Forestlands across the region are experiencing increased threats from fire, insect and plant invasions, disease, extreme weather, and drought. Scientists project increases in temperature and changes in rainfall patterns that can make these threats occur more often, with more intensity, and/or for longer durations. Although many of the effects of future changes are negative, natural resource management can help mitigate these impacts. Responses informed by the best current science enable natural resource professionals within the Forest Service to better protect the land and resources and conserve the region’s forestlands into the future.

Forest Health - Invasive and aggressive plant and insect species may increasingly outcompete or negatively affect native species in the future. Winter freezes currently limit many forest pests, but higher temperatures will likely allow these species to increase. Destructive insects will be better able to take advantage of forests due to factors such as increased drought. Certain invasive plant species, including the Japanese honeysuckle, are expected to increase dramatically as they are able to tolerate a wide range of harsh conditions, allowing them to rapidly move into new areas.

Response: Manage tree densities through practices such as thinning and prescribed fire to maximize carbon sequestration and reduce the vulnerability of forest stands to water stress, insect and disease outbreaks, and fire.

Response: Continually monitor for new invasive species moving into areas where they were not traditionally found, especially following events such as extreme storms and fire.

Plant Communities - Heat stress may limit the growth of some southern pines and hardwood species. Stresses from drought and wide-scale pest outbreaks have the potential to cause large areas of forest dieback. Intensified extreme weather events, such as storms and fire, are also expected to lead to changes in plant community composition. Populations of some rare or endemic plants may be particularly vulnerable. Hardwood-dominated forests may experience stress from higher temperatures, allowing pines and other fast-growing species to become more dominant at the expense of slower-growing species such as hickories and oaks.

Response: Focus restoration efforts in storm-resistant forests, such as shortleaf pine and promote the planting of shortleaf pines over loblolly pine where feasible.

Response: Include a range of ages and species in forests to lessen potential loss from drought, extreme storms, or infestation.

Animal Communities - Wildlife species will be affected in different ways. Amphibians may be most at risk, due to dependencies on moisture and cool temperatures that could be altered. Greater ambient temperatures may be harmful to the endangered northern long-eared bat.

Response: Maintain piles of natural woody debris in areas of high amphibian diversity to supplement habitats that retain cool, moist conditions.
Extreme Weather - The potential for severe storms is expected to increase in the future, including more intense storms. Extended periods of extreme high temperature and drought may lead to drier forest fuels which will burn more easily and contribute to larger and more frequent wildfires. More cloud-to-ground lightning due to warming may also increase wildfire ignitions.

Response: Prescribed burning can also be a management option for reducing the impacts of any future increases in wildfire potential emanating from climate change.

Water Resources - Shifts in rainfall patterns will lead to periods of flooding and drought that can significantly impact water resources. Increases in heavy downpours and more intense storms are leading to greater erosion and more sedimentation in waterways.

Response: Focus attention on and near smaller, isolated water systems that are more vulnerable and may not be able to absorb and benefit from wildfires and heavy rains that cause large floods or debris flow.

Response: Relieve groundwater and large reservoir use when there is ample surface water during wet periods or times of high water flow to recharge aquifers, provide temporary irrigation, decrease stored sediment loss, and construct small reservoirs.

Response: Restore and reinforce vegetation in headwater and marsh areas to help alleviate runoff of sediment during heavy rain, reduce climate-induced warming of water, and decrease water sensitivity to changes in air temperature.

Recreation - Environmental changes may negatively impact recreational experiences due to changes in the plant and animal communities that make those experiences unique. More days above freezing could increase tick and mosquito populations throughout the year, leading to an increase in vector-borne illness. With more days of extreme heat, Land between the Lakes could see decreased use in the summer if temperatures impact visitor comfort.

Response: Communicate early warnings for extreme weather to protect vulnerable groups from health impacts, such as heat illnesses, and monitor for early outbreaks of disease.
Forest Health

Animal Communities

Plant Communities

For more information and the latest science about managing healthy forests for the future visit the TACCIMO tool online: www.forestthreats.org/taccimotool

Extreme Weather

Water Resources

Recreation

