ASSESSING THE POTENTIAL EFFECTS OF CLIMATE CHANGE ON THE LAND BETWEEN THE LAKES RECREATION AREA

Forestlands across the region are experiencing increased threats from fire, insect and plant invasions, disease, extreme weather, and drought. Scientists project increases in temperature and changes in rainfall patterns that can make these threats occur more often, with more intensity, and/or for longer durations. Although many of the effects of future changes are negative, natural resource management strategies can help mitigate these impacts. Responses informed by the best current science enable natural resource professionals within the Forest Service to better protect the land, resources, and the region's forestlands into the future.

Forest Health - Invasive plant and insect species may increasingly outcompete or negatively affect native species in the future. Winter freezes historically limit the range of forest pests but higher temperature will likely allow increases in their number and spread. Drought and other factors will increase the susceptibility of forests to destructive insects such as the southern pine beetle. Certain invasive plant species, including Japanese honeysuckle, are expected to increase dramatically as they can tolerate a wide range of harsh conditions, allowing them to rapidly move into new areas.

Response: Manage tree densities through practices such as thinning and prescribed fire to maximize carbon sequestration and reduce the vulnerability of forest stands to water stress, insect and disease outbreaks, and wildfire.

Response: Continually monitor for new invasive species moving into areas where they were not traditionally found, especially following events such as extreme weather and fire.

Plant Communities - Heat stress may limit the growth of some southern pines and hardwood species. Stress from drought and widescale pest outbreaks have the potential to cause large areas of forest dieback. Intensified extreme weather events, such as ice storms and wildfire, are also expected to cause changes in plant community composition. Some species of rare or endemic plants may be particularly vulnerable. Hardwood-dominated forests may experience stress from higher temperatures, allowing pines and other fast-growing species to become more dominant at the expense of slower-growing species such as hickories and oaks.

Response: Focus restoration efforts in storm-resistant forests, such as shortleaf pine and promote the planting of shortleaf pines over loblolly pine where feasible.

Response: Manage for a range of ages and species in forests to lessen potential loss from drought, extreme storms, or infestation.

Animal Communities - Wildlife species will be affected in different ways. Amphibians may be most at risk, as suitable habitat decreases due to warmer, dryer conditions. Greater ambient temperatures may be harmful to the endangered northern long-eared bat. Elk and bison depend on native grassland habitat that is threatened by shifting temperatures, precipitation, and invasive feral hogs.

Japanese honeysuckle

Shortleaf pine

Elk

Response: Maintain piles of natural woody debris in areas of high amphibian diversity to supplement habitats that retain cool, moist conditions.

Response: Restore native prairie grasslands to support the native plants and animals that depend on them.

Extreme Weather - The potential for severe storm events is expected to increase in the future, as well as more intense rain events followed by longer dry periods. Extended periods of extreme high temperature and drought may lead to drier forest fuels which will burn more easily and contribute to larger and more frequent wildfires. More cloud-to-ground lightning due to warming may also increase wildfire ignitions.

Response: Reduce increased wildfire potential by conducting prescribed burns.

Water Resources - Shifts in rainfall patterns will lead to periods of flooding and drought that can significantly impact water resources. Increases in heavy downpours and more intense storms are leading to greater erosion and more sedimentation in waterways. Geographically isolated wetlands are critical wildlife habitat and can be impacted by changes in surrounding landcover.

Response: Reduce the amount of water taken in by surrounding trees and plants, using management strategies such as thinning and prescribed burns, in order relieve stress on isolated wetlands and streams.

Response: Relieve groundwater and large reservoir use when there is ample surface water during wet periods or times of high water flow to recharge aquifers, provide temporary irrigation, decrease stored sediment loss.

Response: Restore and reinforce vegetation in headwater and marsh areas to help alleviate runoff of sediment during heavy rain, reduce climate-induced warming of water, and decrease water sensitivity to changes in air temperature.

Recreation - Environmental changes may negatively impact recreational experiences due to changes in the plant and animal communities that make those experiences unique. More days above freezing could increase tick and mosquito populations throughout the year, leading to an increase in vector-borne illness. With more days of extreme heat, recreation areas could see decreased use in the summer if temperatures impact visitor comfort.

Response: Communicate early warnings for extreme weather to protect vulnerable groups from health impacts, such as heat illnesses, and monitor for early outbreaks of disease.

Woodlands Nature Station

Homeplace in LBL

Golden Pond

CLIMATE CHANGE AND YOUR NATIONAL FOREST: CITATIONS

Information in this factsheet is summarized from 54 peer-reviewed science papers found in the USDA Forest Service's TACCIMO tool. TACCIMO (the Template for Assessing Climate Change Impacts and Management Options) is a web-based application integrating climate change science with management and planning options through search and reporting tools that connect land managers with peer-reviewed information they can trust. For more information and the latest science about managing healthy forests for the future visit the TACCIMO tool online: www.forestthreats.org/taccimotool

Forest Health

climate change, 7(6), 395.

Plant Communities

- Coyle, D.R., Klepzig, K., Koch, F., Morris, L.A. Nowak, J.T., Oak, S.W., Otrosina, W.J., Smith, W.D., and Gandhi, K.J.K. (2015). A review of southern pine decline in North America. Forest Ecology and Management.
- Dijak, W. D., Hanberry, B. B., Fraser, J. S., He, H. S., Wang, W. J., & Thompson, F. R. (2017). Revision and application of the LINKAGES model to simulate forest growth in central hardwood landscapes in response to climate change. Landscape ecology, 32(7), 1365-1384.
- Duehl, A. J., Koch, F. H., & Hain, F. P. (2011). Southern pine bee- tle regional outbreaks modeled on landscape, climate and in- festation history. Forest Ecology and Management, 261(3), 473-479. doi:10.1016/j.foreco.2010.10.032
- Duerr, D. A., Mistretta, P. A. Invasive Pests Insects and Diseases (2013) In, Wear, D. N., Greis, J. G., eds. The Southern Forest Futures Project. General Technical Report SRS-GTR-178. Ashe- ville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station.
- Formby, J. P., Rodgers, J. C., Koch, F. H., Krishnan, N., Duerr, D. A., & Riggins, J. J. (2018). Cold tolerance and invasive potential of the redbay ambrosia beetle (Xyleborus glabratus) in the eastern United States. Biological invasions, 20(4), 995-1007.
- Greenberg, C. H., Perry, R. W., Franzreb, K. E., Loeb, S. C., Saenz, D., Rudolph, D. C., ... & Tanner, G. W. (2013). Climate Change and Wildlife in the Southern United States. In: Vose, J. M., Klepzig, K. D., eds. Climate change adaptation and mitigation management options: A guide for natural resource managers in southern forest ecosystems. Boca Raton, FL: CRC Press. 379-420
- Iverson, L. R., Prasad, A. M., Peters, M. P., & Matthews, S. N. (2019). Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests, 10(11), 989.
- Just, M. G., & Frank, S. D. (2020). Thermal Tolerance of Gloomy Scale (Hemiptera: Diaspididae) in the Eastern United States. Environmental Entomology.
- Kolb, T. E., Fettig, C. J., Ayres, M. P., Bentz, B. J., Hicke, J. A., Stewart, J.E. & Weed, A. S. (2016). Observed and anticipated impacts of drought on forest insects and diseases in the United States. Forest Ecology and Management, 380, 321 – 344. http://dx.doi.org/10.1016/j.foreco.2016.04.051
- McNulty, S., Baca, A., Bowker, M., Brantley, S., Dreaden, T., Golladay, S.
 W., Holmes, T., James, N., Liu, S., Lucardi, R. & Mayfeld, A. (2019).
 Managing Effects of Drought in the Southeast United States. In: Vose, James M.; Peterson, David L.; Luce, Charles H.; Patel-Weynand, Toral, eds. Effects of drought on forests and rangelands in the United States: translating science into management responses. Gen. Tech. Rep. WO-98. Washington, DC: US Department of Agriculture, Forest Service, Washington Office. 191-220. Chapter 9., 191-220.
- Miller, J. H., Lemke, D., Couston, J. The Invasion of Southern Forests by Nonnative Plants: Current and Future Occupation, with Impacts, Management Strategies, and Mitigation Approaches (2013) In, Wear, D. N., Greis, J. G., eds. The Southern Forest Futures Project. General Technical Report SRS-GTR-178. Ashe- ville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station.
- Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J. & Lexer, M. J. (2017). Forest disturbances under climate change. Nature

- Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M.,& Cobb, N. (2010). A global over- view of drought and heat-induced tree mortality reveals emerg- ing climate change risks for forests. Forest Ecology and Man- agement, 259(4), 660-684. doi:10.1016/j.foreco.2009.09.001
- Bernazzani, P., Bradley, B., and Opperman, J. (2012). Integrating climate change into habitat conservation plans under the U.S. Endangered Species Act. Environmental Management, 49(6), 1103-1114. doi:10.1007/s00267-012-9853-2.
- Clark, K. E., Chin, E., Peterson, M. N., Lackstrom, K., Dow, K., Foster, M., & Cubbage, F. (2018). Evaluating climate change planning for longleaf pine ecosystems in the Southeast United States. Journal of the Southeast Association of Fish and Wildlife Agencies, 5, 160-168.
- Conrad, A. O., Crocker, E. V., Li, X., Thomas, W. R., Ochuodho, T. O., Holmes, T. P., & Nelson, C. D. (2020). Threats to Oaks in the Eastern United States: Perceptions and Expectations of Experts. Journal of Forestry, 118(1), 14-27.
- Galik, C. S. & Jackson, R. B. (2009). Risks to forest carbon offset projects in a changing climate. Forest Ecology and Manage- ment, 257(11), 2209-2216. doi:10.1016/j.foreco.2009.03.017
- Guldin, J. M. (2019). Silvicultural options in forests of the southern United States under changing climatic conditions. New forests, 50(1), 71-87.
- Keyser, T. L. & Zarnoch, S. J. (2012). Thinning, Age, and Site Quality Influence Live Tree Carbon Stocks in Upland Hardwood Forests of the Southern Appalachians. Forest Science, 58(5), 407-418. doi:10.5849/forsci.11-030
- Ryan, M., Archer, S., Birdsey, R., Dahm, C., Heath, L., Hicke, J., Schlesinger, W. (2008). Land resources. in: The effects of cli- mate change on agriculture, land resources, water resources, and biodiversity. a report by the U.S. climate change science program and the subcommittee on global change research. A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, 362.
- Potter, K. M., Crane, B. S., & Hargrove, W. W. (2017). A United States national prioritization framework for tree species vulnerability to climate change. New forests, 48(2), 275-300.
- Walter, J. A., Neblett, J. C., Atkins, J. W., & Epstein, H. E. (2017). Regional-and watershed-scale analysis of red spruce habitat in the southeastern United States: implications for future restoration efforts. Plant ecology, 218(3), 305-316.

Animal Communities

- Blaustein, A. R., Walls, S. C., Bancroft, B. A., Lawler, J. J., Searle, C. L., & Gervasi, S. S. (2010). Direct and indirect effects of climate change on amphibian populations. Diversity, 2(2), 281- 313. doi:10.3390/d2020281
- Gade, M. R., & Peterman, W. E. (2019). Multiple environmental gradients influence the distribution and abundance of a key foresthealth indicator species in the Southern Appalachian Mountains, USA. Landscape Ecology, 34(3), 569-582.
- Jacobsen, C. D., Brown, D. J., Flint, W. D., Pauley, T. K., Buhlmann, K. A., & Mitchell, J. C. (2020). Vulnerability of high-elevation endemic salamanders to climate change: A case study with the Cow Knob

Salamander (Plethodon punctatus). Global Ecology and Conservation, 21, e00883

- Joyce, L. A., Blate, G. M., Littell, J. S., McNulty, S. G., Millar, C. I., Moser, S. C., Peterson, D. L. (2008). National forests. Preliminary review of adaptation options for climate-sensitive ecosystems and resources. a report by the U.S. climate change science program and the subcommittee on global change re- search. EPA, 1-127.
- Joyner, C. (2020). 2020 Winter Feral Hog Eradication Campaign Improves Wildlife Habitat. Land Between the Lakes National Recreation Area, 5 Feb. 2020, www.landbetweenthelakes.us/wpcontent/uploads/2020/02/NR-2020-LBL-Feral-Hog-Campaign.pdf. PRESS RELEASE
- Lawler, J. J. & Olden, J. D. (2011). Reframing the debate over assisted colonization. Frontiers in Ecology and the Environment, doi:10.1890/100106
- Mainwaring, M. C., Barber, I., Deeming, D. C., Pike, D. A., Roznik, E. A., & Hartley, I. R. (2017). Climate change and nesting behaviour in vertebrates: a review of the ecological threats and potential for adaptive responses. Biological Reviews, 92(4), 1991-2002.
- Matthews, S. N., O'Connor, R. J., Iverson, L. R., & Prasad, A. M. (2004). Atlas of climate change effects in 150 bird species of the Eastern United States (General Technical Report NE-318). Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station: 1-46.
- O'Keefe, J. M., & Loeb, S. C. (2017). Indiana bats roost in ephemeral, fire-dependent pine snags in the southern Appalachian Mountains, USA. Forest Ecology and Management, 391, 264-274.
- VanCompernolle, Michelle & Knouft, Jason & Ficklin, Darren. (2019). Multispecies conservation of freshwater fish assemblages in response to climate change in the southeastern United States. Diversity and Distributions.

Extreme Weather

- Bragg, D. C., Shelton, M. G., & Zeide, B. (2003). Impacts and for- est management implications of ice storms in forests in the southern United States. Forest Ecology and Management, 186, 99-123. doi:10.1890/1051-0761(2001)011[0161:PCCEOA] 2.0.CO;2
- Carter, L., A. Terando, K. Dow, K. Hiers, K.E. Kunkel, A. Lascurain, D. Marcy, M. Osland, and P. Schramm. (2018). Southeast. In Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II [Reidmiller, D.R., C.W. Avery, D.R. Easterling, K.E. Kunkel, K.L.M. Lewis, T.K. Maycock, and B.C. Stewart (eds.)].
 U.S. Global Change Research Program, Washington, DC, USA. doi: 10.7930/NCA4.2018.CH19
- Fill, J. M., Davis, C. N., & Crandall, R. M. (2019). Climate change lengthens southeastern USA lightning-ignited fire seasons. Global change biology.
- Hu, H., Wang, G. G., Bauerle, W. L., & Klos, R. J. (2017). Drought impact on forest regeneration in the Southeast USA. Ecosphere, 8(4), e01772.
- Liu, Y., Prestemon, J. P., Goodrick, S. L., Holmes, T. P., Stanturf, J. A., Vose, J. M., Sun, G. (2014) Future wildfire trends, impacts, and mitigation options in the Southern United States. In: Vose, J. M., Klepzig, K. D., eds. Climate change adaptation and miti- gation management options: A guide for natural resource man- agers in southern forest ecosystems. Boca Raton, FL: CRC Press. 85-126.
- Mitchell, R. J., Liu, Y., O'Brien, J. J., Elliott, K. J., Starr, G., Miniat, C. F., & Hiers, J. K. (2014). Future climate and fire interactions in the southeastern region of the United States. Forest Ecology and Management, 327, 316-326.
- Senevirative, S. I., Nicholls, N., Easterling, D., Goodess, C.M., Kanae, S., Kossin, J., & Zhang, X. (2012). Changes in climate extremes and their impacts on the natural physical environ- ment. In: Field, C.B et al. (Eds.), Managing the Risks of Ex- treme Events and Disasters to Advance Climate Change Adap- tation. A Special Report of Working Groups I and II of the In- tergovernmental Panel on Climate Change (IPCC). Cambridge, UK, and New York, NY, USA: Cambridge University Press, 109- 230.

Water Resources

- Bai, Y., Ochuodho, T. O., & Yang, J. (2019). Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecological indicators, 102, 51-64.
- Erwin, K. L. (2009). Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecology and Management, 17(1), 71-84. doi:10.1007/s11273-008-9111
- Hwang, T., Martin, K. L., Vose, J. M., Wear, D., Miles, B., Kim, Y., & Band, L. E. (2018). Nonstationary Hydrologic Behavior in Forested Watersheds Is Mediated by Climate-Induced Changes in Growing Season Length and Subsequent Vegetation Growth. Water Resources Research, 54(8), 5359-5375.
- Karl, T. R., Melillo, J. M., & Peterson, T. C. (2009). Global climate change impacts in the United States. New York, NY, USA: Cam- bridge University Press.
- Ouyang, Y., Parajuli, P. B., Li, Y., Leininger, T. D., & Feng, G. (2017). Identify temporal trend of air temperature and its impact on forest stream flow in Lower Mississippi River Alluvial Valley using wavelet analysis. Journal of environmental management, 198, 21-31.
- Rieman, B. E., Hessburg, P. F., Luce, C., & Dare, M. R. (2010). Wildfire and management of forests and native fishes: Conflict or opportunity for convergent solutions? BioScience, 60 (6), 460-468.
- Seager, R., Tzanova, A., & Nakamura, J. (2009). Drought in the Southeastern United States: Causes, variability over the last millennium, and the potential for future hydroclimate change. American Meteorological Society, 22(19), 5021-5045.
- Susaeta, A., Adams, D. C., Gonzalez-Benecke, C., & Soto, J. R. (2017). Economic Feasibility of Managing Loblolly Pine Forests for Water Production under Climate Change in the Southeastern United States. Forests, 8(3), 83.
- Wisser, D., Frolking, S., Hagen, S. & Bierkens, M. F. P. (2013). Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs. Water Resources Research, 49, 5732 – 5739. doi:10.1002/wrcr.20452.
- Zhu, J., Sun, G., Li, W., Zhang, Y., Miao, G., Noormets, A., McNulty, S.G., King, J.S., Kumar, M. & Wang, X. (2017). Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States. Hydrology and Earth System Sciences, 21(12), 6289-6305

Recreation

- Boyer, T. A., Melstrom, R. T., & Sanders, L. D. (2017). Effects of climate variation and water levels on reservoir recreation. Lake and reservoir management, 33(3), 223-233.
- Irland, L. C., Adams, D., Alig, R., Betz, C. J., Chen, C., Hutchins, M., & Sohngen, B.L. (2001). Assessing Socioeconomic Impacts of Climate Change on US Forests, Wood-Product Markets, and Forest Recreation. BioScience, 51(9), 753-764. doi: 10.1641/0006-3568(2001)051[0753:ASIOCC]2.0.CO;2
- Joyce, L. A., Blate, G. M., Littell, J. S., McNulty, S. G., Millar, C. I., Moser, S. C., . . . Peterson, D. L. (2008). National forests. in: Preliminary review of adaptation options for climate-sensitive ecosystems and resources. a report by the U.S. climate change science program and the subcommittee on global change re- search. U.S.Environmental Protection Agency, 1-127.
- Luber, G., K. Knowlton, J. Balbus, H. Frumkin, M. Hayden, J. Hess, M. McGeehin, N. Sheats, L. Backer, C. B. Beard, K. L. Ebi, E. Maibach, R. S. Ostfeld, C. Wiedinmyer, E. Zielinski-Gutiérrez, & L. Ziska, (2014). Ch. 9: Human Health. Climate Change Im- pacts in the United States: The Third National Climate Assess- ment, J. M. Melillo, Terese (T.C.) Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 220-256.
- Richardson, R. B., Loomis, J. B. (2004). Adaptive recreation planning and climate change: a contingent visitation approach. Ecological Economics, 50, 83-99.