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Abstract. As the theoretical upper bound of evapotranspiration (ET) or water use by ecosystems, potential ET
(PET) has always been widely used as a variable linking a variety of disciplines, such as climatology, ecology,
hydrology, and agronomy. However, substantial uncertainties exist in the current PET methods (e.g., empiric
models and single-layer models) and datasets because of unrealistic configurations of land surface and unrea-
sonable parameterizations. Therefore, this study comprehensively considered interspecific differences in various
vegetation-related parameters (e.g., plant stomatal resistance and CO2 effects on stomatal resistance) to cali-
brate and parametrize the Shuttleworth–Wallace (SW) model for forests, shrubland, grassland, and cropland.
We derived the parameters using identified daily ET observations with no water stress (i.e., PET) at 96 eddy
covariance (EC) sites across the globe. Model validations suggest that the calibrated model could be transfer-
able from known observations to any location. Based on four popular meteorological datasets, relatively realistic
canopy height, time-varying land use or land cover, and the leaf area index, we generated a global 5 km ensem-
ble mean monthly PET dataset that includes two components of potential transpiration (PT) and soil evaporation
(PE) for the 1982–2015 time period. Using this new dataset, the climatological characteristics of PET partition-
ing and the spatiotemporal changes in PET, PE, and PT were investigated. The global mean annual PET was
1198.96 mm with PT/PET of 41 % and PE/PET of 59 %, controlled moreover by PT and PE of over 41 % and
59 % of the globe, respectively. Globally, the annual PET and PT significantly (p<0.05) increase by 1.26 and
1.27 mm yr−1 over the last 34 years, followed by a slight decrease in the annual PE. Overall, the annual PET
changes over 53 % of the globe could be attributed to PT, and the rest to PE. The new PET dataset may be
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used by academic communities and various agencies to conduct climatological analyses, hydrological model-
ing, drought studies, agricultural water management, and biodiversity conservation. The dataset is available at
https://doi.org/10.11888/Terre.tpdc.300193 (Sun et al., 2023).

1 Introduction

Potential evapotranspiration (PET) is the maximum amount
of water that can be transferred to the air from a given land
cover (e.g., land and water), providing an upper limit of the
evaporative losses from this land cover (Allen et al., 1998;
Milly and Dunne, 2016; Xiang et al., 2020). Commonly,
it consists of potential evaporation from soils (PE) and/or
transpiration by plants (PT) when the soil water supply for
the evapotranspiration (ET) process is non-limiting (Thorn-
thwaite, 1948; Xiang et al., 2020). The spatiotemporal differ-
ences in PET mainly depend on those of climatic conditions,
including net radiation, wind speed, and the atmospheric va-
por deficit, and thus PET is usually regarded as an accepted
proxy for the atmospheric evaporative demand. Additionally,
PET has been widely used to estimate actual ET (Sun et al.,
2011a; Rao et al., 2011; C. Liu et al., 2017), a critical vari-
able that links the water, energy, and carbon cycles (Sun et
al., 2011b), and thus it is a key variable for a variety of disci-
plines, such as climatology, ecology, hydrology, and agron-
omy (Allen et al., 1998; Espadafor et al., 2011; Beven, 2012).

Historically, numerous PET models have been proposed
(Singh and Xu, 1997; Xu and Singh, 2000, 2001; Xiang et
al., 2020). In general, the PET models can be grouped into
four types: mass-transfer-based ones (e.g., Dalton-type mod-
els in Table S1; Singh and Xu, 1997), which are based on
Dalton’s law and take observed wind speed and water vapor
pressure as inputs; temperature-based ones (e.g., the Thorn-
thwaite equation in Table S1; Thornthwaite, 1948), which
take temperature as a proxy for the radiative energy avail-
able, along with extraterrestrial radiation estimated from the
date of the year and latitude; radiation-based ones (e.g., the
Turc and Hargreaves models in Table S1; Turc, 1961; Harg-
reaves and Samani, 1983), which use measured data such as
net solar radiation, sunshine hours, or cloudiness factors; and
combination ones (e.g., Penman–Monteith models, including
their original types and variants in Table S1; Penman, 1948;
Monteith, 1965; Allen et al., 1998), which combine the en-
ergy balance with the mass transfer method. Despite the low
requirement of climatic variables for the former three types
of the PET model, they lack comprehensive physical con-
siderations of the ET process and heavily rely on empirical
factors which are dependent on historical or present-day cli-
mate for calibration (Tabari and Talaee, 2011; Aschonitis et
al., 2015; Tanguy et al., 2018; Xiang et al., 2020). By con-
trast, the combination models (e.g., the Penman–Monteith
models) involve a relatively comprehensive physical basis
and thus have been widely used by various scientific com-

munities (McVicar et al., 2007; Mu et al., 2013; Sun et al.,
2017, 2022). As one of the most famous Penman–Monteith
model variants, the Food and Agriculture Organization of the
United Nations (FAO)-56 Penman–Monteith model has been
validated against lysimeter data across the globe, obtaining
reliable results (Jensen et al., 1990; Itenfisu et al., 2000;
Berengena and Gavilán, 2005; Trajkovic, 2007; X. Liu et al.,
2017; Gong et al., 2017), and is recommended as a standard
tool for calculating PET with climatic data by the Interna-
tional Commission on Irrigation and Drainage (ICID), the
FAO, and the American Society of Civil Engineers (ASCE).

Despite the relatively satisfactory performance, the
Penman–Monteith models still have inherent shortcomings
for the parameterization scheme of the land surface. For ex-
ample, these models set the evaporating and/or transpiration
surfaces as a whole (i.e., a so-called “big leaf”), regardless
of differences in the processes of soil evaporation and plant
transpiration (Stannard, 1993; Yang and Shang et al., 2012;
Liu et al., 2015). Over a large region, however, the big leaf
assumption is rarely valid. Usually, many vegetation types
co-exist over the land, and there are always some parts or pe-
riods where or when the vegetation is not “closed” (i.e., an
open canopy where light can penetrate to the ground). The
big leaf assumption potentially limits the applicability of the
Penman–Monteith models under various vegetation distribu-
tion conditions, e.g., better (worse) performance under com-
plete and homogeneous (sparse and inhomogeneous) vegeta-
tion distribution conditions (Shuttleworth and Wallace, 1985;
Stannard, 1993; Yang and Shang, 2012; Huang et al., 2020).
Comprehensively considering differences in the processes
of soil evaporation and plant transpiration, Shuttleworth and
Wallace (1985) extended the Penman–Monteith single-layer
models to a two-layer model, i.e., the Shuttleworth–Wallace
(SW) model. This model divided ET into plant and soil com-
ponents based on surface resistances to regulate the heat and
mass transfer from plant and soil surfaces and based on aero-
dynamic resistance to regulate fluxes into the atmosphere
(Lagos et al., 2013; Liu et al., 2015; Zhao et al., 2015; Huang
et al., 2020). Relative to the Penman–Monteith models, the
SW model is the first analytical model combining transpi-
ration and soil evaporation by formulating the different me-
dia via which evaporative flux travels as resistances (Kool
et al., 2014). This partitioning is crucial for reasonably de-
scribing and understanding ET processes (Zhou et al., 2016,
2018). The SW model is generally considered to be more ac-
curate and more physically based and has been extensively
used at point and regional scales (Brisson et al., 1998; Hu et
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al., 2009; Kool et al., 2014; Liu et al., 2015; Huang et al.,
2020).

It should be noted that there are two major difficulties in
running the SW model. Firstly, it has a high requirement for
meteorological data inputs, including the maximum and min-
imum air temperatures, relative humidity, wind speed and
solar radiation, or their proxy data. Commonly, the maxi-
mum and minimum air temperatures are measured at meteo-
rological sites, while observations of the other elements are
scare, especially when long time series and large spatial cov-
erage are required for climate studies. This may be a major
reason for some temperature-based and radiation-based PET
models (e.g., the Priestley–Taylor and Hargreaves–Samani
models) still being widely used at present, especially for re-
gions with sparse meteorological observations (Aschonitis et
al., 2017; Tanguy et al., 2018). Secondly, the SW model is
hard to parameterize given the large number of parameters
(Brisson et al., 1998; Odhiambo and Irmak, 2011; Kool et
al., 2014), and therefore this model is often applied at point
and regional scales (Iritz et al., 1999; Yang and Shang, 2012;
Liu et al., 2015; Huang et al., 2020; Chen et al., 2022). For-
tunately, with the development of observation and numeri-
cal simulation technology during the past decades, various
global datasets have become available, including meteoro-
logical datasets (e.g., Harris et al., 2020; Molod et al., 2015;
Hersbach et al., 2020; Beck et al., 2022), vegetation height
datasets (e.g., Simard et al., 2011; Wang et al., 2016; Potapov
et al., 2020; Lang et al., 2021, 2022), land use and land cover
(LULC) datasets (e.g., Liu et al., 2020a, b), leaf area index
(LAI) datasets (e.g., Friedl et al., 2010; Liu et al., 2012; Zhu
et al., 2013; Xiao et al., 2014), and eddy covariance (EC)
flux observations across various ecosystems (e.g., LaTh-
uile, https://fluxnet.org/data/la-thuile-dataset/, last access:
20 August 2022; FLUXNET2015, http://fluxnet.fluxdata.
org/data/fluxnet2015-dataset/, last access: 30 August 2022.;
OzFlux, https://data.ozflux.org.au/portal/home.jspx, last ac-
cess: 15 June 2022.; and AsiaFlux, http://asiaflux.net/?page_
id=23, last access: 21 July 2022). These released datasets
provide a valuable opportunity for parameterizing and driv-
ing the SW model at the global scale.

Previous studies have suggested that land surface proper-
ties could play a dominant role in controlling variations of
the ET process (Sun et al., 2021, 2022). Of the land sur-
face properties, vegetation is the most ever-changing due to
plant growth, natural disturbances, and anthropogenic dis-
turbances (Q. Liu et al., 2016; Y. Liu et al., 2016; Papa-
giannopoulou et al., 2017; Cavalcante et al., 2019). Recently,
with climate change and/or intensified human activities, veg-
etation has greatly changed on regional and even global
scales (Zhu et al., 2016; Chen et al., 2019), including shifts
in vegetation types and vegetation greening (i.e., increases in
LAI or other vegetation indices), which have altered the al-
location of available water and energy (Zhou et al., 2016,
2018; Sun et al., 2022). As an important biophysical pa-
rameter of vegetation, the plant stomatal resistance has been

widely shown to increase with the elevated atmospheric CO2
concentration by numerous observations and numerical sim-
ulations, but the increasing magnitudes differed among veg-
etation types (Wand et al., 1999; Medlyn et al., 2001; Norby
et al., 2005; Franks and Beerling, 2008; Lin et al., 2015;
Gardner et al., 2022). The increased plant stomatal resistance
could in turn reduce plant transpiration and thereby change
the water cycle on regional and even global scales (Gedney
et al., 2006; Piao et al., 2007; Sun et al., 2014; Zhao and Cao,
2022; Zhan et al., 2022). In particular, such impacts of ele-
vated CO2-induced plant stomatal resistance increase on hy-
drological processes have proven to be of significance, espe-
cially for the future climate change scenarios with high CO2
emissions (Roderick et al., 2015; Milly and Dunne, 2016;
Scheff, 2018; Yang et al., 2019). This suggested that the tem-
poral changes in vegetation (i.e., vegetation types, LAI, and
plant stomatal resistance) should be incorporated into the
models for accurate PET estimates. However, it is unfortu-
nate that the various existing PET products, such as Climatic
Research Unit (CRU) Time-Series (TS) 4.06 (CRU TS4.06;
Harris et al., 2020), MOD16 (Running et al., 2017), the
Global Land Evaporation Amsterdam Model (GLEAM) v3.6
(Miralles et al., 2011; Martens et al., 2017), the Priestley–
Taylor Jet Propulsion Laboratory (PT-JPL) model (Fisher et
al., 2011), and hPET (Singer et al., 2021), did not fully con-
sider the impacts of such vegetation changes on PET, poten-
tially resulting in biases of the estimates from the truth val-
ues and then introducing uncertainties into the studies based
on these products. As a result, a new PET dataset based on
more reasonable parameterizations and more realistic config-
urations of the land surface is needed.

By making use of various existing datasets, this study
comprehensively considered spatiotemporal differences in
land surfaces and elevated CO2-induced biophysical effects
on plant stomatal resistance to parameterize the SW model,
and it produced a new global monthly PET dataset. Specifi-
cally, our objectives are (1) to calibrate the SW model with
the EC flux observations to obtain key parameters for each
LULC type and to evaluate the performance of the calibrated
model, (2) to generate a global monthly PET product (in-
cluding PE and PT) from 1982 to 2015 with the calibrated
SW model and various inputs, and (3) to investigate the cli-
matological characteristics of PET partitioning and the spa-
tiotemporal changes in PET and its two components across
the globe during 1982–2015.

2 Material and methods

2.1 Data sources

2.1.1 Eddy covariance measurements

To fully utilize the existing EC measurements, this study
collected the half-hourly or hourly FLUXNET2015 Tier-
2 (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/, last
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access: 30 August 2022), LaThuile (https://fluxnet.org/data/
la-thuile-dataset/, last access: 20 August 2022), AsiaFlux
(http://asiaflux.net/?page_id=23, last access: 21 July 2022),
and OzFlux (https://data.ozflux.org.au/portal/home.jspx, last
access: 15 June 2022) datasets. Following Maes et al. (2019),
we processed the four datasets to provide the necessary in-
puts and the ET observations without water limits (i.e., PET)
for calibrating the SW model.

First, we screened the measurements using data quality
control. Sites lacking one or more of the basic measurements
required for our analysis, i.e., latent heat (LE), sensible heat
(H ), soil heat flux (G), the net radiation fluxes (Rn), wind
speed (u), air temperature, relative humidity (RH), actual va-
por pressure (ea), and atmospheric water concentration and
vapor pressure deficit (D), were not considered further. Con-
sidering potential impacts of surface energy imbalance on the
results, the corrected half-hourly or hourly LE and H (Pas-
torello et al., 2020) were used here. Regarding the major heat
fluxes (LE, H , andG), good gap-filled records were retained
according to the quality flags provided by the four datasets.
When the flags for Rn observations were unavailable, the
flags of the downward shortwave radiation were used instead.
Mainly due to the impacts of interception loss and conden-
sation on the accuracy of H or LE measurements (Mizutani
et al., 1997), the negative values were masked out. Likewise,
all Rn negative values were masked out.

Second, the half-hourly or hourly measurements were ag-
gregated to daytime records. Only days on which more than
70 % of the basic data were measured directly were re-
tained, and days with rainfall during midnight–sunset were
excluded from the analyses to remove the effects of rain-
fall interception. Moreover, we only retained sites with 80 or
more days for the processing below. Taking 5 W m−2 of top-
of-atmosphere incoming shortwave radiation as a minimum
threshold, the half-hourly or hourly measurements were ag-
gregated to daytime composites, and then the daytime values
were obtained by subtracting measurements at the first and
last (half-)hours for these aggregates.

Third, we identified days with no soil water limits. This
study employed an energy-balance-based approach to se-
lect unstressed days rather than the soil moisture criterion.
The major considerations were three-fold: (a) no soil mois-
ture measurements existed at most of the EC sites; (b) the
energy-balance-based method could effectively remove days
on which the ecosystem is not limited by soil moisture
availability but is stressed by other environmental factors
(e.g., insect plagues, phenological leaf-out, fires, heat and at-
mospheric dryness stress, nutrient limitations); and (c) soil
moisture may not be a good indicator of water stress due
to variable rooting depth and its inaccurate measurements
(Powell et al., 2006; Douglas et al., 2009; Martínez-Vilalta et
al., 2014). The evaporative fraction, i.e., EF=LE/(LE+H ),
was selected as the energy balance criterion, and we assumed
that under conditions of no water limits a larger fraction of
the available energy should be used for evaporating water

(Gentine et al., 2007, 2011; Maes et al., 2011). Taking a site
as an example, a day was identified as having no water limits
when its corresponding EF exceeded the 95th percentile EF
threshold. Notably, if fewer than 15 d fulfilled this criterion
at some particular sites, the 15 d with the highest EF were
used as unstressed days.

Finally, the sites used for further analyses were selected.
Despite the usage of the corrected half-hourly or hourly LE
and H here, we found that an evident surface energy im-
balance still existed in the daytime, with a Bowen ratio be-
tween 0.60 and 1.80. To further reduce the potential impacts
of this issue, we retained records with a Bowen ratio be-
tween 0.90 and 1.10. After this, if a certain site had fewer
than 8 unstressed days, it was removed. Because the LAI and
the CO2 concentration were unavailable at some sites, the
Global LAnd Surface Satellite (GLASS) LAI and CO2 con-
centration (ρCO2 , ppm) observed at Mauna Loa were used in-
stead. Finally, 96 sites were retained, including 73, 5, 3, and
18 sites from the FLUXNET2015 Tier-2, AsiaFlux, OzFlux,
and LaThuile datasets, respectively (Fig. 1). Their basic in-
formation is shown in Table S2.

2.1.2 Meteorological data

Meteorological inputs are necessary for generating the SW
PET and, moreover, to reduce uncertainties, we collected
four monthly or 3-hourly meteorological datasets, i.e., Multi-
Source Weather (MSWX)-Past (Beck et al., 2022), National
Aeronautics and Space Administration (NASA) Modern
Era Reanalysis for Research and Applications (MERRA)-2
(Molod et al., 2015), European Centre for Medium-Range
Weather Forecasts Reanalysis (ERA)-5 (Hersbach et al.,
2020), and Climatic Research Unit (CRU) TS4.06 (Harris
et al., 2020). The detailed information of these datasets is
shown in Table 1. The directly used meteorological variables
to drive the SW model mainly include air temperature, u,
D, Rn, and G. Except for air temperature and u, the meteo-
rological datasets provide different D-related and radiation-
related variables (Table 1), and therefore different methods
were utilized to estimate D and Rn (details in Supplement
Sects. S1 and S2). Regarding G, the mean air-temperature-
based method was used here (Allen et al., 1998; details in
Supplement Sect. S3). Notably, because CRU TS4.06 lacked
direct radiation records, the algorithm of Reddy (1974) was
employed here to estimate Rn based on the Clouds and
the Earth’s Radiant Energy System (CERES) satellite-based
monthly net shortwave radiation records (https://asdc.larc.
nasa.gov/project/CERES, last access: 12 June 2022) and the
CRU TS4.06 cloud cover data (algorithm and validation in
Supplement Sect. S1 and Fig. S1, respectively). Moreover,
due to no wind speed records in CRU TS4.06, we used
the mean wind speed from the other three meteorological
datasets as a proxy.
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Table 1. Overview of major inputs for producing the global PET based on the calibrated SW model.

Datasets Basic information

Spatiotemporal resolu-
tion and time coverage

Variables Sources and references

Meteorological
datasets

MSWX-Past 0.1◦× 0.1◦; 3-hourly;
1979–present

Mean, maximum, and minimum tem-
peratures; RH; u at 10 m;
downward shortwave radiation and
downward longwave radiation

http://www.gloh2o.org/mswx/,
last access: 13 April 2022;
Beck et al. (2022)

CRU TS4.06 0.5◦× 0.5◦;
monthly; 1901–2021

Mean, maximum, and minimum tem-
peratures; cloud cover and ea

https://crudata.uea.ac.uk/cru/data/hrg/,
last access: 21 April 2022;
Harris et al. (2020)

ERA-5 0.25◦× 0.25◦;
monthly; 1959–present

Mean, minimum, maximum, and dew-
point temperatures; surface pressure; u
at 10 m; net shortwave radiation and net
longwave radiation

https://doi.org/
10.24381/cds.f17050d7,
last access: 25 April 2022;
Hersbach et al. (2019, 2020)

MERRA-2 0.5◦× 0.625◦;
monthly; 1980–present

Mean, minimum, and maximum tem-
peratures; specific humidity; surface
pressure; u at 10 m wind speed; net
shortwave radiation and net longwave
radiation

https://disc.gsfc.nasa.gov/,
last access: 30 April 2022;
Molod et al. (2015)

GLASS AVHRR LAI 0.05◦× 0.05◦; 8 d;
1981–2018

LAI http://www.glass.umd.edu/,
last access: 1 March 2022;
Xiao et al. (2016, 2017)

GLASS-GLC 5000 m× 5000 m;
yearly; 1982–2015

LULC https://doi.org/
10.1594/PANGAEA.913496; Liu et al. (2020b)

Saturated water content in soil 0.0833◦× 0.0833◦;
static

Saturated water content in the first soil
layer (i.e., 0–0.0451 m)

http://globalchange.bnu.edu.cn/research/soil5.
jsp,
last access: 30 December 2021;
Dai et al. (2019a, b)

Forest canopy height from Potapov 30 m× 30 m; static Forest canopy height https://glad.umd.edu/dataset/gedi/,
last access: 14 June 2022;
Potapov et al. (2020)

Forest canopy height from Wang 500 m× 500 m; static Forest canopy height Wang et al. (2016)

Forest canopy height from Simard 1000 m× 1000 m;
static

Forest canopy height https://webmap.ornl.gov/wcsdown/dataset.jsp?
ds_id=10023,
last access: 20 May 2021; Simard et al. (2011)

Forest canopy height from Lang 0.5◦× 0.5◦; static Forest canopy height https://doi.org/
10.5281/zenodo.5112903;
Lang et al. (2021)

SPAM V2.0 0.0833◦× 0.0833◦;
static

Cropland distribution map https://doi.org/
10.7910/DVN/PRFF8V; International Food
Policy Research Institute (2019)

Cropland height Static Heights for various croplands Details in Table S4; Allen et al. (1998)

GRA and tundra height Static Typical heights for the five CSCS-based
GRA groups

Details in Table S3

CO2 concentration from Cheng 1◦× 1◦; monthly;
1850–2013

CO2 concentration https://doi.org/
10.5281/zenodo.5021361; Cheng et al. (2022)

GCD CO2 concentration 2◦× 2◦; monthly;
1985–2021

CO2 concentration https://www.data.jma.go.jp/ghg/kanshi/
co2data/co2_mapdata_e.html,
last access: 5 May 2023;
Nakamura et al. (2015)

Note: due to unavailable minimum and maximum temperatures for the monthly ERA5 and MERRA-2 datasets, monthly values of the two variables were extracted from their hourly datasets.
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Figure 1. Locations of the used EC sites in this study over Köppen–Geiger (KG) climate regions (Beck et al., 2018). International Geosphere-
Biosphere Programme (IGBP) classification system: CRO – cropland; GRA – grassland; DBF – deciduous broadleaf forest; EBF – evergreen
broadleaf forest; ENF – evergreen needleleaf forest; MF – mixed forest; CSH – closed shrubland; WSA – woody savannah; SAV – savannah;
OSH – open shrubland. GLASS-GLC classification system: FR – ENF, EBF, DNF, DBF, and MF; SHRB – SAV, CSH, OSH, and WSA;
GRA; CRO.

2.1.3 Land use and land cover, LAI, saturated water
content in soil, and CO2 concentration

Considering the time span of the available LULC products at
present, the 1982–2015 yearly GLASS-Global Land Cover
(GLC) dataset developed by Liu et al. (2020a, b) at a spatial
resolution of 5000 m was used here (Table 1), though it has
a coarse LULC classification ecosystem (including cropland
(CRO), forest (FR), grassland (GRA), shrubland (SHRB),
tundra, barren land, and snow or ice). Some studies stated
that the accuracy of the GLASS LAI is clearly better than that
of others (e.g., the Moderate-resolution Imaging Spectrora-
diometer (MODIS) LAI), especially for forested areas with
more realistic and reasonable trajectories representing sea-
sonal variations (Fang et al., 2013; Liang et al., 2013; Xiao
et al., 2014, 2016, 2017). Thus, the 1981–2018 8 d GLASS
Advanced Very High Resolution Radiometer (AVHRR) LAI
product at a spatial resolution of 0.5◦ was selected in this
study (Xiao et al., 2016, 2017; Table 1). The global sat-
urated soil water content in the first soil layer (i.e., 0–
0.0451 m) was collected from http://globalchange.bnu.edu.
cn/research/soil5.jsp (last access: 30 December 2021) (Dai
et al., 2019a, b; Table 1), while the 1850–2013 monthly CO2
concentration at 1◦× 1◦ spatial resolution was downloaded
from https://doi.org/10.5281/zenodo.5021361 (Cheng et al.,
2022; Table 1). Because this CO2 dataset missed the data
in 2014 and 2015, the 1985–2021 monthly Global CO2
Distribution (GCD) product from the Japan Meteorologi-
cal Agency at a 2◦× 2◦ spatial resolution (https://www.data.

jma.go.jp/ghg/kanshi/co2data/co2_mapdata_e.html, last ac-
cess: 5 July 2023; Maki et al., 2010; Nakamura et al., 2015;
Table 1) was used to estimate the monthly CO2 concentration
in the 2 missing years by the linear regression method. In de-
tail, we firstly resampled the GCD data into a 1◦× 1◦ reso-
lution and used the 1985–2013 GCD as an independent vari-
able and Cheng’s data as a dependent variable to fit the lin-
ear regressions for each month and each grid. Subsequently,
based on the GCD data, these regressions were used to cal-
culate the monthly CO2 concentration on each grid in 2014
and 2015. The validation results of the established regression
are in Fig. S2.

2.1.4 Vegetation canopy height

To date, the vegetation canopy height (h) maps to fully cover
the whole globe are still lacking, although they are needed
for the SW model to estimate some key parameters. There-
fore, we made use of the existing datasets, mainly includ-
ing the remote-sensing-based forest h datasets of Potapov
et al. (2020), Wang et al. (2016), Simard et al. (2011), and
Lang et al. (2021, 2022), respectively named h-Potapov, h-
Wang, h-Simard, and h-Lang (Table 1), and the Spatial Pro-
duction Allocation Model (SPAM) V2.0 crop distribution
map (Yu et al., 2020; Table 1) to reconstruct the global veg-
etation h maps. For each year, the detailed procedures are
four-fold. (1) Map FR and SHRB h. To reduce uncertain-
ties related to the retrieval algorithms and source data, the h-
Potapov, h-Wang, h-Simard, and h-Lang datasets were used
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in this procedure. Notably, we ignored differences in peri-
ods of source data for producing the forest h datasets. That
is, we assumed that the changes in forest h due to vegeta-
tion natural growth were limited during the study period. To
match GLASS-GLC, the four forest h datasets were firstly
resampled to a spatial resolution of 5000 m. If two or more h
datasets showed non-missing values at a certain FR (SHRB)
grid cell, the average of these non-missing values represented
the final h at this grid cell. After this, if some FR (SHRB)
grid cells still had missing values, then the h value at each of
these grid cells was filled with the mean h at the four nearest
FR (SHRB) grid cells around this grid cell. (2) Map GRA
and tundra h. Although the h-Lang product provided GRA
and tundra h values over a few regions, there were still large
areas with missing values, and even large uncertainties ex-
isted (Huang et al., 2017). Therefore, we specified the GRA
and tundra h based mainly on the Comprehensive Sequen-
tial Classification System (CSCS)-based GRA groups and
the typical GRA and tundra h measured at the EC sites and
records from the literature. Using vegetation bioclimate char-
acteristics and hydrothermal indictors (e.g., temperature and
precipitation), the CSCS method was employed to classify
the GLASS-GLC GRA and tundra into 10 groups (Li and
Ma, 2009; Liang et al., 2011; Gang et al., 2016). According
to the map of the CSCS-based GRA groups and the locations
of the EC sites, the h value for each CSCS-based GRA group
was estimated as the mean h from the EC sites with such a
GRA group, and lastly the h values for seven CSCS-based
GRA groups were determined. As for the remaining three
CSCS-based GRA groups (i.e., frigid desert GRA, warm
desert GRA, and tropical zonal forest steppe GRA), their h
values were from White (1983), Suttie et al. (2005), Kadeba
et al. (2015), Yin et al. (2019), and Prakash et al. (2020). The
h values of all the CSCS-based GRA groups can be found
in Table S3. (3) Map CRO h. By overlaying the SPAM V2.0
and GLASS-GLC maps, CRO was further classified into 42
types, and the h for each type was specified based on Ta-
ble S4 (Allen et al., 1998). (4) Map the h of barren land and
snow or ice. As for the barren land and snow or ice regions,
the h was set to 0. Notably, regardless of the h map recon-
structed for each year, this dataset could not reflect interan-
nual variations of h except for regions with LULC changes,
where the h values varied due to LULC changes. In the grid
with LULC changes in a certain year, its new h value was
assigned as the mean h value of its four nearest-neighbor
grids with the same LULC. An example of the reconstructed
canopy h map in 1982 is shown in Fig. S3.

2.2 Analysis methods

The workflow of this study mainly included three parts
(Fig. 2): (1) calibrating the SW model based on the iden-
tified EC observations without water limits at 96 EC sites
and validating its performance in site-calibration and cross-
validation modes (cyan color in Fig. 2); (2) generating the

global monthly PET using the calibrated SW model with the
final minimum stomatal resistance (rsmin, s m−1) values and
various inputs (orange color in Fig. 2); and lastly (3) con-
ducting related analyses, i.e., climatological characteristics
and spatiotemporal changes in PET and its two components,
together with climatological characteristics of PET partition-
ing (green color in Fig. 2).

2.2.1 Description of the SW model

Based on the assumption that the water vapor arriving at the
reference height is a mixture of evaporation from soil and
transpiration from the vegetation layer (Fig. 3; Shuttleworth
and Wallace, 1985; Wallace et al., 1990), the SW model can
be expressed as

where λET is the total latent heat flux (W m−2), i.e., the sum
of the canopy (λTr) and vegetation latent heat fluxes (λE),
where Tr and E represent transpiration and soil evaporation,
respectively; PMc and PMs are the closed vegetation and
bare soil latent heat fluxes (W m−2), respectively, which can
be calculated by the Penman formulas under conditions of
bare soil (i.e., Eq. 1d) and closed canopy (i.e., Eq. 1e); Cc
and Cs represent soil surface resistance (i.e., Eq. 1f; unit-
less) and canopy resistance coefficients (i.e., Eq. 1g; unit-
less), respectively; 1 denotes the slope of the saturated va-
por pressure curve (kPa K−1); γ is the humidity constant
(kPa K−1); λ is the latent heat of evaporation (MJ kg−1); ρ is
the air density (kg m−3); cp is the constant pressure-specific
heat (1013 J kg−1 K−1); ra

a , rc
a , and rs

a are the aerodynamic
resistance (s m−1), the vegetation boundary layer resistance
(s m−1), and the soil boundary layer resistance (s m−1), re-
spectively; and rs

s is the soil surface resistance, while rc
s is

the vegetation canopy resistance (s m−1). Based on Eq. (1b)
(Eq. 1c), Tr (E) can be obtained with CcPMc (CsPMs) di-
vided by λ.

In Eq. (1b) and (1c), A and Asoil are the available energy
for the canopy and soil layers (W m−2), respectively, and are
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Figure 2. Workflow of this study. The blue and yellow-green colors show operating procedures for calibrating and validating the SW model
and for producing a global 5 km monthly PET dataset, respectively, while the green color shows the related analyses.

Figure 3. Schematic description of the energy partitioning for a
canopy with the SW model.

defined as

where Rn,soil is the net radiation fluxes into the soil (W m−2)
and can be computed with Beer’s law (i.e., Eq. 2c; Mo et al.,
2004); kex represents the light extinction coefficient, which
varies with the LULC types (Table S5).

Previous studies have stated that determining the five resis-
tance parameters is the key to successfully running the SW
model (Hu et al., 2009; Chen et al., 2022). Of these resis-
tance parameters, ra

a and rs
a are estimated using Shuttleworth

and Gurney (1990), while rc
a and rs

s are calculated based on
Shuttleworth and Wallace (1985), Brisson et al. (1998), and
Villagarcía et al. (2010), respectively. Detailed information
about equations for parameterizing the four resistance pa-
rameters can be found in Supplement Sects. S4–S6 and Ta-
ble S5. Considering large uncertainties of rc

s (Fisher et al.,
2005; Hu et al., 2009, 2013; Wei et al., 2020), this study used
the EC measurements to calibrate its value for each LULC
type, and the detailed procedures can be found in Sect. 2.2.2.
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2.2.2 Determination of canopy resistance (rc
s )

In this study, the parameterization of rc
s is mainly based on

a Jarvis-type model, which is based on the hypothesis that
stomatal resistance is independently affected by every envi-
ronmental variable (Jarvis, 1976; Shuttleworth and Wallace,
1985). Here, we considered effects of the LAI, D, air tem-
perature (T , ◦C), soil moisture, and ρCO2 on rc

s , which corre-
spond to stress functions of F1 (Noilhan and Planton, 1989),
F2 (Raab et al., 2015), F3 (Zhou et al., 2006), F4, and F5
(Neitsch et al., 2002). Notably, this study focuses on ET un-
der a condition with no soil water limits (namely PET), and
thus F4 is set to 1 here. The specific equations are shown as
follows:

where rsmax is the maximum canopy resistance (s m−1) and
is fixed at 5000 s m−1 here (Crow and Kustas, 2008); LAIe
denotes the effective LAI (Gardiol et al., 2003); Rds is the
downward shortwave radiation (W m−2); Rds,dbl is the min-
imum shortwave radiation threshold for vegetation to carry
out photosynthesis (W m−2), which is set to 30 W m−2 for
forests and 100 W m−2 for other vegetation (Noilhan and
Planton, 1989; Lo Seen et al., 1997); and1g1,CO2 is the mul-
tiple of leaf stomatal conductance reduction when ρCO2 is
doubled (Table S5; Morison and Gifford, 1984; Field et al.,
1995; Saxe et al., 1998; Neitsch et al., 2002; Eckhardt and
Ulbrich, 2003; Wu et al., 2017).

Finally, we determined the values of rsmin. Here, the Monte
Carlo method was used to calibrate this parameter using
the identified PET observations at each EC site (Hu et al.,
2009). The following five steps were taken to determine the
rsmin values: (1) giving a rough range for rsmin (i.e., rsmin
between 1 and 500 s m−1) with reference to previous stud-
ies (e.g., Zhou et al., 2006; ECWMF, 2007); (2) conducting
5000 Monte Carlo simulations with the parameter sets ran-
domly sampled from uniform distributions within the given
ranges; (3) comparing the estimated SW model-based PET
(SW PET) and the EC PET after each simulation based on
a validation metric of the Kling–Gupta efficiency (KGE; see
Eq. 4d; Gupta et al., 2012; 5000 parameter sets corresponded
to 5000 KGEs after this step); (4) selecting the mean of rsmin

with the 10 highest KGEs as the optimal value for each site;
and (5) classifying the 96 EC sites into four types (i.e., FR,
SHRB, CRO, and GRA) based on the GLASS-GLC classi-
fication system (Liu et al., 2020a, b) and then determining
the best-fit parameter sets for a given LULC type by av-
eraging the optimal parameter values at the sites with this
LULC type. In this way, the final parameter values for FR,
CRO, GRA, and SHRB were obtained and are illustrated
in Table S6. Notably, the rsmin for the tundra, barren land,
and snow or ice types of GLASS-GLC are from Zhou et
al. (2006) and Zhang et al. (2008), mainly due to the lack
of the corresponding EC observations.

2.2.3 Model validation

Several validation metrics were employed to evaluate the per-
formance of the simulated SW PET. Mean error (ME) pro-
vides a way of quantifying the biases of the estimates relative
to the measurements, while root-mean-square error (RMSE)
describes the accuracy of the estimations. In addition, the
correlation coefficient (R) and KGE (with a range between
−∞ and 1.0, the optimal value) were used to measure the
capability of capturing the spatiotemporal variability and the
overall performance of the SW PET, respectively. The met-
rics are expressed as

where N is the sample number; S denotes the mean of the
SW-PET-averaged N samples; O is for the measured PET; i
is the ith sample; α is S/O; and β is σS/σO , where σS and
σO are the standard deviations of the estimated and measured
PET, respectively.

These metrics were first computed based on the daily esti-
mates with the optimal parameters for each site, i.e., param-
eters obtained in step (4) of the Monte Carlo method, and
the observations from the 96 EC sites, and then validation
in site-calibration mode was performed. Notably, to evaluate
the transferability of the calibrated parameters from known
observations to any location and then the robustness of the
established SW model, the “leave-one-out” cross-validation
method was utilized here (Zhang et al., 2019). For each
LULC type, the data from one “ungauged” observation were
excluded from the Monte Carlo method-based optimization,
while the data from all other observations of the same LULC
type were used for model calibration to obtain the simulated
one in the ungauged position. All four LULC types were ac-
tualized in this way. Then, the daily SW PET estimates in
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cross-validation mode were compared against the daily ob-
servations from the 96 EC sites to further explore the model
performance.

2.2.4 Development of the 5 km global monthly PET
(1982–2015) and related analyses

Considering that the SW model was calibrated with the daily
EC measurements, it was necessary to examine whether this
model could be applicable at the monthly scale. Therefore,
we firstly compared the monthly PET estimated based on the
daily and monthly meteorological variables from MSWX-
Past, MERRA-2, and ERA-5 (not including CRU TS4.06,
mainly due to it being at a monthly scale). Various validation
metrics showed that there were generally no evident differ-
ences in the two PET estimates (Fig. S4). That is, the model
established with the daily EC measurements could be driven
using the monthly meteorological variables. Mainly due to
GLASS-GLC having the shortest time span, the global SW
PET was produced at the GLASS-GLC grid and monthly
scale during 1982–2015. Therefore, before running the cali-
brated SW model, the meteorological, GLASS LAI, and CO2
concentration datasets were resampled to a spatial resolu-
tion of 5000 m. The monthly mean meteorological and LAI
datasets were taken as inputs to run the calibrated model
for estimating the monthly mean SW PET, PT, and PE. Fi-
nally, the total SW PET values (PT and PE) of a certain
month were obtained by the monthly mean value multiplied
by the days of this month. Additionally, to reduce uncertain-
ties from the meteorological datasets, the ensemble means of
PET, PT, and PE based on the four meteorological datasets
were provided. Using the ensemble mean PET, PT, and PE,
we analyzed climatological characteristics and spatiotempo-
ral changes in PET and its two components together with
climatological characteristics of PET partitioning. Notably,
the area-weighted method was used to estimate the regional
mean PET, PT, and PE.

3 Results

3.1 Performance of the established SW model

The simulated daily PET from the SW model was first eval-
uated against EC measurements aggregated for all 96 EC
sites (Fig. 4a and c). In both the site-calibration and cross-
validation modes, the SW model could simulate the daily
PET well, with most of the data points around the 1 : 1 line,
while it should be noted that overestimation and underesti-
mation existed for the lower and higher measurements, re-
spectively (Fig. 4a). Based on the selected validation met-
rics, we could conclude that the model had excellent per-
formance in the two modes, with R, ME, RMSE, and KGE
values above 0.85, between −0.03 and −0.01 mm d−1, be-
low 0.80 mm d−1, and above 0.85, receptively. Regarding
the mean values of each site (Fig. 4b and d), the simulated

Figure 4. Scatterplots of observations against simulations aggre-
gated for all of the 96 EC sites. (a) Daily comparison in site-
calibration mode. (b) Site mean comparison in site-calibration
mode. (c) Daily comparison in cross-validation mode. (d) Site mean
comparison in cross-validation mode. In these figures, the dashed
and solid lines are the 1 : 1 line and the regression line with the
least-square method, while the shadow area represents the 95 %
confidence interval.

daily PET could also follow well changes in the observed
PET among the 96 sites in both modes, as evidenced by R
above 0.88, ME between −0.09 and −0.03 mm d−1, RMSE
below 0.60 mm d−1, and KGE above 0.85. Moreover, lit-
tle changes in the validation metrics from site calibration
to cross-validation indicated limited degradation of the cal-
ibrated model (i.e., Fig. 4a vs. 4c and Fig. 4b vs. 4d).

Figure 5 indicates that, in site-calibration and cross-
validation modes, the SW model estimated daily PET very
well for FR, SHRB, GRA, and CRO. The model slightly
overestimated lower daily PET but slightly underestimated
higher daily PET. The performance of this model differed
slightly among LULC types. R was above 0.83, indicating
that the model could successfully simulate the spatiotempo-
ral variability of the daily PET, especially for FR, SHRB,
and GRA in site-calibration mode. Although negative and
positive ME existed in CRO and GRA and the other two
LULC types, respectively, the ME magnitudes were all be-
low 0.15 mm. According to RMSE, the simulated GRA daily
PET performed best in each mode, while larger values (be-
tween 0.54 and 0.85 mm d−1) occurred in the other three
LULC types, especially for CRO in site-calibration mode and
FR in cross-validation mode. The KGE was always larger
than 0.80 for each LULC type in site-calibration and cross-
validation modes, which indicated that the calibrated model
overall had a high performance. When it came to validation
based on site mean values (Fig. 6), the simulated PET fol-
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lowed changes in the observed PET for each LUCC type well
in the two modes, withR above 0.74, ME between−0.12 and
0.11 mm, RMSE below 0.70 mm, and KGE above 0.74. For
each LULC type, the cross-validation mode had a slightly
lower performance than the site-calibration mode (Fig. 6a vs.
6e, Fig. 6b vs. 6f, Fig. 6c vs. 6g, and Fig. 6d vs. 6h).

To further evaluate the performance of the established SW
model, we also computed the validation metrics at each site
for each LULC type in site-calibration and cross-validation
modes, which are shown in Fig. 7. Except for several sites
for SHRB, GRA, and CRO, theR values were all above 0.80,
and more than 50 % of the sites had a value above or around
0.90, which indicated that the model had excellent perfor-
mance in capturing the temporal variability of daily PET
(Fig. 7a). As for ME, the majority of the sites for each LULC
type showed a range between −0.50 and 0.50 mm (Fig. 7b).
Moreover, the daily PET for SHRB (the other three LULC
types) was overestimated (underestimated) by the SW model
at more than 50 % of the sites. Except for a few sites, the
RMSE values were below 0.80 mm at more than 75 % of
the sites for each LULC type, and comparably the RMSE-
based performance for CRO was the worst generally, with
an RMSE above 0.50 mm (Fig. 7c). The majority of the sites
had a KGE value above 0.60 and, especially for GRA and
CRO, more than 75 % of the sites had a KGE larger than
0.70 (Fig. 7d). In general, the model performance in cross-
validation mode was similar to or only slightly lower than
that in the calibration model for each LULC type.

To sum up, the above evaluation indicated that the cali-
brated parameter of rsmin could be transferable from known
observations to any location, and then the established SW
model could simulate PET well across different LULC types.
This gave us the confidence to employ it in producing a
global PET dataset. Notably, to maximize data utilization,
the final values of rsmin for each LULC type were determined
based on all the EC observations (Table S6), and the related
validation results can be found in Fig. S5.

3.2 Climatological characteristics of PET, PT, and PE

As seen from Fig. 8a, c, and e, the global mean climato-
logical annual PET, PT, and PE were 1198.96, 481.12, and
717.74 mm, respectively. Compared to the Northern Hemi-
sphere (NH), a larger mean climatological annual PT and
thus PET appeared in the Southern Hemisphere (SH), where
a larger proportion of the land surface was covered by veg-
etation. Among the five KG climate regions, mean climato-
logical annual values of PET and its two components showed
evident differences, with a range from 319.29 mm in the “Po-
lar” region to 1590.57 mm in the “Tropical” region for PET,
from 37.95 mm in the Polar region to 1122.42 mm in the
Tropical region for PT, and from 248.31 mm in the “Cold”
region to 1379.16 mm in the “Arid” region for PE. Except
for the Tibetan Plateau with a lower value, climatological an-
nual PET was generally larger than 1000 mm between 60◦ S

and 45◦ N, covering 62 % of the globe (Fig. 8b). In par-
ticular, climatological annual PET exceeded 1800 mm over
northern Africa, the Arabian Peninsula, the Indian Peninsula,
the Indo-China Peninsula, and northern Australia. The low-
est climatological annual PET (<400 mm) was generally lo-
cated to the north of 60◦ N. As seen in Fig. 8d, the spatial
distribution of climatological annual PT differed from that of
climatological annual PET. Due to sparse and even no vege-
tation and/or unfavorable climate conditions, lower climato-
logical annual PT (<400 mm) was widely distributed to the
north of 18◦ N and to the south of 18◦ S, corresponding to an
area percentage of 55 %. By contrast, 16 % of the globe with
larger climatological annual PT (>1200 mm) was mainly lo-
cated in the Caribbean, the Amazon Basin, the Congo Basin,
and the Indo-China Peninsula. As for climatological annual
PE (Fig. 8f), larger values (>1000 mm) were generally clus-
tered in northwestern North America and South America,
northern Africa, western Asia, and most of Australia, which
corresponded to sparse and even no vegetation and covered
36 % of the globe. Notably, lower climatological annual PE
(<400 mm) appeared in tropical rainforests near the Equator,
possibly because the dense vegetation limited the available
energy for PE.

As expected, climatological monthly PET, PT, and PE
generally exhibited strong seasonal fluctuations because of
the combined influences from many environmental factors
(Fig. 9). The globe and the NH showed similar seasonal cy-
cles for climatological monthly PET, PT, and PE, i.e., in-
creasing from January, peaking in July, and declining af-
terwards, while an opposite seasonal fluctuation existed in
the SH, with a valley in June (Fig. 9a–c). Mainly due to
differences in environmental factors, the seasonal cycles of
climatological monthly PET, PE, and PT obviously differed
among various KG climate regions (Fig. 9d–h). As for the
Tropical region, no evident seasonal fluctuations existed for
the three variables, which slightly fluctuated around 136 mm
for monthly PET, 88 mm for monthly PT, and 40 mm for
monthly PE, respectively (Fig. 9d). In the Arid, Cold, and
Polar regions, climatological monthly PE, PT, and PE were
generally characterized by a peak in July or August (Fig. 9e,
g, and h), while the Temperate region showed larger values
in April–November (Fig. 9f).

3.3 Climatological characteristics of PET partitioning

In order to know PET partitioning, we estimated the ratios of
PT and PE to PET (i.e., PT/PET and PE/PT) at annual and
monthly scales (Figs. 9 and 10). As depicted in Fig. 10a and
c, the global mean annual PT/PET and PE/PET were 41 %
and 59 %, respectively, indicating that globally the annual PE
greatly contributed to the annual PET. Likewise, the annual
PE was also a major contributor in the NH and SH, with
PE/PET values of 62 % and 50 %, respectively. Overall, the
annual PT/PET (PE/PET) had evident regional differences
and was above 53 % (below 47 %) in the Tropical, Temper-
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Figure 5. Scatterplots of daily observations against simulations aggregated for the different LULC types. (a–d) Comparison in site-
calibration mode. (e–h) Comparison in cross-validation mode. In these figures, the dashed and solid lines are the 1 : 1 line and the regression
line with the least-square method, while the shadow area represents the 95 % confidence interval.

Figure 6. Scatterplots of site mean observations against simulations for each LULC type. (a–d) Comparison in site-calibration mode. (e–h)
Comparison in cross-validation mode. In these figures, the dashed and solid lines are the 1 : 1 line and the regression line with the least-square
method, while the shadow area represents the 95 % confidence interval.

ate, and Cold regions but below 12 % (above 88 %) in the
other two climate regions (Fig. 10a and c). These indicated
that the annual PET in the Tropical, Temperate, and Cold re-
gions (Arid and Polar regions) was controlled by PT (PE).
Spatially, the annual PE/PET was above 50 %, mainly in re-
gions to the north of 65◦ N, western North America, Patag-
onia and the Andes of South America, western and central
Asia, northern and southern Africa, and Australia (Fig. 10d),
while the remaining regions showed a PT/PET larger than

50 %, especially for the Amazon Basin, the Congo Basin,
and Southeast Asia, with a value exceeding 90 %. Compared
to the annual PT/PET, the annual PE/PET corresponded to
an opposite spatial distribution (Fig. 10b). In short, the an-
nual PET was dominated by PE and PT over 59 % and 41 %,
respectively, of the globe.

In general, the seasonal cycle of PT/PET (PE/PET) for the
globe, each hemisphere, and each KG climate region was dif-
ferent from that of PT (PE; Fig. 9). As for the global, NH, and
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Figure 7. Boxplots of the validation metrics of daily PET simulations for each LULC type. The whiskers represent the minimum and
maximum values of the model performance metrics. The outer edges of the boxes and the horizontal lines within the boxes indicate the 25th,
75th, and 50th percentiles of the validation metrics.

Polar regions (Fig. 9a, b, and h), the monthly PT/PET had
two bottoms in April and October and a peak in July, corre-
sponding to tow peaks and a bottom of the monthly PE/PET.
In the SH and Temperate regions (Cold region), the monthly
PT/PET first increased from January, peaked in July (June),
and declined after that, while the monthly PE/PET showed
the opposite fluctuations (Fig. 9c, f, and g). No evident fluc-
tuations of the monthly PT/PET and PE/PET existed in the
Tropical and Arid regions (Fig. 9d and e). Comparing the
monthly PT/PET and PE/PET for the globe, NH, Arid re-
gion, and Polar region (Fig. 9a, b, e, and h), it was not diffi-
cult to find that the former was always smaller than the lat-
ter, indicating that the monthly PE greatly contributed to the
monthly PET. By contrast, the larger monthly PT/PET in the
Tropical and Temperate regions suggested that PT dominated
PET in these regions (Fig. 9d and f). In particular, the major
contributor to the monthly PET for the SH (Cold region) var-
ied throughout the year, i.e., PT dominating PET in March–
July (May–September) but PE dominating PET in the other
months (Fig. 9c and g).

3.4 Spatiotemporal changes in PET, PT, and PE

Globally, annual PET and PT significantly (p<0.05) in-
creased by 1.26 and 1.27 mm yr−1, respectively, with a slight
and insignificant decrease in annual PE (Fig. 11a, c, and e).
Regarding annual PET and PT, both the NH and the SH had
significant (p<0.05) increases, while annual PE oppositely
changed in the two hemispheres, i.e., increases for the NH
but decreases for the SH (Fig. 11b and c). Among the vari-
ous KG climate regions, annual PET (except for the Tropi-

cal region) and PT were all found to significantly (p<0.05)
increase but with evident regional differences in magni-
tudes, i.e., larger PET increases (>1.32 mm yr−1) in the
Arid, Temperate, and Cold regions and a maximum increase
(1.83 mm yr−1) in PT in the Temperate region (Fig. 11a, c,
and e). Except for the Polar region, the other climate re-
gions all showed significant (p<0.05) changes in annual
PE, followed by decreases in the Tropical and Temperate
regions but increases in the Arid and Cold regions. Com-
parisons between annual trends of PT and PE suggested
that the increases in PET could be attributed to increased
PT for the globe, each hemisphere, and each climate re-
gion. Spatially, increases in annual PET covered 78 % of the
globe, accompanied by 41 % of the globe, with significant
(p<0.05) increases and larger values (>4.00 mm yr−1) in
the western US, the Amazon Basin, the Congo Basin, east-
ern Europe, and eastern China (excluding the northeastern
part; Fig. 11b). As for annual PET, only 5 % of the globe
had significant (p<0.05) reductions. Not considering non-
vegetation regions, the spatial pattern of annual PT trends
was similar to that of annual PET trends (Fig. 11d). Overall,
significant (p<0.05) increases and decreases in annual PT
were observed for 28 % and 4 %, respectively, of the globe,
especially for the Amazon Basin, the Congo Basin, south-
ern Africa, the Indian Peninsula, eastern Europe, and east-
ern China (excluding the northeastern part), with larger in-
creases exceeding 4.00 mm yr−1. As shown in Fig. 11f, the
increasing trends of annual PE had a wide distribution, but
significant (p<0.05) increases only covered over 26 % of the
globe, and the increases were generally below 3.00 mm yr−1.
Relative to annual PET and PT, annual PE had more re-
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Figure 8. Climatological annual PET, PE, and PT. (a) Climatological annual PET averaged over the globe, the Northern Hemisphere (NH)
and Southern Hemisphere (SH), and each KG climate region. (b) Spatial distribution of climatological annual PET. (c) Climatological annual
PT averaged over the globe, NH and SH, and each KG climate region. (d) Spatial distribution of climatological annual PT. (e) Climatological
annual PE averaged over the globe, NH and SH, and each KG climate region. (f) Spatial distribution of climatological annual PE. In panels
(b), (d), and (f), the inset histogram shows the area percentage stratified by the amount of annual PET, PT, or PE.

gions showing decreases, with significant (p<0.05) reduc-
tions over 17 % of the globe, mainly in northern South Amer-
ica, Australia, southern Africa, and the Indian Peninsula. In
general, the spatial distribution of major contributors to an-
nual PET trends was similar to that of major contributors
to annual PET (Fig. 11g vs. Fig. 10b and d). For example,
the major contributor of PE was mainly located in Green-
land, southwestern North America, Patagonia and the Andes
of South America, western and central Asia, northern and
southern Africa, and most of Australia (Fig. 11g). By con-
trast, the remaining regions showed the dominant factor of
PT. Overall, the annual PET changes were dominated by PT
and PE over 53 % and 47 %, respectively, of the globe.

In general, the global mean monthly PET and PT signif-
icantly (p<0.05) increased throughout a year with larger
trends (>0.10 mm yr−1) during April–October, while the
global mean monthly PE insignificantly changed in each
month (Fig. 12a). For the NH (Figs. 12b), all months
showed significant (p<0.05) increases in PET and PT, es-

pecially for March–September with trends generally larger
than 0.10 mm yr−1. Despite most of the months having in-
creased PE, only March had significant (p<0.05) increases
in the NH. In the SH (Fig. 12c), monthly PET showed larger
(>0.10 mm yr−1) and significant (p<0.05) increases during
June–October but generally decreases in the other months.
The SH PT significantly (p<0.05) increased in most of the
months, with larger values (>0.12 mm yr−1) during August–
October. As for the SH PE, August and October (January–
March and December) corresponded to significant (p<0.05)
increases (reductions). Among the five KG climate regions
(Fig. 12d–h), the monthly PET and PT increased throughout
a year except for the PET of the Tropical region in several
months with decreases, and moreover the increases in most
of the months were significant (p<0.05). When it came to the
monthly PE changes, most of or all of the months exhibited
decreases in the Tropical and Temperate regions but gener-
ally increases in the other three KG climate regions. Despite
that, no more than 6 months exhibited significant (p<0.05)

Earth Syst. Sci. Data, 15, 4849–4876, 2023 https://doi.org/10.5194/essd-15-4849-2023



S. Sun et al.: A global 5 km monthly potential evapotranspiration dataset 4863

Figure 9. Climatological monthly PET, PE, PT, PE/PET, and PT/PET averaged over the globe, each hemisphere, and each KG climate
region.

Figure 10. Characteristics of annual PT/PET and PE/PET. (a) Annual PT/PET averaged over the globe, each hemisphere, and each KG
climate region. (b) Spatial distribution of annual PT/PET. (c) Annual PE/PET averaged over the globe, each hemisphere, and each KG
climate region. (d) Spatial distribution of annual PE/PET. In panels (b) and (d), the inset histogram shows the area percentage stratified by
the amount of annual PT/PET or PE/PET.
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Figure 11. Characteristics of annual PET, PT, and PE trends together with major contributors to annual PET trends. (a) Trends for annual
PET averaged over the globe, each hemisphere, and each KG climate region. (b) Spatial distribution of annual PET trends. (c) Trends for
annual PT averaged over the globe, each hemisphere, and each KG climate region. (d) Spatial distribution of annual PT trends. (e) Trends
for annual PE averaged over the globe, each hemisphere, and each KG climate region. (f) Spatial distribution of annual PE trends. (g) Spatial
distribution of major contributors to annual PET trends. In panels (a), (c), and (e), the star indicates that the trend is significant (p<0.05). In
panels (b), (d), and (f), the inset histogram suggests an area percentage of insignificant increases (red bar without a star), significant increases
(red bar with a star; p<0.05), insignificant decreases (blue bar without a star), and significant decreases (blue bar with a star; p<0.05).

increases or decreases in the monthly PE for each climate re-
gion. Furthermore, we compared trends of the monthly PT
and PE to identify major contributors to the monthly PET
changes in the globe, each hemisphere, and each KG climate
region (Fig. 12). Overall, the monthly PET changes were
generally dominated by PT in most of or all of the months
for the globe and each region. However, it should be noted
that PE was the major contributor of PET for some months,
i.e., January–March for the SH, February–May for the Trop-

ical region, March and December for the Cold region, and
February–May, October, and November for the Polar region.

4 Discussion

4.1 Advantages of this new PET dataset and its
potential implications

By considering the joint effects of various ET-process-related
factors, we have developed a new global PET dataset based
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Figure 12. Changes in monthly PET, PT, and PE for the globe, each hemisphere, and each KG climate region. The circle indicates that the
trend is significant with p<0.05.

on the SW model in this study. This dataset has several ad-
vantages relative to existing global PET datasets, e.g., CRU
TS4.06 (Harris et al., 2020), MOD16 (Running et al., 2017),
GLEAM v3.6 (Miralles et al., 2011; Marten et al., 2017), the
PT-JPL model (Fisher et al., 2011), and hPET (Singer et al.,
2021). First, the dataset considered more realistic land sur-
face information, including spatial differences in the LULC
and vegetation parameters (e.g., canopy height and rsmin) and
time-varying LULC and LAI datasets, making the new PET
estimates more realistic. Second, the established SW model
used in this study was based on more realistic physical pro-
cesses and gave the SW PET dataset an explicit physical sig-
nificance, meanwhile providing the PT and PE (which are
crucial for understanding PET and ET). Third, a number of
studies have found that the elevated atmospheric CO2 con-
centration could exert clear impacts on the ET process by
controlling plant stomatal resistance (Gedney et al., 2006;
Piao et al., 2007; Sun et al., 2014; Roderick et al., 2015;
Milly and Dunne, 2016; Yang et al., 2019; Zhao and Cao,
2022). By introducing a stress function of CO2 concentra-
tion to rc

s , our SW PET dataset is able to reflect the impacts
of elevated CO2 on ET.

In view of these advantages, our global PET dataset can
apply to multiple properties, e.g., the analysis of rainfall,
agriculture, drought, hydrology, and biodiversity. First, our

SW PET can provide realistic and physical datasets to fur-
ther understand the impacts of spatiotemporal differences
in rainfall changes from the perspective of scaling effects
of the Clausius–Clapeyron relation between air tempera-
ture and moisture-holding capacity (IPCC, 2014; Barbero
et al., 2017). For example, by exploring the relationships
between evaporative demand (even PT and PE) and rain-
fall, one can re-untangle the different scaling effects of the
Clausius–Clapeyron relation between air temperature and
moisture-holding capacity. Second, considering PET parti-
tioning into the two components PT and PE, this dataset
will be convenient for the agriculture managers for directly
using PT estimates for effective agricultural management
practices (e.g., seeding, fertilization, irrigation planning, or
scheduling) and finally for sustaining the grain yield (Allen
et al., 1998; Tomas-Burguera et al., 2019). Third, our SW
PET dataset provides an opportunity to further understand
drought mechanisms, e.g., how and what magnitudes dif-
ferent PET components (i.e., PT and PE), LULC changes,
vegetation greening and elevated CO2-induced vegetation
physiological effects (e.g., increased stomatal resistance) im-
pact droughts, which are still unclear at present (Vicente-
Serrano et al., 2020). One can use this dataset as input to
compute drought indices, i.e., the Standardized Precipitation-
Evapotranspiration Index (SPEI) and the self-calibrating
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Palmer Drought Severity Index (scPDSI) (Wells et al., 2004;
Vicente-Serrano et al., 2010), and to separate the impacts
of the aforementioned factors on drought evolution. Fourth,
the PET as a crucial input for many hydrological models is
closely related to the performance of these models (Lu et al.,
2003, 2005; Rao et al., 2011; Aouissi et al., 2016; Seiller
and Anctil, 2016; Dallaire et al., 2021), and therefore more
realistic physical PET estimates will benefit from accurate
hydrological modeling and physically understanding hydro-
logical responses to environment changes (e.g., changes in
climate and LULC). Fifth, the new PET dataset is of sig-
nificance for understanding biodiversity responses to local
environment changes such as LULC, and PET is usually an
effective measure of how climatic energy limits organisms
directly and/or influences primary productivity and thus food
availability (Kerr, 2001; Hawkins et al., 2003; L. B. Phillips
et al., 2010).

4.2 Uncertainties

The estimated SW PET may involve uncertainties from vari-
ous sources, such as parameterizations of the SW model and
inputs for calibrating and driving the model. These uncertain-
ties are discussed in the following sections.

4.2.1 Uncertainties in parameterizations of the SW
model

A relatively simple Jarvis-type empirical formula was em-
ployed here to describe the impacts of environmental con-
ditions (i.e., temperature, vapor pressure deficit, solar radi-
ation, soil moisture content, and CO2 concentration) on rc

a .
While the better performance is with the Jarvis-type formula
in simulating the impacts of environmental conditions on wa-
ter and carbon fluxes (Jarvis, 1976; Lhomme, 2001; Wang et
al., 2020), the interactive effects between environmental fac-
tors on rc

a are not taken into account by this empirical for-
mula. In reality, environmental factors are interdependent,
and hence their interaction in the Jarvis-type empirical for-
mula cannot be easily separated. In one word, the “multipli-
cation” form of the Jarvis-type empirical formula potentially
biases the estimated rc

a (Damour et al., 2010; Chen et al.,
2022) and then the SW PET estimates.

As an important and undetermined parameter within the
Jarvis-type empirical formula for estimating rc

a , rsmin was
optimized for FR, SHRB, GRA, and CRO, and the cali-
brated SW model performance was satisfactory (details in
Sect. 3.1). However, it should be noted that this optimized
parameter may be the main hindrance to SW model applica-
tion over the globe (Liu et al., 2003; Mo et al., 2004; Chen
et al., 2022). First, rsmin was estimated using EC observa-
tions that generally cover the period after 2000 assuming sta-
tionary environmental conditions. Environmental conditions
were shown to have greatly changed during the past several
decades, especially climate conditions such as global warm-

ing (IPCC, 2014), brightening or dimming (Wild, 2009),
and frequent extreme events (e.g., droughts; Sheffield et al.,
2012; Trenberth et al., 2012). Therefore, rsmin may have in-
terannual variations due to the changes in these variables
(Wever et al., 2002; Winkel et al., 2001), and this finally in-
troduces biases into the PET product, particularly for years
with evidently different environmental conditions relative to
the period after 2000 (Aschonitis et al., 2017). Second, rsmin
was fixed throughout the year in the SW model, regardless
of seasonal variations of this parameter with environmental
and vegetation conditions (Winkel et al., 2001; Wever et al.,
2002; Douglas et al., 2009). Therefore, no consideration of
the seasonal cycle of rsmin may impact the quality of the PET
product (Hu et al., 2009; Zhu et al., 2013; Elfarkh et al.,
2021). For instance, Hu et al. (2009) and Zhu et al. (2013)
found that ET was systematically overestimated or underes-
timated using the SW model with fixed parameters.

The canopy light extinction coefficient of kex, which rep-
resents a partitioning of radiant energy over the vegetation
canopy and the soil surface, is a key factor affecting ecosys-
tem carbon, water, and energy processes (Tahiri et al., 2006;
Zhang et al., 2014). As a result, the accuracy of the SW
model was believed to be associated with the kex param-
eterization used in this study. Considering the physiologi-
cal and morphological differences between terrestrial ecosys-
tems (Emami-Bistghani et al., 2012; Zhang et al., 2014), we
followed the popular biogeochemical models and the remote-
sensing models of ET and gross primary productivity (e.g.,
the Lund-Potsdam-Jena Dynamic Global Vegetation Model
or the Vegetation Photosynthesis Model; Xiao et al., 2004;
Sitch et al., 2003) and assumed this coefficient to be a con-
stant for every LULC type (Table S1). Despite this, it is no-
table that the kex values vary with the growth of plant and/or
vegetation coverages (Lindroth and Perttu, 1981; Aubin et
al., 2000; Maddoni et al., 2001; Emami-Bistghani et al.,
2012; Fauset et al., 2017). Emami-Bistghani et al. (2012)
stated that, with an increase in vegetation coverages, the kex
values decreased, especially at the early reproductive stage in
sunflower cultivars. This suggested that the fixed kex within
the SW model potentially led to uncertainties in the PET esti-
mates. As shown by Tahiri et al. (2006), relative to the values
of the variable kex, the fixed values gave a less precise esti-
mation of plant transpiration under irrigated maize.

Notably, the SW model only focuses on two processes of
ET, i.e., soil evaporation and vegetation transpiration (Shut-
tleworth and Wallace, 1985). Other parts of ET, vegetation
canopy interception and nighttime ET (ETn), are ignored in
this study. It is reported that vegetation canopy interception
can occupy a certain proportion in the total ET, especially
for regions with a high LAI and frequent rainfall (Gash et
al., 1995; Tourula and Heikinheimo, 1998; Lawrence et al.,
2007; Wang and Dickinson, 2012). On rainy days, the veg-
etation canopy interception may account for a considerable
fraction of the total ET (Tourula and Heikinheimo, 1998;
Hu et al., 2009). On average, the fraction of ETn accounts
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for approximately 6.3 % of the total ET informed by the
FLUXNET2015 dataset, while 7.9 % is based on multiple
global models (Padrón et al., 2020). This fraction may exceed
15 % in a mountain forest with a snowy and windy winter.
Despite this, accurately representing the ETn process is still
difficult at present, mainly because the related controlling
mechanisms are still not clear (Han et al., 2021). For exam-
ple, Novick et al. (2009) and Groh et al. (2019) found that va-
por pressure deficit (VPD) and wind speed had a significant
impact on ETn, while Groh et al. (2019) stated that the con-
tributions of night dew could not be ignored. As an impor-
tant component of ETn, the nighttime transpiration is related
not only to the incomplete stomatal closure (Dawson et al.,
2007; Duursma et al., 2019), but also to the circular regula-
tion of nighttime water uses by plants (De Dios et al., 2015).
However, how the environmental factors alter nighttime tran-
spiration is still disputed. Dawson et al. (2007) and Moore
et al. (2008) reported a positive correlation between night-
time transpiration, VPD, and soil moisture content, while
Barbour and Buckley (2007), N. G. Phillips et al. (2010),
and De Dios et al. (2015) found no or a negative correla-
tion between nighttime transpiration and the two aforemen-
tioned variables. Moreover, the biological factors (e.g., plant
species and ecosystem types) can also significantly influence
nighttime transpiration (O’Keefe and Nippert, 2018; Zep-
pel et al., 2014). Therefore, establishing a common model
for estimating ETn across various ecosystems remains chal-
lenging. All in all, ignoring vegetation canopy interception
and ETn may underestimate PET (Tourula and Heikinheimo,
1998; Lawrence et al., 2007; Mu et al., 2011; Padrón et al.,
2020; Singer et al., 2021). Subsequent research will be done
to integrate these two processes into the SW model to further
enhance the model’s physical mechanism.

4.2.2 Uncertainties in datasets for calibrating and
driving the SW model

The uncertainties in the EC observations for calibrating the
SW model and in inputs for producing the global PET can
be propagated into the PET estimates. As for the EC obser-
vations, the uncertainties mainly come from the selection of
unstressed days for obtaining the observed PET, the issue of
non-closure of the energy balance at the EC system level, and
the gap-filling methods (e.g., the marginal distribution sam-
pling (MSD) method; Reichstein et al., 2005). The energy-
balance-based criterion employed in this study proved to be
efficient at selecting unstressed days (Maes et al., 2019), but
this method may still result in two uncertainties. First, we
should note that the higher the LAI or normalized difference
vegetation index (NDVI) is, the larger the EF will be (Gen-
tine et al., 2007; Nutini et al., 2014). This suggests that the
larger EF will likely frequently happen during the growing
season, which usually corresponds to a higher LAI or NDVI.
Therefore, the identified unstressed days tended to involve
fewer ones within the non-growing season, potentially intro-

ducing large biases into the estimated PET during this sea-
son. Second, due to frequent water deficits in arid regions,
the EF threshold may exceed the 95th percentile. What is
more, there may be no unstressed days in extremely arid re-
gions, mainly because the soil moisture can hardly reach the
field capacity or saturation due to the very limited precipi-
tation. Thus, the identified unstressed days using the energy-
balance-based criterion may actually include stressed days in
arid regions and potentially bias the PET estimates. In order
to reduce the impacts of the non-closure of the energy bal-
ance in the EC system (Wilson et al., 2002; Foken, 2008), we
used the corrected half-hourly or hourly EC LE and H ob-
servations and only retained daytime records with a Bowen
ratio between 0.90 and 1.10 to calibrate the SW model. Al-
though such processing could reduce uncertainties, the en-
ergy imbalance was not fully solved in our study and may
lead to inevitable errors in the calibrated parameter of rsmin
and therefore the global PET estimates (Hu et al., 2009; El-
farkh et al., 2021; Chen et al., 2022). In this study, to maxi-
mize the use of data, the MSD method was employed to fill
the gaps in the EC LE measurements. However, we should
note that if the controlling thermodynamic and kinetic factors
of the atmosphere and soil moisture conditions are different
between the missing and retrieved moments, the gap-filled
LE based on the MSD method may have low confidence,
especially when soil moisture has abrupt changes (Jiang et
al., 2022). Recently, Jiang et al. (2022) developed a physics-
based full-factorial scheme to fill gaps in ET from EC ob-
servations, and they found that the gap-filled ET with this
scheme showed higher confidence relative to the existing typ-
ical gap-filling methods. Therefore, to reduce the uncertain-
ties from the MSD-based gap-filled LE, the physics-based
full-factorial scheme could be a good candidate in the fu-
ture to fill the ET gaps. Here, to quantify potential impacts
of the MSD-based gap-filled values, the SW model was re-
calibrated and re-validated against the data points without
gap-filling. Relative to the SW model used in this study, the
new rsmin and the validation metrics changed insignificantly
(Figs. S6 and S7), suggesting that the uncertainties induced
by the gap-filled LE were limited.

The SW model used various datasets as inputs, including
LULC, LAI, canopy height, and meteorological data (e.g.,
MSWX-Past, CRU TS4.06, ERA5, and MERRA-2), albeit
with some uncertainties (Fang et al., 2013; Xiao et al., 2017;
Liu et al., 2018; Xu et al., 2018). As a reflection of vegeta-
tion growth, the accuracy of the LAI can affect several key
parameters (e.g., rc

a , rc
s , ra

a , or rs
a) and input variables (e.g., A

or Asoil) and influence the quality of the PET estimates. To
reduce uncertainties from LAI datasets, this study selected
the GLASS AVHRR LAI product with a better overall per-
formance (relative to other popular products, e.g., MODIS,
FSGOM, GLOBMAP, and GIMMS3g; Fang et al., 2013;
Xiao et al., 2017; Liu et al., 2018; Xu et al., 2018). How-
ever, we should note that this LAI product slightly underper-
formed over grassland compared to the other products (Liu
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et al., 2018). Considering that this LAI product was based
on the 8 d maximum value composite for removing the im-
pacts of cloudy days, the LAIe (based on Eq. 3b) was poten-
tially larger than its authentic value due to some leaves being
covered by rain or snow. Thus, from Eq. (3b), rc

s may be
slightly underestimated, leading to an overestimation of PT
and PET. Considering the impacts of LULC changes on PET
across the globe, we used the 1982–2015 yearly GLASS-
GLC dataset developed by Liu et al. (2020a, b) to separately
estimate the PET for each LULC type. Although the aver-
age overall accuracy for the 34 years with seven classes each
is 83 % based on 2431 test sample units, the misclassifica-
tion issues still existed, e.g., in Africa, eastern and south-
ern South America, southern Alaska, northern and eastern
Australia, and southwestern Indonesia (Liu et al., 2020a, b).
The reconstructed global vegetation canopy height also has
limitations, which may arise from (1) uncertainties in the
retrieval algorithms and remote-sensing data (Simard et al.,
2011; Wang et al., 2016; Potapov et al., 2020; Lang et al.,
2021, 2022), (2) neglecting the spatial differences in CRO
and GRA heights and using an alternative specific value, and
(3) not considering the interannual changes in the FR and
SHRB canopy heights and the intra-annual cycle in the CRO
and GRA heights. These limitations undermine the accuracy
of the PET estimates. Recently, Peng et al. (2022) proposed
a practical method for global estimates of 500 m daily aero-
dynamic roughness length with a combination of machine-
learning techniques, a wind profile equation, observations
from 273 sites, and MODIS remote-sensing data. Their re-
sults showed that the random forest model could reproduce
well the magnitude and temporal variability of the daily aero-
dynamic roughness length at most of the sites for all of the
land cover types. We believe that the aerodynamic rough-
ness length produced by this method has the potential to re-
place vegetation canopy height as an input to run the SW
model and thus reduce the aforementioned vegetation canopy
height-related uncertainties and improve the accuracy of the
PET estimates. A series of evaluations of various meteoro-
logical datasets across the world suggested the discrepancies
among these datasets (Urraca et al., 2018; Hinkelman, 2019;
Jourdier, 2020; Zhang et al., 2021). Although the ensemble
mean used here may reduce uncertainties from the meteoro-
logical datasets, there is still the likelihood that the remain-
ing uncertainties will be propagated into the PET estimates.
In this study, even though soil does experience water stress,
we assumed that the soil water supply for ET was uncon-
strained in estimating PET. As a result, the two conditions
with and without soil water stress corresponded to different
meteorological variables when considering land–atmosphere
interaction (Crago and Crowley, 2005; Kahler and Brutsaert,
2006; Aminzadeh et al., 2016; Maes et al., 2019). For exam-
ple, air temperature under the unstressed condition will likely
be lower than that under the stressed condition because of the
lower sensible heating and the stronger evaporative cooling
from the wetter land surface to the atmosphere (Maes and

Steppe, 2012; Maes et al., 2019). Thus, the mismatch be-
tween the assumption of no soil water stress and the observed
meteorological variables will likely introduce biases into our
PET estimates.

5 Data availability

The product named SW PET with monthly and
5 km resolutions from 1982 to 2015 is freely avail-
able at the National Tibetan Plateau Data Center
(https://doi.org/10.11888/Terre.tpdc.300193, Sun et al.,
2023).

6 Conclusions

This study developed a global 5 km monthly PET dataset dur-
ing 1982–2015 using the calibrated SW model. The model
has been well-calibrated against observations at 96 EC flux
sites across four major LULC types: forest, shrubland, crop-
land, and grassland. We mapped spatiotemporal changes in
PET and its components (i.e., PT and PE) across the globe.

Our PET product has three major improvements relative to
the existing PET datasets: (1) it provides the PET estimates
through clearer physical processes, since we take the spatial
differences and temporal changes in land surface properties
into consideration; (2) it provides not only PET estimates, but
also PT and PE; and moreover (3) it can take the impacts of
elevated CO2 into PET estimation by introducing the stress
function of CO2 to rc

s . This dataset can be used by various
scientific disciplines (e.g., agronomy, ecology, climatology,
hydrology) and policy-makers for different operational ap-
plications.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-15-4849-2023-supplement.
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