Impacts of Forest Canopy Structure on Energy, Water and Carbon Fluxes

Conghe Song Department of Geography University of North Carolina Chapel Hill, NC 27599

Prepared for September 15, 2009 2nd International Conference on Forests and Water Raleigh, NC

Small Leaves Do the Big Job

Big-Leaf Scaling up

Sunlit and Shaded Leaves

Uniform vs Gappy Canopy

Uniform Canopy

Gappy Canopy

Impacts of Canopy Structure on Ecosystem Processes

Sources of Data for Model Verification

Pine density: 1377 trees/ha

Understory hardwoods: 1470 trees/ha

Leaf area index:

4.7-5.9

Measured Data: net radiation, evapotranspiration, net ecosystem exchange during May to Sept for 2001

Model Inputs

Incoming radiation
Precipitation
Air temperature
Soil temperature
Soil moisture
Wind speed
Vapor Pressure Deficit
Leaf Area Index (LAI)

All input data are obtained from the on-site measurements. The data in 2001 were used for model evaluation.

Net Radiation

Radiation Budget:

$$R_n = (Q - Q_r) - (L_s - L_a)$$

Q = PAR + NIR

Energy Budget: Net radiation is used for heat storage in the soil and plant body, evaporate water (latent heat), heating the air near the surface (sensible heat), and photosynthesis

Modeling of Net Radiation

Canopy Only

Validation of Net Radiation

900

Latent Heat (Evapotranspiration)

Penman-Monteith equation coupled with Ball-Woodward-Berry model

$$LE_{T} = \frac{\Delta R_{n} + g_{a}\rho c_{p}[e_{s}(T) - e(T)]}{\Delta + \gamma_{0}(1 + \frac{g_{a}}{g_{sw}})}$$

R_n: Uniform vs. Gappy Canopy (two-leaf scaling up)
 g_{sw}: Stomatal conductance based on Ball-Woodward-Berry model
 g_a: Aerodynamic conductanceneutrally stratified rough-wall boundary layer formulation

Modeled Latent Heat Flux

Validation of Modeled Latent Heat at Half Hourly Scale

Validation of Daytime Trend over the Growing Season

Carbon Assimilation

Tower Measurement: Net Ecosystem Exchange (NEE) Measured data cannot separate Net PSN from plant (stems, leaves and roots) and soil (dead biomass) respiration. A model is needed to estimate the plant and soil respiration in order to get Net PSN.

Modeling of Net PSN

Validation of Net PSN at Half Hourly Scale

Validation of Net PSN Daytime Trend

Conclusions

- 1. Canopy Structure has significant impacts in modeling energy, water and carbon exchange between the forest ecosystem and the atmosphere.
- 2. Uniform canopy overestimates shortwave interception in the canopy, underestimates shortwave absorption on the forest floor, underestimates stand net radiation.
- 3. Differences in modeling results between uniform canopy and gappy canopy are nonlinear, indicating the bias cannot be corrected with linear scalar parameters.
- 4. Modeling of terrestrial ecosystem processes over large areas without explicit consideration of vegetation structure can lead to serious bias.

Acknowledgements

Funding provided by: National Science Foundation National Aeronautics and Space Administration

Contributors: Duke University: Gabriel Katul Ram Oren Paul Stoy (Univ Edinburgh) Heather McCarthy (UC Irvine) UNC: Lawrence Band UCSB: Christina Tague