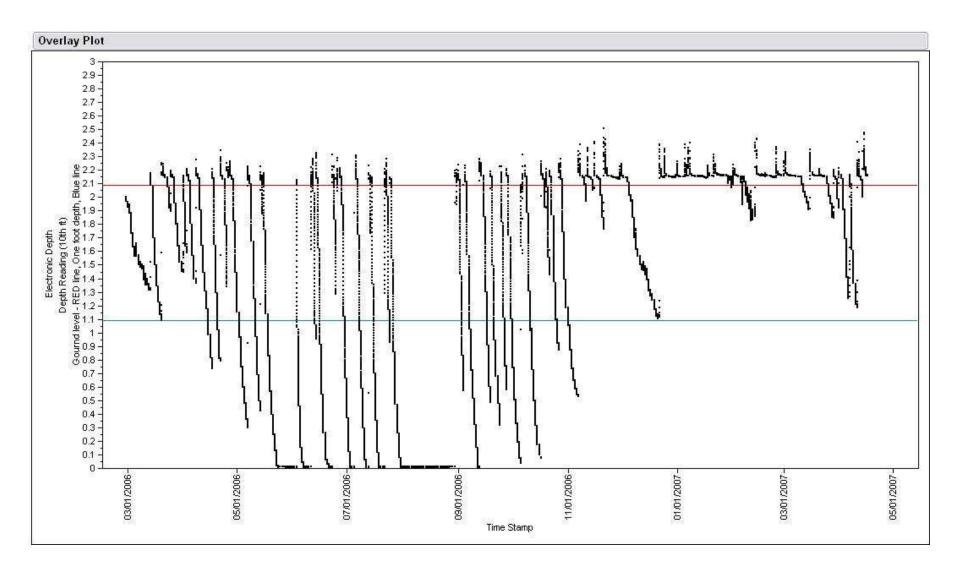
- 21 of 23 sites showed statistically significant improvement on at least one water quality measure
- 10 of 23 sites showed statistically significant improvement on at two or more water quality measure
- Only 2 sites had statistically significant results showing water quality measures degrading

Water Quality Parameter Station Comparisons for Individual Sites

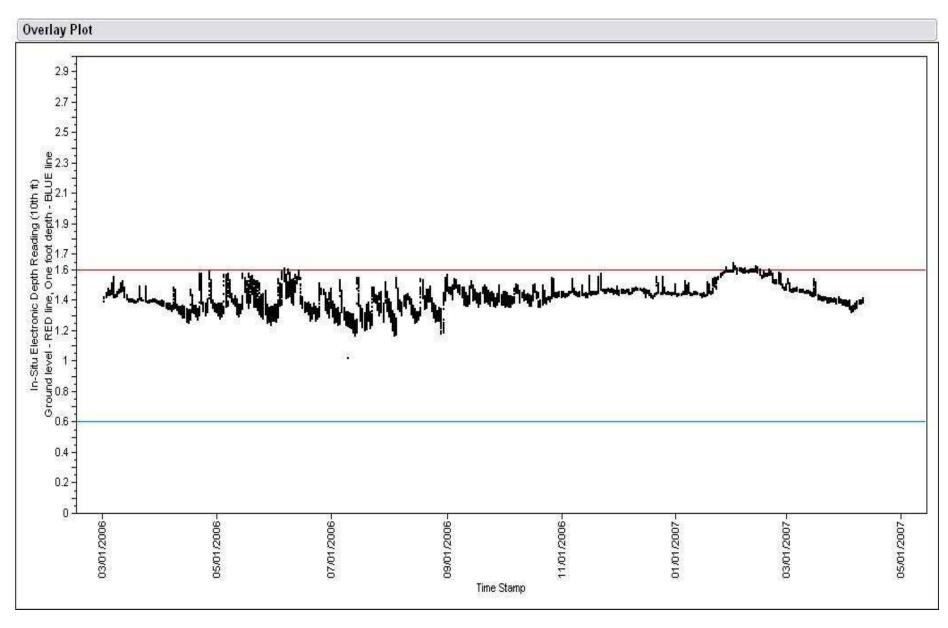
Site Name	Parameter	Wilcoxon / Kruskal- Wallis P-Value	Significant Station Comparison		
Batchelor	Specific Conductivity	0.009	UP-DN		
Battle Park	Ammonia	0.0833	UP-DN		
Battle Park	Dissolved Oxygen (%)	0.0833	UP-DN		
Battle Park	Dissolved Oxygen (mg/L)	0.0833	UP-DN		
Black Ankle Powerline	Dissolved Oxygen (%)	0.0495	UP-DN		
Black Ankle Powerline	Dissolved Oxygen (mg/L)	0.0495	UP-DN		
Boddie Noell	Dissolved Oxygen (%)	0.0641	UP-DN		
Boddie Noell	Dissolved Oxygen (mg/L)	0.0641	UP-DN		
Boddie Noell	Lead	0.0491	UP-DN		
Boddie Noell	Zinc	0.0603	UP-DN		
Cox	ТКМ	0.0642	UP-DN & DN-FD		
Cox Duke Forest	TKN	0.0833	UP-DN & DN-FD		
East Fayetteville North	Copper	0.0979	UP-DN & DN-FD		
East Fayetteville North	pH	0.0995	UP-DN		
East Fayetteville North	Specific Conductivity	0.0244	DN-FD		
East Fayetteville South	Magnesium	0.0635	UP-DN		
East Fayetteville South	pH	0.0861	UP-DN		
East of Mason	Fecal Coliform	0.0339	UP-DN		
Fire Tower	Calcium	0.0731	UP-DN		
Fire Tower	Copper	0.0021	UP-DN		
Fire Tower	Dissolved Oxygen (%)	0.0027	UP-DN		
Fire Tower	Dissolved Oxygen (mg/L)	0.0027	UP-DN		
Fire Tower	Lead	0.0074	UP-DN		
Fire Tower	Magnesium	0.0758	UP-DN		
Fire Tower	pH	0.0026	UP-DN		
Fire Tower	Phosphorus	0.0037	UP-DN		
Fire Tower	TKN	0.0065	UP-DN		
Fire Tower	тос	0.0039	UP-DN		
Fire Tower	Total Suspended Residue	0.0603	UP-DN		
Fire Tower	Zinc	0.0401	UP-DN		

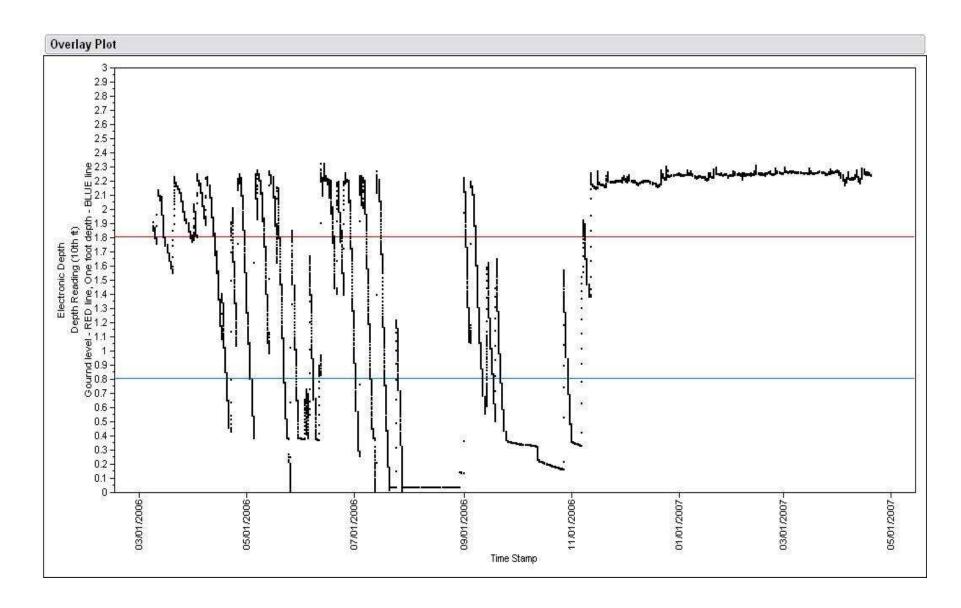

Hog Farm Lower	DOC	0.0641	UP-DN			
Hog Farm Lower	Phosphorus	0.0679	UP-DN			
Hog Farm Lower	Specific Conductivity	0.0176	UP-DN			
Hog Farm Lower	ТКМ	0.0174	UP-DN			
Hog Farm Lower	ТОС	0.0176	UP-DN			
Hog Farm Upper	Dissolved Oxygen (%)	0.0041	UP-FD			
Hog Farm Upper	Dissolved Oxygen (mg/L)	0.0099	UP-FD			
log Farm Upper	Magnesium	0.0802	UP-FD			
log Farm Upper	Phosphorus	0.0266	UP-FD			
Hog Farm Upper	ТКМ	0.0873	UP-DN			
Hog Farm Upper	тос	0.0069	UP-FD			
Nahunta	Zinc	0.0459	UP-DN			
PCS	Ammonia	0.0289	DN-FD			
PCS	Copper	0.0871	DN-FD			
PCS	Lead	0.0477	DN-FD			
PCS	TKN	0.0414	DN-FD			
PCS	тос	0.049	DN-FD			
PCS	Zinc	0.0287	DN-FD			
Pete Harris	Calcium	0.0833	UP-DN			
Pete Harris	Magnesium	0.0833	UP-DN			
Spring Garden	DOC	0.0833	UP-DN			
Jmstead	Water, Temperature	0.0209	UP-DN			
Valmart	Ammonia	0.0086	UP-DN			
Valmart	Calcium	0.0143	UP-DN			
Valmart	Copper	0.0027	UP-DN			
		0.0027				
Valmart	Dissolved Oxygen (%)	0.05	UP-DN			
Valmart	Lead	0.0028	UP-DN			
Valmart	Magnesium	0.0143	UP-DN			
Valmart	Phosphorus	0.0082	UP-DN			
Walmart	Specific Conductivity	0.0176	UP-DN			
Valmart	ТКМ	0.0088	UP-DN			
Valmart	TOC	0.0061	UP-DN			
Nalmart	Zinc	0.0041	UP-DN			

Bold Blue = Improvement and Red = No Improvement


Headwater Hydrology Results

- Automated Transducers were installed on 12 headwater sites
- Six in the Piedmont and six in the Coastal Plain
- Data collected every 30 minutes for 18 months, including one complete growing season
- Headwater wetlands are within one foot of the surface for at least 47% of the growing season (mean of 75% on the Coastal Plain and 72% in the Piedmont)


Spring Garden – Piedmont, Natural


Troxler – Piedmont, Urban

Hog Farm Upper – Coastal Plain, Rural

Boddie Noell – Coastal Plain, Urban

Headwater Soil Lab Analysis

- Levels of major plant nutrients, including phosphorus, potassium, calcium and magnesium
- Levels of plant micronutrients, including copper, manganese, sulfur and zinc
- Levels of sodium
- pH
- Exchangeable Acidity
- Sum Cation
- Percent base saturation
- Percent humic matter
- Cation exchange capacity
- Weight-to-volume ratio

Headwater Summary of Soil Results

- Soil Parameter Correlation with ORAM (High Disturbance) -phosphorous, zinc, copper, Nitrate-Nitrogen
- Soil parameters correlated LDI (Disturbance as measured by development)- (copper and zinc)
- Flatter wetlands (Coastal Plain) had higher levels of nutrients and metals than the bowl shaped wetlands (Piedmont)
- The upland soils samples also had less nutrients and metals than the wetland samples – headwater wetlands are a sink for potential pollutants and potential for improving water quality

Final Conclusions - Water Quality, Hydrology and Soils Headwater Wetland

- There is a direct correlation between the headwater wetland water quality and the condition of the surrounding watershed.
- Headwater wetlands affectively reduce the amount of pollutants entering downstream waters.
- Headwater wetlands are very individual systems.
- The hydrology of headwater wetlands remains active during the growing season.

Biotic Communities Surveys

Amphibians

Macroinvertebrates

Plants

Acris crepitans

Rana sphenocephala

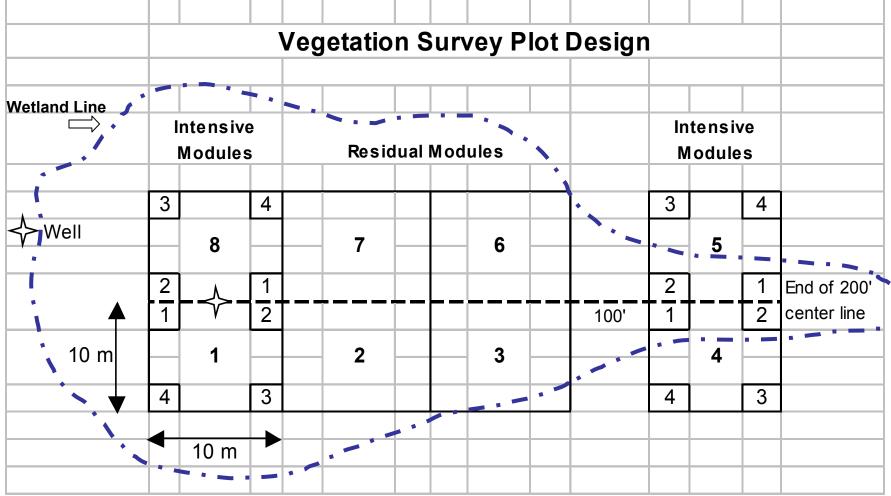


Hyla cinerea

Rana clamitans & catesbeiana

Aquatic Macroinvertebrate Survey Methods

Funnel Trap



Sweep Net

Stove Pipe Sampler

Plant Community Survey Methods

What are Indices of Biotic Integrity?

IBIs are a numeric index which is composed of 5-10 metrics derived from biological attributes (e.g. species richness, evenness, percent predators etc). IBIs are used to represent a wetland's condition and provide a simple way to interpret the results of multiple biological attributes.

IBI Development

Identify Candidate Metrics

 (Biological attributes – e.g. Species richness, percent tolerant species, percent sensitive species etc)

2. Test Candidate Metrics by statistically correlating with disturbance measurements GIS Analysis (LDI) Rapid Assessment Method (ORAM) Chemical & Physical Intensive Survey Summary Results

Amphibian Candidate Metrics

7 Candidate Metrics tested, 5 Metrics chosen

1. Species Richness

- 2. % Tolerant (Species with C of C \leq 3)
- 3. % Sensitive (Species with C of C \geq 6
- 4. % State Listed
- 5. % Headwater-Ephemeral-Seepage HW-EW- SW
- 6. % Ureodela (Salamander)
- 7. Amphibian Qualitative Assessment Index (AQAI)

C of C = Coefficient of Conservatism

Amphibian Results (X = significant result)

Water Quality Disturbance Measurements	OQ	Fecal Coliform	Ammonia	NO ₂ +NO ₃	Phophorous	TKN	Cu	Zn	Pb	Ca	Mg	TSS	Turbidity	тос	DOC	Relative Nutrients	Relative Metals	Combo	Specific Condo	Temp	рН
Species Richness	x									x	X										
% HW - EW - SW		X		x												X					
% Sensitive		X	X		x			X								X		x			
% Tolerant	x																				x
% Urodela			X		x			X	X			x	X				X				
% State Listed																					
AQAI	x		X		x									x	x						x
LDI, ORAM, and	M	he	М		Ηd	сu	Zn														
Soils Disturbance	300	LDI Watershe	LDI 50M	E	ls p	ls 0	ls Z														
Measurements	LDI	LDI Vat	LDI	Oram	Soils	Soils	Soils														
Species Richness	x	X		x	x	X	x														
% HW - EW - SW		X			x																
% Sensitive					x																
% Tolerant																					
% Urodela					X																
% State Listed																					
AQAI					X																

Amphibian Score Assignment and IBI Results

Metric Score Assignment for Amphibians

		Metric			0	3	3	7	10)		
		AQA				<	5	<7	<u>></u> 7	7		
	•	% Sensit	ive		<5	<1	0	<25	<u>></u> 2	5		
	•	% HW-EV	N-SW		<20	<5	50	<75	<u>></u> 7	5		
	•	% Urode	la		<10	~	30	<50	<u>></u> 5	0		
	:	Species	Richr	ness	3	<	5	≪8	>8	3		
			Metr	ic Re	sults			Met	ric S	cores	S	IBI
Region	Site Name	AQAI	% Sensitive	% HW-EW- SW	% Urodela	Species Richness	Metric AQAI	Metric % Sensitive	Metric % HW- EW-SW	Metric % Urodela	Metric Score Species Richness	Amphib IBI
	Moonshine	2.7	0.0	0.0	8.5	5.0	0	0	0	0	7	7
	Kelly Rd	2.1	0.0	18.1	0.0	8.0	0	0	0	0	10	10
	Fire Tower	2.0	14.3	14.3	28.6	3.0	0	7	0	3	3	13
	Pete Harris	3.5	2.4	68.7	2.4	4.0	3	0	7	0	3	13
	Umstead	2.3	8.8	25.4	8.8	8.0	0	3	3	0	10	16
	Troxler	4.1	6.3	93.9	0.5	4.0	3	3	10	0	3	19
Piedmont	Black Ankle Powerline	3.9	1.7	93.1	1.7	7.0	3	0	10	0	7	20
llbé	Black Ankle No	n-										
Pie	Powerline	3.9	2.4	90.2	4.0	8.0	3	0	10	0	10	23
	East of Mason	4.0	2.3	95.1	2.3	11.0	3	0	10	0	10	23
	Spring Garden	3.9	4.8	84.8	16.0	5.0	3	0	10	3	7	23
	Walmart	7.0	100.0	16.7	100.0	2.0	10	10	0	10	0	30
	Duke Forest	6.0	52.8	69.3	52.8	4.0	7	10	7	10	3	37

Aquatic Macroinvertebrate Candidate Metrics

36 Candidate Metrics tested

- Taxonomic Richness
- **Taxonomic Composition**
- **Trophic Structure**
- Tolerant / Sensitive

Aquatic Macroinvertebrate IBI Results 6 Coastal Plain Metrics Chosen

% Coleoptera, % Crustacea, % Diptera, % Orthocladiinae, % POET (Plecoptera, Odonata, Ephemeroptera, Trichoptera), POET Richness

7 Piedmont Metrics Chosen

% Tolerant, % Mollusk, % Coleoptera, POET Richness, Family Richness, Chironomidae Richness, Predator Richness

Plant Community Metrics 41 Candidate Metrics tested - 10 Metrics chosen

Community Balance

Native Species Evenness Metric

Floristic Quality

Floristic Quality Assessment Index (FQAI) Metric

Average C of C Metric

Invasive Shrub Cover Metric

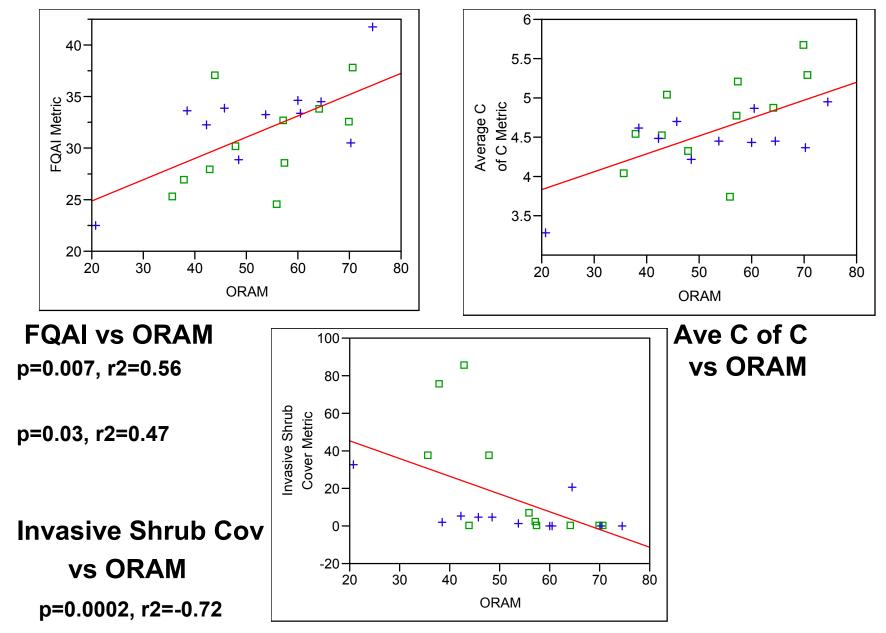
Wetness Characteristics

Native Wetland Plant Richness Metric

Functional Group

Poaceae, Cyperaceae, and Juncaceae Cover Metric

Community Structure


Native Herb Richness Metric

Shade Metric

Pole Timber Density Metric

Average Importance Shrub Metric

Plant Community Metric Results-FQAI, C of C, and Invasive Shrub Cover by ORAM

Headwater Wetland IBI Conclusions

- The Amphibian and Macroinvertebrate IBI metric correlation analysis results showed that these communities respond more directly to water quality and soil chemistry than the more the ORAM general wetland GIS (LDI) and rapid assessment (ORAM) disturbance measurements.
- The Plant IBI metric correlation analysis showed that there is a significant correlation between the condition of plant communities and the rapid assessment (ORAM) and GIS (LDI) disturbance measurements.

Future Wetland Monitoring Work Plans

- Further development of IBIs on headwater, bottomland hardwood, riverine swamp, and basin wetlands
- Further testing and development of water quality, soils, and hydrology monitoring and analysis methods
- Calibration and validation of NCWAM through comparison with Level III intensive surveys

Additional Wetland Monitoring Projects

- Continuation of Wetland Monitoring with Basin, Riverine Swamp Forest, Bottomland Hardwood Forest wetlands
- Examination of Coastal Plain isolated wetlands through probability based sampling
- Regional (GA, MS, AL, SC, NC) wetland Piedmont and Coastal Plain assessment project
- National Wetland Conditional Assessment

Questions?

h2o.enr.state.nc.us/ncwetlands/pdu.htm – Under Wetlands Monitoring

Rick Savage rick.savage@ncdenr.gov

Ginny Baker virginia.baker@ncdenr.gov