What contribution can
ecohydrology make to forecasting
impacts of land use and climate
change on water yield and salinity
in forested catchments of South-
West Australia?
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Need to provide forecasts of climate change impacts on water
resources and how forests should be managed to maintain
water yield.

Need to understand how land use change in catchments
impacts on runoff (not just water balance but landscape
connectivity).

How do vegetative feedback loops affect these projections?

What is the potential impact of climate change on the biomes
of southwest Australia?




Sustainability and
protection of water
resources in water
limited regions is of
primary importance

* Ecohydrology for Sustainability

of water balance and
integration of response

recognizes importance

Feedback
loop
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Terminology

Scenario: a possible, plausible, internally consistent, but not
necessarily probable, development

Projection: a potential future evolution of a quantity or set of
quantities

Prediction: the result of an attempt to produce an estimate of the
actual evolution of a quantity in the future, for example at
seasonal, inter-annual or long-term time scales

Climate projections are distinguished from climate predictions in
order to emphasize that climate projections depend upon the
emission/concentration/radiative forcing scenario used, which
are based on assumptions concerning, for example, future
socioeconomic and technological developments that may or may
not be realised
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outhwestern Australia Southern Wet Season Rainfall Anomaly (base 1961-90)
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Some typical hydrologic objectives

How have rainfall patterns changed in the study area in last 100
years?

How have past rainfall changes affected catchment hydrological
processes?

How might projected climate change affect catchment
hydrological processes?

Flow duration

Yield
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- Murray Hotham catchment

| Rainfall -1100 to 400 mm; Streamflow - 275 GL (40 mm); Pan
evaporation - 1900 to 1450 mm; Cleared area — more than 50%
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Monthly distribution shows
seasonal shift

Large (~25%) decrease in autumn &
early winter rains

Much smaller increase in spring &
sumimer rains

Pre-1975 vs post-1975 data

4 long-term weather stations

11 - 17% decrease in annual rain

Fewer wet years post-1975
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Observations are consistent with identified
changes of synoptic drivers of rainfall over the
region (Indian Ocean Climate Initiative)

e Reduction in strength of subtropical jet over Australia

e Reduction in the likelihood of synoptic disturbances
developing over the region

e Increased frequency of days with high pressure, i.e.
more dry days

e These changes consistent with modelled changes due
to increased greenhouse gas emissions




Hydrological change
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m 1975-2005

Yarragil

Mean Streamflow (GL)
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Pre-1975 vs post-1975 data
=  Gauging stations: Baden Powell Water Spout, Yarragil Formation

Baden Powell 42%, Yaragill 71% decrease in mean annual flow

Monthly yield delayed & rainfall decrease magnified




Rainfall change

Flow duration decreased at

10
—1952-1974 both sites
—1975-2006 L
1 ) 22% decrease in flow duration
Yarragll (82 days) at Yararragil.

Exceedence decreased for all
discharge levels at Baden
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Projections to 2064
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Note that in this

approach there is
no vegetative
feedback loop.




Projections made using a
distributed conceptual
hydrologic model

Daily water balance
Large-scale catchments

“Open book” hill-slope
model

— Surface runoff, Q,,
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Direct runcff, Q,,

(a) depicts a hypothetical catchment,
{b) is an open book representation, and

Stream zone Store




Calibrated model gives
Annual streamflow
error: of -0.8 to +2.4%
in 1990s

Digital elevation model -
Hydrological Response Units
and stream network

135 Hydrologic Response Units

Catchment parameters defined
One set for the whole catchment

Annual Flow (mm)

200

0

Actual flow (mm)
....... Modelled flow (mm)

1960

1970 1980 1990 2000
Year




—~~

Annual Salt Load (kg/ha

Measured and predicted salt load for the Murray-Hotham Catchment
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Summary of observations and model runs

To Now:
Annual rainfall has diminished by 10 - 17% since 1975
Stream yields down 40%
Flow duration shortened significantly
Seasonal distribution of rainfall has changed

Probability of extreme rainfall unchanged

From now to 2064:
CCAM (A2): further 13% rainfall decrease by 2064

Hydrologic modelling: projects a 49% decrease in runoff from the
present annual mean value by 2064.
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Ecohydrology and Natural Selection
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* “On the basis of natural selection, then, it may be expected
that biological organisms, placed for sufficiently long time
within a specific set of environmental circumstances, will
tend to assume characteristics which are optimal with
respect to these circumstances” Rosen (1967)

* Eagleson (2002) demonstrates physical constraints of the
vegetation-soil-climate system control natural selection of
climax monoculture plant communities.

e Plant geometry (height, diameter, crown, roots, density)
e Plant physiology (stomatal control, nutrient extraction)
e Momentum, heat, light and vapor fluxes

¢ Eagleson. P.S. 2002 Ecohydrology: Darwinian Expression of Vegetation Form and Functi. Cambridge University Press.




] = Latent heat of
evaporation

7/ = psychrometric A is available energy

constant adsorbed by the
surface:
Net radiation -soil heat
flux

© = Density of air D, = VPD of air

¢, = specific
/ heat of air

Aerodynamic
conductance

G, =C, xLAI x f(VPD,T.)

%+ min




"| Transpiration

_| Evapotranspiration
(ET)

Air pressure,”
temperature,
humidity

Soil
"| Evaporation

Legend for the evapotranspiration(ET) flowchart
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Remote Sensing inputs ~ Meteorological inputs  Intermediate algorithm calculations ~ Stored algorithm values  Final algorithm output




Ecological optimality postulates that in water
limited environments the crown cover of
perennial vegetation and climate are in dynamic
equilibrium and that average annual LAI will
decrease at the climate dries.

(However, the rate and nature of native vegetation
response to climate change is unknown . )
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Modeled Pre-clearing Mean Annual Leaf Area
Index LAI=2.9 x rainfall/potential evap’n.
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Mixed forest
Open shrubland

VWioody savanna
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Grassland

Eouth African savanna,

MODIS LAl __
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The Eucalyptus forest ecosystems of Southwestern Australla
are ‘experiencing a drying and warming climate.—==

Climate change models predict that rainfall will continue to
decline across this region leading to enhanced water stress in
native ecosystems and reduced runoff from water supply
catchments.

Although Fucalypts can turn over their entire leaf biomass in

a year (Ameida et al., 2007), the deep rooting habit of key
overstorey species in southwestern Australia (>30 m has been
reported) may buffer against inter-annual variations in
rainfall (Silberstein et al., 2001).

To date, the response of Leaf Area to climate variation has
not been assessed across this region.
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Direct LAI measurement 1s time consuming,
site-specific (small scale) and 1s rarely repeated
to yield time series (for native vegetation)

So, can climate —related variation 1n leaf area
from satellite-derived measurements reveal
regional responses to inter-annual climate
variation across southwest Western Australia?




Methods

“ We analysed data from the Moderate Resolution Imaging
Spectroradiometer (MODIS) onboard NASA’s TERRA and AQUA
satellites to obtain Leaf Area Index (LAlI) and
Evapotranspiration (ET) (Mu et al., 2007) at a spatial
resolution of 3km by 3 km across Southwestern Australia
from 2000 to 2006 (MODIS was launched in 2000).

Forested areas were identified from LANDSAT imagery
with a density slicing method.

Annual rainfall across the region was obtained from the
Bureau of Meteorology and monthly values were derived for
every MODIS pixel.




Satellite-derived Global Mean maximum LAl
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Vegetation and cleared agricultural land over the
study region. A landsat image of the study area (a),
was classified (using a density slicing method) into
areas dominated by forest (a threshold value of 80%
forest within each 3km MODIS grid cell was used).
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MODIS LAI for 2005 and 2006 over the forested areas of southwest Australia
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Modis Mean Annual LAI__ (2000-2006) for forested
cells (3km x 3km grid) plotted against an aridity index.
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Average Monthly Modis LAI
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Annual Average MODIS ET, Observed (Precipitation-Runoff) over
2000-2006 for the 7 Watersheds in Southwest Australia
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‘Droughtproofing’ farms by increasing farm dams and
diverting surface water using banks.
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(Callow and Smettem,
2009: Env't Modelling and
Software, 24: 959-968)
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With a 10% range in the sensitivity of
the model LAI, the streamflow differs
by 5%. This is half the impact that
farm dams currently have on the
system with 921 dams in two sub-
catchments removing 10% of the total
river flow.
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Stream salinity (mg/L TDS

Observed and Predicted daily salinity for the Warren River in 2005
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Changes to MODIS LAI appear to reflect
climatic conditions experienced by
vegetation. We should take advantage of
this data when building ecohydrologic
models that more realistically incorporate
vegetative responses to climate change.

Loss of connectivity in watersheds needs to
be considered when seeking to understand
the effects of climate change on water
resources.




GIS Processing

Response Units

Land use history

Channel lengths
Nodes, slope

Parameter file
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