# ASSESSING THE POTENTIAL EFFECTS OF CLIMATE CHANGE ON SUMTER NATIONAL FOREST

Forestlands across the region are experiencing increased threats from fire, insect and plant invasions, disease, extreme weather, and drought. Scientists project increases in temperature and changes in rainfall patterns that can make these threats occur more often, with more intensity, and/or for longer durations. Although many of the effects of future changes are negative, natural resource management strategies can help mitigate these impacts. Responses informed by the best current science enable natural resource professionals within the Forest Service to better protect the land and resources and protect the region's forestlands into the future.

**Forest Health** - Invasive plant and insect species may increasingly outcompete or negatively affect native species in the future. Winter freezes historically limit the range of forest pests but higher temperature will likely allow increases in their number and spread. Drought and other factors will increase the susceptibility of forests to destructive insects such as the southern pine beetle. Certain invasive plant species found in this forest, including kudzu and Japanese honeysuckle are expected to increase dramatically as they can tolerate a wide range of harsh conditions, allowing them to rapidly move into new areas.

> Response: Manage tree densities through practices such as thinning and prescribed fire to maximize carbon sequestration and reduce the vulnerability of forest stands to water stress, insect and disease outbreaks, and wildfire.

Response: Continually monitor for new invasive species moving into areas where they were not traditionally found, especially following events such as hurricanes and fire.

**Plant Communities** - Heat stress may limit the growth of some southern pine and hardwood species. Stress from drought and wide-scale pest outbreaks have the potential to cause large areas of forest dieback. Intensified extreme weather events, such as hurricanes, ice storms, and fire, are also expected to cause changes in plant community composition. Some species of rare or endemic plants may be disproportionately impacted. Species more resistant to these disturbances will be more resilient to a changing climate. Changes in temperature and precipitation can affect the flowering dates of certain species, which in turn can impact the animals and insects that depend on them for food.

Response: Focus restoration efforts in hurricane-resistant forests, such as longleaf pine as well as sweetgum or red oak hardwood.

Response: Manage for a range of ages and species in forests to lessen potential loss from drought or infestation.

**Animal Communities** - Wildlife species will be affected in different ways. Amphibians may be most at risk, as suitable habitat decreases due to warmer, dryer conditions. Bird species, such as the recently reintroduced Red-cockaded Woodpecker may see a decrease in population as vegetation types change and heat stress makes food more difficult to come by. Alternatively, deer populations may increase due to higher survival rates during warmer winters.

Response: Maintain piles of natural woody debris in areas of high amphibian diversity to supplement habitats that retain cool, moist conditions.

Response: Create habitat corridors, assist in species movement, and identify high-value conservation lands adjacent to National Forests.



Japanese Honeysuckle



Longleaf pine



Red-Cockaded Woodpecker



**Coastal Ecosystems** - Coastal areas in the Southeast have already experienced an average of one inch of sea level rise per decade over the 20th century, a rate that will continue to increase in the future. Rising sea levels, in combination with more intense hurricanes, will alter the composition of coastal marshes. As saltwater flooding expands, low-lying coastal wet forests could become marshland or turn into ghost forests where land use barriers do not exist. Sea level rise can also increase the potential for saltwater intrusion into coastal freshwater tables. Increasing salinity of coastal aquifers may affect groundwater resources within three miles of the coast.

Response: Identify and preserve landward migration corridors next to coastal wetlands that can allow these ecosystems to shift landward as sea levels rise.

**Extreme Weather** - The potential for severe storm events is expected to increase in the future, including more intense hurricanes making landfall in the southern US. Extended periods of extreme high temperature and drought may lead to drier forest fuels which will burn more easily and contribute to larger and more frequent wildfires. More cloud-to-ground lightning due to warming may also increase wildfire ignitions.

Response: Identify areas that provide particularly valuable ecosystem services, like timber harvest or carbon sequestration, and are also vulnerable to extreme weather, like hurricanes or fires. Then plan conservation strategies (e.g. thinning, selective species planting) accordingly to mitigate for extreme weather impacts.

Response: Reduce increased wildfire potential by conducting prescribed burns.

**Water Resources** - Shifts in rainfall patterns will lead to periods of flooding and drought that can significantly impact water resources. Increases in heavy downpours and more intense hurricanes can lead to greater erosion and more sedimentation in waterways. Increased periods of drought may lead to poor water quality. Geographically isolated wetlands are critical wildlife habitat and can be impacted by changes in surrounding landcover.

Response: Reduce the amount of water taken in by surrounding trees and plants, using management strategies such as thinning and prescribed burns, in order relieve stress on isolated wetlands and streams.

Response: Restore and reinforce vegetation in headwater and marsh areas to help alleviate runoff of sediment during heavy rain, reduce climate-induced warming of water, and decrease water sensitivity to changes in air temperature.

**Recreation** - Environmental changes may negatively impact recreational experiences due to changes in the plant and animal communities that make those experiences unique. More days above freezing, especially in the northern part of the state, could increase tick and mosquito populations throughout the year, leading to an increase in vector-borne illness. With more days of extreme heat, recreation areas could see decreased use in the summer if temperatures impact visitor comfort.

Response: Examine the goals for a water system or area of land when considering changing dynamics. For example, a stream managed mostly for recreation must balance the demand for rainbow trout from anglers with other aquatic and terrestrial impacts.

Response: Communicate early warnings for extreme weather to protect vulnerable groups from health impacts, such as heat illnesses, and monitor for early outbreaks of disease.



Boardwalk in the Enoree Ranger District



Yellow Branch Waterfall



Mountain biking



# CLIMATE CHANGE AND YOUR NATIONAL FOREST: CITATIONS

Information in this factsheet is summarized from 52 peer-reviewed science papers found in the USDA Forest Service's TACCIMO tool. TACCIMO (the Template for Assessing Climate Change Impacts and Management Options) is a web-based application integrating climate change science with management and planning options through search and reporting tools that connect land managers with peer-reviewed information they can trust. For more information and the latest science about managing healthy forests for the future visit the TACCIMO tool online: www.forestthreats.org/taccimotool



## **Forest Health**

- Coyle, D.R., Klepzig, K., Koch, F., Morris, L.A. Nowak, J.T., Oak, S.W., Otrosina, W.J., Smith, W.D., and Gandhi, K.J.K. (2015). A review of southern pine decline in North America. Forest Ecology and Management.
- Formby, J. P., Rodgers, J. C., Koch, F. H., Krishnan, N., Duerr, D. A., & Riggins, J. J. (2018). Cold tolerance and invasive potential of the redbay ambrosia beetle (Xyleborus glabratus) in the eastern United States. Biological invasions, 20(4), 995-1007.
- Greenberg, C. H., Perry, R. W., Franzreb, K. E., Loeb, S. C., Saenz, D., Rudolph, D. C., & Tanner, G. W. (2013). Climate Change and Wildlife in the Southern United States. In: Vose, J. M., Klepzig, K. D., eds. Climate change adaptation and mitigation management options: A guide for natural resource managers in southern forest ecosystems. Boca Raton, FL: CRC Press. 379-420
- Iverson, L. R., Prasad, A. M., Peters, M. P., & Matthews, S. N. (2019). Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests, 10(11), 989
- Just, M. G., & Frank, S. D. (2020). Thermal Tolerance of Gloomy Scale (Hemiptera: Diaspididae) in the Eastern United States. Environmental Entomology.
- Kolb, T. E., Fettig, C. J., Ayres, M. P., Bentz, B. J., Hicke, J. A., Stewart, J.E. & Weed, A. S. (2016). Observed and anticipated impacts of drought on forest insects and diseases in the United States. Forest Ecology and Management, 380, 321 – 344. http://dx.doi.org/10.1016/j.foreco.2016.04.051
- McNulty, S., Baca, A., Bowker, M., Brantley, S., Dreaden, T., Golladay, S. W., Holmes, T., James, N., Liu, S., Lucardi, R. & Mayfeld, A. (2019). Managing Effects of Drought in the Southeast United States. In: Vose, DeMay, S. M., & Walters, J. R. (2019). Variable effects of a changing James M.; Peterson, David L.; Luce, Charles H.; Patel-Weynand, Toral, eds. Effects of drought on forests and rangelands in the United States: translating science into management responses. Gen. Tech. Rep. WO-98. Washington, DC: US Department of Agriculture, Forest Service, Washington Office. 191-220. Chapter 9., 191-220.
- Miller, J. H., Lemke, D., Couston, J. The Invasion of Southern For- ests by Nonnative Plants: Current and Future Occupation, with Impacts, Management Strategies, and Mitigation Approaches (2013) In, Wear, D. N., Greis, J. G., eds. The Southern Forest Futures Project. General Technical Report SRS-GTR-178. Ashe- ville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station.
- Minucci, J. M., Miniat, C. F., & Wurzburger, N. (2019). Drought sensitivity of an N2-fixing tree may slow temperate deciduous forest recovery from disturbance. Ecology.
- Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J. & Lexer, M. J. (2017). Forest disturbances under climate change. Nature climate change, 7(6), 395.

### **Plant Communities**

- Bernazzani, P., Bradley, B., and Opperman, J. (2012). Integrating climate change into habitat conservation plans under the U.S. Endangered Species Act. Environmental Management, 49(6), 1103-1114. doi:10.1007/s00267-012-9853-2.
- Clark, K. E., Chin, E., Peterson, M. N., Lackstrom, K., Dow, K., Foster, M., & Cubbage, F. (2018). Evaluating climate change planning for

longleaf pine ecosystems in the Southeast United States. Journal of the Southeast Association of Fish and Wildlife Agencies, 5, 160-168.

- Conrad, A. O., Crocker, E. V., Li, X., Thomas, W. R., Ochuodho, T. O., Holmes, T. P., & Nelson, C. D. (2020). Threats to Oaks in the Eastern United States: Perceptions and Expectations of Experts. Journal of Forestry, 118(1), 14-27.
- Cope, M. P., Mikhailova, E. A., Post, C. J., Schlautman, M. A., McMillan, P. D., Sharp, J. L., & Gerard, P. D. (2017). Impact of extreme spring temperature and summer precipitation events on flowering phenology in a three-year study of the shores of Lake Issagueena, South Carolina. Ecoscience, 24(1-2), 13-19.
- Guldin, J. M. (2019). Silvicultural options in forests of the southern United States under changing climatic conditions. New forests, 50(1), 71-87.
- Hellmann, J. J., Byers, J. E., Bierwagen, B. G., & Dukes, J. S. (2008). Five potential consequences of climate change for inva- sive species. Conservation Biology, 22(3), 534-543.
- Potter, K. M., Crane, B. S., & Hargrove, W. W. (2017). A United States national prioritization framework for tree species vulnerability to climate change. New forests, 48(2), 275-300.
- Walter, J. A., Neblett, J. C., Atkins, J. W., & Epstein, H. E. (2017). Regionaland watershed-scale analysis of red spruce habitat in the southeastern United States: implications for future restoration efforts. Plant ecology, 218(3), 305-316.

#### **Animal Communities**

- Blaustein, A. R., Walls, S. C., Bancroft, B. A., Lawler, J. J., Searle, C. L., & Gervasi, S. S. (2010). Direct and indirect effects of climate change on amphibian populations. Diversity, 2(2), 281-313.
- climate on lay dates and productivity across the range of the Redcockaded Woodpecker. The Condor.
- Grant, E. H. C., Brand, A. B., De Wekker, S. F., Lee, T. R., & Wofford, J. E. (2018). Evidence that climate sets the lower elevation range limit in a high-elevation endemic salamander. Ecology and evolution, 8(15), 7553-7562. Emanuel, K. (2005). Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686-688. doi: 10.1038/nature03906
- Jacobsen, C. D., Brown, D. J., Flint, W. D., Pauley, T. K., Buhlmann, K. A., & Mitchell, J. C. (2020). Vulnerability of high-elevation endemic salamanders to climate change: A case study with the Cow Knob Salamander (Plethodon punctatus). Global Ecology and Conservation, 21, e00883
- Joyce, L. A., Blate, G. M., Littell, J. S., McNulty, S. G., Millar, C. I., Moser, S. C., Peterson, D. L. (2008). National forests. in: Preliminary review of adaptation options for climate-sensitive eco- systems and resources. a report by the U.S. climate change science program and the subcommittee on global change re- search. U.S. Environmental Protection Agency, 1-127.
- Lawler, J. J. & Olden, J. D. (2011). Reframing the debate over assisted colonization. Frontiers in Ecology and the Environment, doi:10.1890/100106
- Matthews, S. N., O'Connor, R. J., Iverson, L. R., & Prasad, A. M. (2004). Atlas of climate change effects in 150 bird species of the Eastern United States (General Technical Report NE-318). Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station: 1-46.

- Mainwaring, M. C., Barber, I., Deeming, D. C., Pike, D. A., Roznik, E. A., & Hartley, I. R. (2017). Climate change and nesting behaviour in vertebrates: a review of the ecological threats and potential for adaptive responses. Biological Reviews, 92(4), 1991-2002.
- O'Keefe, J. M., & Loeb, S. C. (2017). Indiana bats roost in ephemeral, firedependent pine snags in the southern Appalachian Mountains, USA. Forest Ecology and Management, 391, 264-274.
- Shoo, L. P., Olson, D. H., McMenamin, S. K. Murray, K. A. Van Sluys, M., Herbert, S. M., Bishopm, P. J., ... & Hero, J. –M. (2011). Engineering a future for amphibians under climate change. Journal of Applied Ecology, 48, 487-492. doi: 10.1111/j.1365-2664.2010.01942.x
- Taillie, P. J., Moorman, C. E., Smart, L. S., & Pacifici, K. (2019). Bird community shifts associated with saltwater exposure in coastal forests at the leading edge of rising sea level. PloS one, 14(5), e0216540.

#### **Extreme Weather**

- Delphin, S., Escobedo, F. J., Abd-Elrahman, A., & Cropper Jr, W. (2013). Mapping potential carbon and timber losses from hurri- canes using a decision tree and ecosystem services driver mod- el. Journal of Environmental Management, 129, 599-607.
- Flanagan, S. A., Bhotika, S., Hawley, C., Starr, G., Wiesner, S., Hiers, J. K., O'Brien, J.J., Goodrick, S., Callaham Jr, M.A., Scheller, R.M. & Klepzig, K. D. (2019). Quantifying carbon and species dynamics under different fire regimes in a southeastern US pineland. Ecosphere, 10(6), e02772.
- Fill, J. M., Davis, C. N., & Crandall, R. M. (2019). Climate change lengthens southeastern USA lightning-ignited fire seasons. Global change biology.
- Hu, H., Wang, G. G., Bauerle, W. L., & Klos, R. J. (2017). Drought impact on forest regeneration in the Southeast USA. Ecosphere, 8(4), e01772.
- Jensen, A. M., Scanlon, T. M., & Riscassi, A. L. (2017). Emerging investigator series: the effect of wildfire on streamwater mercury and organic carbon in a forested watershed in the southeastern United States. Environmental Science: Processes & Impacts, 19(12), 1505-1517.
- Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I., Kossin, J. P., Srivastava, A. K., & Sugi, M. (2010). Tropical cyclones and climate change. Nature Geosci- ence, 3(3), 157-163. doi:10.1038/ngeo779
- Liu, Y., Prestemon, J. P., Goodrick, S. L., Holmes, T. P., Stanturf, J. A., Vose, J. M., Sun, G. (2014) Future wildfire trends, impacts, and mitigation options in the Southern United States. In: Vose, J. M., Klepzig, K. D., eds. Climate change adaptation and miti- gation management options: A guide for natural resource man- agers in southern forest ecosystems. Boca Raton, FL: CRC Press. 85-126.
- Mitchell, R. J., Liu, Y., O'Brien, J. J., Elliott, K. J., Starr, G., Miniat, C. F., & Hiers, J. K. (2014). Future climate and fire interactions in the southeastern region of the United States. Forest Ecology and Management, 327, 316-326.
- Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J. & Lexer, M. J. (2017). Forest disturbances under climate change. Nature climate change, 7(6), 395.
- Trenberth, K. E., Cheng, L., Jacobs, P., Zhang, Y., & Fasullo, J. (2018). Hurricane Harvey links to ocean heat content and climate change adaptation. Earth's Future, 6(5), 730-744.

#### Water Resources

- Boyer, T. A., Melstrom, R. T., & Sanders, L. D. (2017). Effects of climate variation and water levels on reservoir recreation. Lake and reservoir management, 33(3), 223-233.
- Erwin, K. L. (2009). Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecology and Management, 17(1), 71-84. doi:10.1007/s11273-008-9119-1
- McDonnell, T. C., Sloat, M. R., Sullivan, T. J., Dolloff, C. A., Hess- burg, P. F., Povak, N. A., ... & Sams, C. (2015). Downstream Warming and Headwater Acidity May Diminish Coldwater Habitat in Southern Appalachian Mountain Streams. PloS one, 10 (8), e0134757.
   McNulty, S. Baca, A. Bowker, M. Propher, S. Daradar, T. Colladar, C. McNulty, S. Baca, A. Bowker, M. Propher, S. Daradar, T. Colladar, C. McNulty, S. Baca, A. Bowker, M. Propher, S. Daradar, T. Colladar, C. McNulty, S. Baca, A. Bowker, M. Propher, S. Daradar, T. Colladar, C. McNulty, S. Baca, A. Bowker, M. Propher, S. Daradar, T. Colladar, C. McNulty, S. Baca, A. Bowker, M. Propher, S. Daradar, T. Colladar, C. McNulty, S. Baca, M. Propher, S. Daradar, T. Colladar, C. McNulty, S. Baca, M. Propher, S. Daradar, T. Colladar, C. McNulty, S. Baca, M. Propher, S. Daradar, T. Colladar, C. McNulty, S. Baca, M. Propher, M. Propher, S. Daradar, T. Colladar, C. McNulty, S. Baca, M. Propher, M. Propher, S. Daradar, T. Colladar, S. P. Sandar, S. Sa
- McNulty, S., Baca, A., Bowker, M., Brantley, S., Dreaden, T., Golladay, S.

W., Holmes, T., James, N., Liu, S., Lucardi, R. & Mayfeld, A. (2019). Managing Effects of Drought in the Southeast United States. In: Vose, James M.; Peterson, David L.; Luce, Charles H.; Patel-Weynand, Toral, eds. Effects of drought on forests and rangelands in the United States: translating science into management responses. Gen. Tech. Rep. WO-98. Washington, DC: US Department of Agriculture, Forest Service, Washington Office. 191-220. Chapter 9., 191-220.

Rieman, B. E., Hessburg, P. F., Luce, C., & Dare, M. R. (2010). Wildfire and management of forests and native fishes: Conflict or opportunity for convergent solutions? BioScience, 60 (6), 460-468.

Susaeta, A., Adams, D. C., Gonzalez-Benecke, C., & Soto, J. R. (2017). Economic Feasibility of Managing Loblolly Pine Forests for Water Production under Climate Change in the Southeastern United States. Forests, 8(3), 83.

Wisser, D., Frolking, S., Hagen, S. & Bierkens, M. F. P. (2013). Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs. Water Resources Research, 49, 5732 – 5739. doi:10.1002/wrcr.20452.

Zhu, J., Sun, G., Li, W., Zhang, Y., Miao, G., Noormets, A., McNulty, S.G., King, J.S., Kumar, M. & Wang, X. (2017). Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States. Hydrology and Earth System Sciences, 21(12), 6289-6305

#### Recreation

- Irland, L. C., Adams, D., Alig, R., Betz, C. J., Chen, C., Hutchins, M., & Sohngen, B.L. (2001). Assessing Socioeconomic Impacts of Climate Change on US Forests, Wood-Product Markets, and Forest Recreation. BioScience, 51(9), 753-764. doi: 10.1641/0006-3568(2001)051[0753:ASIOCC]2.0.CO;2
- Joyce, L. A., Blate, G. M., Littell, J. S., McNulty, S. G., Millar, C. I., Moser, S. C., Peterson, D. L. (2008). National forests. in: Preliminary review of adaptation options for climate-sensitive ecosystems and resources. a report by the U.S. climate change science program and the subcommittee on global change re- search. U.S.Environmental Protection Agency, 1-127.
- Jurjonas, M., & Seekamp, E. (2018). Rural coastal community resilience: Assessing a framework in eastern North Carolina. Ocean & coastal management, 162, 137-150.
- Luber, G., K. Knowlton, J. Balbus, H. Frumkin, M. Hayden, J. Hess, M. McGeehin, N. Sheats, L. Backer, C. B. Beard, K. L. Ebi, E. Maibach, R. S. Ostfeld, C. Wiedinmyer, E. Zielinski-Gutiérrez, & L. Ziska, (2014). Ch. 9: Human Health. Climate Change Im- pacts in the United States: The Third National Climate Assessment, J. M. Melillo, Terese (T.C.) Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 220-256.

Richardson, R. B., Loomis, J. B. (2004). Adaptive recreation planning and climate change: a contingent visitation approach.
Ecological Economics, 50, 83-99. doi:10.1016/ j.ecolecon.2004.02.010
Scott, D., McBoyle, G., & Schwartzentruber, M. (2004). Climate change and the distribution of climatic resources for tourism in North America. Climate Research, 105-117.

Tully, K., Gedan, K., Epanchin-Niell, R., Strong, A., Bernhardt, E. S., BenDor, T., Mitchell, M., Kominoski, J., Jordan, T.E., Neubauer, S.C. & Weston, N. B. (2019). The Invisible Flood: The Chemistry, Ecology, and Social Implications of Coastal Saltwater Intrusion. BioScience, 69(5), 368-378.