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A B S T R A C T   

North American forests are threatened by changes in climate and disturbance dynamics. Current efforts to model 
future vegetation and fire dynamics are challenged by the lack of mechanistic representation of ecological 
processes, the spatial resolution to capture landscape-level heterogeneity, and the ability to model regional 
spatial extents. To address these gaps, a dynamic vegetation model was adapted for regional applications to the 
western forests of the U.S. Here we present LPJ-GUESS-LMfireCF, a dynamic vegetation model that includes the 
ecological processes of a dynamic global vegetation model with cohort-based forest demography (LPJ-GUESS) 
and a mechanistic fire module (LMfire), with a newly developed routine to simulate stand-replacing crown fires 
(CF). The LMfireCF fire module calculates surface fire and canopy characteristics to determine if critical con
ditions are met for crown fire initiation and spread, and if met, calculates crown fire effects. Adapting the model 
to regional applications required parameterization of dominant regional plant functional types (PFTs) and 
additional model adjustments related to the representation of fire. Simulations driven by historical climate data 
from 1980 to 2016 were made to compare the two different fire modules: the original GlobFIRM and newly 
created LMfireCF, and two different plant functional type (PFT) parameterizations: the original global vs. newly 
created regional PFTs. Model performance was evaluated by comparing simulation outputs to field and satellite- 
based estimates for landscape biomass distribution, dominant plant cover, fire activity, and forest regeneration. 
LPJ-GUESS-LMfireCF accurately represented vegetational zones with elevation and climate gradients in Yel
lowstone National Park (YNP). Total carbon in aboveground live vegetation within YNP simulated by LPJ- 
GUESS-LMfireCF with the regional PFTs overestimated satellite-based estimates by 12% (44.8 TgC vs 39.9 
TgC respectively). In comparison, an LPJ-GUESS simulation using the older GlobFIRM fire module and global 
PFTs resulted in total carbon in aboveground live vegetation of 225 Tg C for YNP, five times the satellite-based 
estimates. LPJ-GUESS-LMfireCF simulated burned area and fire severity approximated satellite-based observa
tions. Importantly, LPJ-GUESS-LMfireCF simulated the large stand-replacing fires of 1988 in Yellowstone as 
emergent results without model initialization of vegetation cover or fire history. LPJ-GUESS-LMfireCF simulated 
that 25% of the area of YNP burned in 1988, compared to 36% based on field and satellite-based estimates. 
However, modeled postfire regrowth was more rapid than field-based estimations, with simulated mean biomass 
24 years postfire (40.1 ± 1.65 Mg ha− 1) 58% greater than field estimations (25.4 ± 2.5 Mg ha− 1), yet simulated 
mean biomass for mature forests (>100 years old without a major disturbance) was 24% less than field esti
mations (58.4 ± 0.8 compared to 76.6 ± 3.5 Mg ha− 1). In summary, LPJ-GUESS-LMfireCF effectively simulates 
regional crown fire dynamics and vegetation to more accurately model regional biomass, plant biogeography, 
and fire activity.   
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1. Introduction 

Changes in regional climate and disturbance characteristics threaten 
the resiliency and function of forested ecosystems (Turner et al., 2019; 
Walker et al., 2019), increasing the need for regional modeling of forest 
and disturbance dynamics (U.S. DOE, 2018). Forest resiliency is defined 
as the capacity of a forest to absorb change and disturbance and have 
structure and function persist (Holling, 1973). With increases in fire 
season length, area burned, and frequency of large fires in the boreal and 
temperate forests of North America (Dennison et al., 2014; Kasischke 
and Turetsky, 2006; Westerling, 2016, 2006), there is uncertainty about 
the resiliency of these forests and their carbon storage (Turner et al., 
2019; Walker et al., 2019). In particular, the extent of high-severity fires 
that kill most or all of the trees across entire stands, referred to here as 
stand-replacing fires, is increasing (Flannigan et al., 2009; Stephens 
et al., 2014). The ability to predict future forest resiliency is dependent 
on the development of process-based simulation models that can 
represent complex interactions between forest demography, distur
bance, climatic factors, and increasing atmospheric carbon dioxide (U. 
S. DOE, 2018). Therefore, appropriately modeling plant geography, 
disturbance-driven biomass turnover, and forest regrowth under a 
changing climate is critical to predicting future changes to forests’ 
persistence and function at a regional scale. 

Current common approaches to regional forest modeling are 
empirical models, individual-based simulation models that are extended 
to landscape applications, or Dynamic Global Vegetation Models 
(DGVMs) applied regionally. Empirical modeling, including correlation, 
regression, and principal component analyses can reveal important cli
matic and disturbance relationships affecting forest productivity 
(Emmett et al., 2019; Notaro et al., 2019; Potter, 2019). Yet empirical 
models are often constrained by the limited number of variables 
included by the modeler that may fail to capture complicated feedbacks 
between ecological processes. Also, since empirical models are based on 
correlative relationships between variables from field or remotely 
sensed data, they rely on statistical extrapolation to make inferences 
about conditions or areas not explicitly measured. Individual-based 
forest landscape models offer high-resolution (e.g. 2 m to 30 m spatial 
resolution) simulations of forest dynamics (Mladenoff, 2004; Seidl et al., 
2012). Individual-based simulation models trade their high-spatial res
olution for limited spatial extent, making regional-scale simulations 
computationally impractical. 

In contrast, DGVMs were developed for understanding feedbacks 
between vegetation dynamics, biogeography, and biogeochemistry 
(Bachelet et al., 2001; Moorcroft et al., 2001; Sitch et al., 2003) at the 
regional to global scale. DGVMs are process-based simulation models 
that represent vegetation dynamics including plant establishment, 
growth, competition, and mortality. The formulations within 
process-based models are often more closely based on principles of 
vegetation dynamics (e.g. canopy scaling based on optimum leaf nitro
gen distribution) than on empirical relationships, and therefore are less 
dependent on statistical extrapolation for novel conditions. They also 
incorporate physical processes (e.g. soil hydrology) and physiological 
processes (e.g. photosynthesis, respiration, and carbon allocation) 
important for representing ecological function. The benefit of adapting a 
DGVM to regional applications is the inclusion of these vegetation dy
namics and ecological processes that interact to determine forest 
resiliency. 

Further development of fire dynamics and forest demography in 
DGVMs is needed to more accurately represent these interactions (Pugh 
et al., 2019a; U.S. DOE, 2018; Zhu et al., 2016). To capture the 
ecosystem responses and interactions between vegetation, climate, and 
disturbance, DGVMs must include comprehensive and realistic fire 
modules (Keane et al., 2015). The necessity of fire module development 
in DGVMs led to the formation of the Fire Modeling Intercomparison 
Project and remains an area of active research (Hantson et al., 2020, 
2016; Li et al., 2019, Rabin et al., 2017). While there have been many 

advances, improvement is needed in the representation of forest fires 
that burn the crowns of trees or shrubs killing most or all of the overstory 
(Pugh et al., 2019a, 2019b), hereafter referred to as stand-replacing 
crown fires (Agee, 1996; Scott and Reinhardt, 2001). Currently, the 
prominent DGVMs rely upon surface fire models and empirical fire 
behavior models which do not include the transition of a surface fire into 
the canopy, limiting their ability to reproduce and predict 
stand-replacing crown fires (Chaste et al., 2018; Gavin et al., 2014; 
Hantson et al., 2016; Lehsten et al., 2016; Li et al., 2012; Rabin et al., 
2017). 

Advances are also needed in the modeling of forest demography 
within dynamic vegetation models. DGVMs typically simulate plant 
functional types (PFTs) representing multiple plant species grouped by 
their physical, phenological, and phylogenetic characteristics. Process- 
based simulation models are often initiated and constrained by field or 
remotely sensed data, prescribing the distribution of PFTs or forest 
productivity. For example, in the Carnegie Ames Stanford Approach 
ecosystem model simulations, land cover type was prescribed from 
satellite imagery, and Moderate Resolution Imaging Spectroradiometer 
(MODIS) Enhanced Vegetation Index and airborne remotely sensed 
coarse woody debris were used as inputs to estimate net primary pro
ductivity (Potter et al., 2011). While initializing and constraining 
process-based models with observational data can lead to more realistic 
simulation results, such approaches fail to demonstrate the emergent 
properties of the model and thereby reduce confidence in prognostic 
simulations. Calibrating model parameters for simulated PFTs and rep
resented processes is a necessary step to improve model performance 
without relying on initialization of plant cover type. For example, 
improving the representation of high-latitude vegetation in another 
DGVM, Organizing Carbon and Hydrology in Dynamic Ecosystems, 
required modification of photosynthesis parameters for each simulated 
PFT, adjustment of temperature limits to tree distributions, and revised 
tree mortality calculations (Zhu et al., 2015). These DGVM de
velopments have not yet included crown fire simulations, nor have they 
been applied to all DGVMs. 

The dynamic vegetation model LPJ-GUESS is well suited for regional 
application because it incorporates the physiological and biophysical 
processes of a DGVM while simulating cohorts of PFTs to represent forest 
demography. LPJ-GUESS was developed from the DGVM LPJ (Lund- 
Potsdam-Jena) (Sitch et al., 2003) which represented PFTs as average 
populations. The General Ecosystem Simulator (GUESS) version repre
sents vegetation as age-based cohorts, allowing the representation of 
stand structure and mixed plant composition. Simulating age-based 
cohorts is an intermediate approach between individual-based and 
population-based models, adding structural complexity while mini
mizing computational costs to enable regional to global scale applica
tions (Fisher et al., 2018). In LPJ-GUESS vegetation is simulated in 
independent patches for each grid cell with plant establishment, growth, 
and competition represented as mechanistic processes based on first 
principles and empirical relationships (for detailed model description 
see [Smith et al., 2001]). Previous regional applications of LPJ-GUESS 
explored vegetation dynamics and plant biogeography in forests of the 
Northeastern U.S. (Hickler et al., 2004; Tang et al., 2012) and subregions 
across Europe (Hickler et al., 2012; Koca et al., 2006; Morales et al., 
2007; Smith et al., 2008, 2001). However, to adapt LPJ-GUESS for 
regional application to western U.S. forest biomes several modifications 
were needed. Minor model modifications included adjustments to 
pedotransfer functions and the inclusion of soil parent material data 
(Section 2.2). Major developments included parameterization of 
regional PFTs to represent the composition of western forests (Section 
2.3). In turn, the carbon allocation scheme was modified to produce 
more realistic tree heights (Section 2.4) and calculations of PFT-specific 
tree crown length were added (Section 2.5). Most importantly, the fire 
module LMfireCF was developed to simulate the stand-replacing crown 
fires characteristic of many western forests (Sections 2.6 and 2.7). The 
development history of the DGVMs and fire modules relevant to this 
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study is shown in Fig. 1. 
GlobFIRM, the original fire module commonly used within LPJ- 

GUESS, represents fire occurrence, size, and effects using semi- 
empirical approaches for non-ignition limited ecosystems (Thonicke 
et al., 2001). Fire occurrence is determined daily by whether air tem
perature, fuel moisture content, and abundance of aboveground litter 
are above minimum thresholds. Fire size is represented as the fraction of 
a grid cell burned as a function of fire season length, based on an 
empirical relationship between length of fire season and area burned. 
While this approach is intuitive, the simplifications overlook potential 
feedbacks that could be represented by a more mechanistic approach. 
For example, fire occurrence does not consider the availability of an 
ignition source or fuel conditions that may be limiting in some ecosys
tems. Fire size does not consider any mechanisms for fire spread, thereby 
all fires for a season will be of the same size regardless of fuel availability 
and fuel moisture. Fire effects are represented as the fraction of biomass 
burnt by fire is based on a PFT-specific fire resistance parameter. All 
burned live and dead biomass is considered entirely combusted and 
added to the annual carbon flux to the atmosphere. This representation 
of fire effects ignores any varying resistance to fire based on age class 
and fails to distinguish partially burned (e.g. standing dead, woody 
debris) and combusted fuels (emitted to the atmosphere). 

To better represent fire occurrence, size, and effects in LPJ-GUESS 
simulations, we integrated LMfire, a mechanistic fire module origi
nally developed for use in LPJ (Pfeiffer et al., 2013). LMfire simulates 
fire occurrence, behavior, and impact from a more mechanistic 
perspective by incorporating fire danger indices with fire spread 
modeling (Pfeiffer et al., 2013; Thonicke et al., 2010). Fire occurrence is 
based on calculated probabilities of natural ignitions and anthropogenic 
burning habits. Instead of having fire size based on an empirical rela
tionship with fire season length as in GlobFIRM, LMfire represents fire 
behavior by calculating fire rate of spread based on weather and 
topography, following Rothermel’s equations (Rothermel, 1972). It also 
allows multi-day burning and coalescence of fires within patches, more 
realistically representing fire behavior. However, it must be noted that 
patches are simulated independently, so fire does not spread between 
patches or grid cells. Tree mortality is a function of crown scorch and 
cambial damage based on the current tree height and bark thickness for 
each PFT. 

Simulating stand-replacing crown fires necessitated new de
velopments to the LMfire module, now termed LMfireCF, to represent 
crown fire (CF), resulting in the ecosystem model variant LPJ-GUESS- 
LMfireCF. LMfireCF assesses if critical conditions are met for crown 
fire initiation and spread. Crown fire initiation is dependent on surface 
fire intensity resulting in a scorch height that reaches the canopy base 
height. Crown fire spread depends on average canopy bulk density and 
canopy foliar moisture content meeting critical thresholds. 

The purpose of this paper is to introduce LPJ-GUESS-LMfireCF 
designed for regional application for western forests of the U.S. and to 
evaluate the model’s performance based on regional PFTs and the new 
fire module. Simulations were run to compare two different fire mod
ules: GlobFIRM and the newly developed LMfireCF. To compare the 
different potential PFTs, simulations were run with the global PFTs and 

the newly parameterized regional PFTs. LPJ-GUESS-LMfireCF perfor
mance was evaluated for simulated 1) landscape biomass distribution, 
2) dominant plant cover distributions, 3) fire activity, and 4) postfire 
forest regeneration by comparing simulated results to field and satellite- 
based metrics. Simulations of Yellowstone National Park (YNP) vege
tation and wildfire dynamics are used here to demonstrate the utility of 
LPJ-GUESS-LMfireCF for regional applications in U.S. western forests. 
YNP serves as a model forested landscape to study the interactions of 
vegetation, climate, and disturbance dynamics because large stand- 
replacing crown fires have played an important role in dictating vege
tation patterns since the Holocene (Whitlock et al., 2003). The 1988 
Yellowstone fires burned about one third of the area of YNP, serving as a 
natural experiment and validation for fire models. 

2. Materials and methods 

2.1. Study area 

Yellowstone National Park is part of the U.S. Rocky Mountains 
(Fig. 2). YNP extends 8983 km2 with a mean elevation of ~2400 m and 
an elevation range from 1610 m to 3462 m. Long, cold winters and cool 
summers characterize the climate of YNP (boreal cool summer under the 
Koppen-Geiger climate classifications, (Kottek et al., 2006)). The 
northern half of the park experiences warmer mean annual temperatures 
and lower annual precipitation relative to the southern half (Fig. 3). 
Vegetation distribution patterns (Fig. 4) correspond to elevation gradi
ents and dominant soil type (Despain, 1990). Volcanic soils are the 
primary soils in YNP, with relatively nutrient-poor rhyolitic and 
andesitic soils (i.e. inceptisols) as the most dominant (47%, (Rodman 
et al., 1996). Mollisols have a higher nutrient and organic matter content 
and cover 22.3% of the park. The remainder of YNP is covered by 
combined inceptisols and mollisols (6.4%), bedrock and some soil 
(8.6%) and thermal soil (2.3%). Areas with inceptisols in the park tend 
to be dominated by lodgepole pine (Pinus contorta) forests while areas 
with mollisols tend to be nonforested. At lower elevations, forests are 
comprised of Douglas-fir (Pseudotsuga menziesii), Rocky Mountain juni
per (Juniperus scopulorum), and quaking aspen (Populus tremuloides), and 
nonforested areas are comprised of grasslands and sagebrush (Artemisia 
spp.) steppe. The subalpine areas are dominated by lodgepole pine, with 
occurrences of subalpine fir (Abies lasiocarpa) and Engelmann spruce 
(Picea engelmannii) in the understory or in the canopy in the absence of 
fire, and limber pine (Pinus flexilis) on calcium-rich soils. Higher eleva
tion forested areas are often dominated by whitebark pine (Pinus albi
caulis). Overall, lodgepole pine dominates more than 80% of the forested 
area within YNP. 

Wildfire often drives vegetation dynamics in YNP, with large high- 
severity fires that kill most of the trees and initiate secondary succes
sion occurring in the subalpine forests every 150–300 years pre- 
European settlement (Higuera et al., 2011; Romme, 1982). Fire 
severity is defined here by the loss of aboveground vegetation and soil 
organic matter (Keeley, 2009; Ryan and Noste, 1985), with a focus on 
tree mortality. Lower elevation Douglas-fir forests had low-severity fires 
with a historical frequency of every 25–60 years (Littell, 2002), with 

Fig. 1. Schematic showing the development 
history of dynamic global vegetation models 
(DGVM) and their fire modules relevant to this 
study, with references in italics. Arrows indi
cate development direction from origin to 
newer derivative. Bold indicates the model and 
fire modules used for simulations and compared 
in this study. This paper presents LMfireCF 
development. (For interpretation of the refer
ences to colour in this figure legend, the reader 
is referred to the web version of this article.)   
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shorter 30 year mean fire frequency in shrub and grasslands (Barrett, 
1994). Higher elevation whitebark pine forests had high to mixed 
severity fires with a mean fire return interval of over 350 years (Barrett, 
1994). 

A policy of complete fire suppression was in effect since the park was 
founded in 1872 up to 1972 (Romme and Despain, 1989). Yet efforts 
were not effective until about 1945 when modern fire-fighting tech
nologies became available. This relatively short period of effective fire 
suppression is unlikely to have greatly influenced fire activity (Romme 
and Despain, 1989). The fires of the late twentieth century are consid
ered comparable to fires in the early 1700s, except that the vast majority 
of the area burned in one year, 1988 (Romme and Despain, 1989). The 
historic fires of 1988 burned about 36% percent of the park and left a 

landscape mosaic of unburned areas and burned areas with varying burn 
severity (Turner et al., 1994). Large fire years, including 1988, were 
associated with extreme weather conditions characterized by hot and 
dry summers and strong winds (Bessie and Johnson, 1995; Renkin and 
Despain, 1992; Westerling et al., 2011). 

2.2. Model and simulation descriptions 

LPJ-GUESS v. 2.0 was used for simulations in this study; the physi
ological and biophysical processes are from LPJ (Sitch et al., 2003) and 
other model details are given by Smith et al. (2001), except for the 
model developments described in this paper. LPJ-GUESS tracks char
acteristics of an average individual for each age-based cohort of tree and 

Fig. 2. Map of Yellowstone National Park (YNP) showing elevation (m) based on the STRM 90 m digital elevation model with rivers and lakes displayed in blue. YNP 
is located in the northwest corner of the state of Wyoming in the U.S. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 

Fig. 3. Climatological mean distributions during the study period 1980–2016 across Yellowstone National Park of a) mean annual temperature (degrees Celsius) 
using TopoWx v1.3.0 (Oyler et al., 2015) and b) mean annual precipitation (mm) using Daymet v 3 (Thornton et al., 2017). 

K.D. Emmett et al.                                                                                                                                                                                                                              



Ecological Modelling 440 (2021) 109417

5

shrub PFTs, making the assumption that individuals of the same age in 
the patch have the same structure. Tree structure is simplified to a crown 
cylinder with assumed uniform distribution of carbon. Each grass PFT is 
represented as a single individual. 

LPJ-GUESS simulates dynamic vegetation in patches for each grid 
cell. Patches share environmental input values of the grid cell, termed 
replicate patches, but run independently to represent the variability of 
stochastic processes: establishment, background mortality, and fire. The 
exception is that patches are assumed to share a common propagule pool 
(i.e. spatial mass effect [Shmida and Ellner, 1984]). Initially, propagules 
are assumed to be available for a PFT if the climatic conditions are met in 
the grid cell. After colonization, establishment of new PFT saplings is 
dependent on the reproductive output of all cohorts of that PFT in the 
previous year. The number of saplings established per unit area per year 
is drawn from a Poisson distribution, limited by the set maximum for 
that PFT (parameter ‘est_max’ (saplings/m2/year)), to represent sto
chastic establishment. Variables are output as averages for the patches 
within a grid cell. 

A coupled photosynthesis and hydrology module calculates plant 
carbon uptake limited by photosynthetically active radiation and sto
matal conductance (Haxeltine and Prentice, 1996; Smith et al., 2001). 
Carbon uptake is also influenced by air temperature relative to tem
perature optimums and atmospheric carbon dioxide concentrations. 
LPJ-GUESS simulates light competition between PFT cohorts based on 
their crown structure and canopy position using the Lambert-Beer law 
for attenuation of light through the canopy (Prentice and Leemans, 
1990). PFTs also compete for soil water, with uptake dependent on root 
distribution in the soil (Smith et al., 2001). 

Soil hydrology is represented as a “bucket model” (Manabe, 1969) 
with a two-layer soil profile (Haxeltine and Prentice, 1996). Water in
filtrates the upper soil layer (0–0.5 m) through precipitation (minus 
interception) or melting snow pack. Soil water content is depleted by 
plant evapotranspiration, percolation below the lower soil layer 
(0.5–1.5 m), surface evaporation, or if the upper soil layer is saturated, 
via surface runoff. The calculation of water holding capacity and other 
soil parameters was modified for this study to allow for the use of 
continuous soil texture data instead of being limited to nine soil texture 
classes. The pedotransfer functions follow Cosby et al. (1984), with 
volumetric water holding capacity equal to the field capacity minus the 
water holding capacity at wilting point (Appendix D, Fig. D2). 

For this study, Yellowstone National Park was simulated as a land
scape of 14,431 1km2 grid cells using LPJ-GUESS (Cartesian area). LPJ- 
GUESS simulations were run by repeatedly selecting a year randomly 
from detrended historical Daymet climate data (1980–2016) and static 

carbon dioxide concentrations (1860 value, 286.4 ppm) for 1000 years 
(called a “spin-up”), which is required for LPJ-GUESS to establish soil 
carbon pools and for simulated vegetation to reach theoretical equilib
rium with average climate. Each grid cell was run with 10 replicate 
patches to represent differences in stand structure and PFT composition 
resulting from stochastic processes. Simulations were then run for 157 
years (1860–2016) with transient atmospheric carbon dioxide data for 
years 1860–2016, detrended climate data for years 1860–1989, and 
historical climate data for years 1980–2016. Simulations were run to 
compare the different fire modules (GlobFIRM and LMfireCF) and 
different PFTs (global PFTs and the new regional PFTs). PFTs are listed 
in Table 2 and described in the following section. While an LPJ-GUESS- 
LMfire (crown fire routine disabled) simulation for the entire YNP was 
not included in this study, diagnostic plots comparing LMfire and 
LMfireCF were included in Appendix F. 

2.3. Regional PFT parameterization 

To better represent forest demography and crown fire dynamics, we 
replaced the more general global tree PFTs that are typically used in LPJ- 
GUESS with species-specific parameterizations for the eight dominant 
tree species in YNP. Four species: lodgepole pine (Pinus contorta), 
Douglas-fir (Pseudotsuga menziesii), quaking aspen (Populus tremuloides), 
and Rocky Mountain juniper (Juniperus scopulorum) were parameterized 
individually. Due to their physical and functional similarities and 
geographic range overlap (McCaughey and Schmidt, 2001, 1990), 
whitebark pine (Pinus albicaulis) and limber pine (Pinus flexilis) were 
represented as a single high-elevation “5-needle pines” species pair, 
while Engelmann spruce (Picea engelmannii) and subalpine fir (Abies 
lasiocarpa) were similarly represented as a single “spruce-fir” species 
pair. In addition to these six species/species pairs (hereafter “PFTs”), a 
sagebrush shrub (Artemisia spp.), and two grass PFTs (“cool grass” with 
C3 photosynthetic pathway and “warm grass” with C4 photosynthetic 
pathway) were parameterized to represent non-forest vegetation 
(Table 1). 

Values, sources, and citations for PFT parameters are included in 
Appendix A, Tables A1-A4. The bioclimatic limits for establishment and 
survival were based on two standard deviations below or above the 
mean values calculated from Daymet climate for the range of a PFT 
based on the USDA Forest Service’s Forest Inventory and Analysis (FIA) 
presence data (Gillespie, 1999). For PFTs that represent two species, the 
more extreme bioclimatic values were used to represent a range inclu
sive to both species, unless otherwise noted in Appendix A, Table A1. 
Thereby, the bioclimatic limits for Engelmann spruce were used for the 

Fig. 4. Map of primary vegetation type using the National Park Service (NPS) Yellowstone 1999 Cover Type dataset, provided by the NPS and based on color aerial 
photography and field surveys (reproduced with permission from Notaro et al., 2019 Remote Sensing). 
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spruce-fir PFT and the limits for whitebark pine were used for the 
high-elevation 5-needle pines PFT. Plant trait, fuel loading, and post-fire 
vegetation data were collected for this study spanning foothill to alpine 
vegetation zones across the Greater Yellowstone Ecosystem (GYE) to 
parameterize the LPJ-GUESS and the LMfire model (Appendix B). Cali
bration of PFT parameter values included conducting a sensitivity 
analysis and comparing adjustments of groups of parameters (e.g. shade 
tolerance parameters) effect on species dominance. In a grid cell with 
inceptisol soils, lodgepole pine background and maximum establish
ment rates were increased. These parameter adjustments served as a 
proxy for lodgepole pine’s improved competition against other tree PFTs 
in nutrient-poor volcanic soils. 

The production of fire-adapted cones that open when exposed to high 
temperatures, known as serotinous cones, varies amongst populations of 
lodgepole pines (Schoennagel et al., 2003). Serotiny was not included in 
LPJ-GUESS-LMfireCF, so all grid cells were assumed to have the same 
availability of propagules independent of their fire history, not including 
a critical restraint on lodgepole pine regeneration. The maximum 
sapling establishment rate (PFT specific parameter ‘est_max’ (sapling
s/m2/year)) for lodgepole pine was set to one tenth the mean stem 
density 24 years after fire (Turner et al., 2004). 

2.4. Carbon allocation modification 

A key model development was required for more accurate repre
sentation of tree heights. Previously in LPJ-GUESS v. 2.0, the ratio of 
tree leaf area to sapwood area was based on a PFT-specific constant, or 
size-independent allocation, retained from LPJ (Sitch et al., 2003, see 
Eq. (1)). For this study, tree heights were constrained by modifying the 
allometric relationship between the ratio of tree leaf area and sapwood 
cross-sectional area to include tree height as a covariate. A 
size-dependent leaf to sapwood area (latosa) ratio was implemented, 
decreasing the latosa parameter value for each PFT cohort (noted by 
subscripts c,PFT) by twenty units per meter increase in tree height (h) 
based on previous relationships used by McDowell and Zaehle (McDo
well et al., 2002; Zaehle et al., 2006): 

latosac,PFT = − 20*hc,PFT + latosaPFT (1)  

where latosaPFT is the maximum parameter value for a PFT. In turn, this 
adjusted latosa value was then used to constrain height ensuring that 
each unit of leaf area is supported by an appropriate amount of transport 
tissue, following the ‘pipe’ model (Shinozaki et al., 1964a, 1964b). 

2.5. PFT crown length 

In LPJ-GUESS v. 2.0, crown lengths (tree height minus crown base 
height) were previously set equal to tree height for all PFTs, and in 
LMfire, crown length was calculated as 33% of the height for all trees, 
neither of which are representative of tree growth in GYE species. 
Instead, in LMfireCF crown length varies with height based on PFT- 
specific parameters. Linear and quadratic regression equations were fit 
to field measurements of height vs. crown length for GYE tree species 
(Appendix B). The linear slope (m) and intercept (b) values were then 
used to calculate variable crown length (cl) based on tree height (h) in 
LPJ-GUESS-LMfireCF for each PFT cohort (c,PFT): 

clc,PFT = mPFT*hc,PFT + bPFT (2) 

Crown base height (cbh), which is used in the LMfireCF module, was 
then calculated by subtracting the crown length from the tree height: 

cbhc,PFT = hc,PFT − clc,PFT (3)  

2.6. LMfire fire module modifications 

Our model improvement included coding the LMfire routines to 
operate on age-based PFT cohorts in LPJ-GUESS, as opposed to uni
formly aged populations (Pfeiffer et al., 2013; Thonicke et al., 2010), 
enabling representation of mixed-aged stand dynamics. Tree height, 
diameter, and bark thickness are distinguished for each age-based PFT 
cohort, so in LPJ-GUESS-LMfireCF fire effects can vary between canopy 
layers. 

Partitioning of carbon pools was based on original LMFire/SPITFIRE 
values (Pfeiffer et al., 2013; Thonicke et al., 2010), except it was 
necessary to increase 1 hour fuels from 4.5% (reducing 1000 hr fuels by 
0.225%) for regional simulations. The standard fuel size classes based on 
the diameter of live or dead woody fuels are <0.6 cm 1-hour timelag, 
0.6–2.5 cm 10-hour timelag, 2.5–8.0 cm 100-hour timelag, and >8 cm 
1000-hour timelag (Baker, 2009). Since simulated vegetation is tracked 
as amorphous carbon pools (e.g. leaf, sapwood, heartwood), the fuel size 
classes are calculated as fractions of total live or dead carbon (4.725%, 
7.5%, 21% and 66.775% for 1, 10, 100, and 1000 hr fuels respectively). 

Combustion of live biomass within a simulated patch is calculated for 
each PFT cohort and is proportional to the fraction of area burned, 
fraction of crown scorch, live carbon, and a combustion fraction con
stant by fuel size class. Combustion fraction constants for live biomass 
killed by fire were adjusted from 100% of 1 hour fuels and 5% of 10 hour 
fuels (Chaste et al., 2018; Pfeiffer et al., 2013) to 90%, 80%, 50%, and 
0% for 1, 10, 100, and 1000 hour fuels respectively (Keane et al., 2011). 
The remaining live vegetation killed by fire is transferred to litter. 

Table 1 
Regional plant functional types (PFTs) used for LPJ-GUESS-LMFireCF simulations with three descriptive model parameters. Dominant vegetation was represented as 
nine PFTs: lodgepole pine (Pinus contorta), a spruce-fir (Picea engelmannii and Abies lasiocarpa), Douglas-fir (Pseudotsuga menziesii), 5-needle pines (Pinus albicaulis and 
Pinus flexilis), aspen (Populus tremuloides), juniper (Juniperus scopulorum), sagebrush (Artemisia tridentata), a multi-species cool grass (C3, for the photosynthetic 
pathway), and a multi-species warm grass (C4). All PFTs use C3 biochemical pathway for photosynthesis, except C4 warm grass. The fraction of annual net primary 
production used for fruits, seed, and flowers (reprfrac) was set to 0.1 for all PFTs, except for sagebrush which was set to 0.01.  

Description & 
Parameters 

PFT  

Lodgepole 
pine 

Spruce-fir Douglas-fir 5-needle pines Aspen Juniper Sagebrush Cool grass Warm grass 

Species 
represented 

Pinus 
contorta 

Picea engelmannii 
Abies lasiocarpa 

Pseudotsuga 
menziesii 

Pinus albicaulis 
Pinus flexilis 

Populus 
tremuloides 

Juniperus 
scopulorum 

Artemisia 
tridentata 

many C3 many C4 

Growth form^ tree tree tree tree tree tree shrub grass grass 
Phenology evergreen evergreen evergreen evergreen summergreen evergreen semi- 

deciduous 
summergreen summergreen 

Shade 
tolerance 
class^^ 

intolerant tolerant intermediate intermediate intolerant intolerant intolerant NA NA  

^ See Appendix A, Table A3. for parameters specific to growth form types. 
^^ See Appendix A, Table A4. for parameters specific to shade tolerance classes. 

K.D. Emmett et al.                                                                                                                                                                                                                              



Ecological Modelling 440 (2021) 109417

7

Fractions of dead biomass combusted depend on fuel moisture content 
relative to its moisture of extinction by fuel size class. The moisture of 
extinction is the fraction of moisture content above which fuel stops 
burning. Moisture of extinction values were adjusted from 0.404, 0.487, 
0.525, 0.5440 for 1, 10, 100, and 1000 hour fuels respectively (Pfeiffer 
et al., 2013) to 0.2 for all fuel size classes based on estimates that the 
moisture of extinction rarely exceeds 15–30% (Scott and Burgan, 2005). 
Other parameter values for the LMfireCF fire module are shown in Ap
pendix C, Table C1. 

2.7. Crown fire dynamics 

A newly developed routine to simulate stand-replacing crown fires 
(CF) was incorporated with LMfire and in addition to the modifications 
described previously, result in the fire module LMfireCF. In LPJ-GUESS- 
LMfireCF, to determine if crown fires (CF) would occur in a patch, sur
face fire and canopy characteristics were calculated to determine if 
critical conditions were met for crown fire initiation (CFI) and crown fire 
spread (CFS): 

CF =

{
1, if CFI = 1 and if CFS = 1
0, otherwise (4) 

Crown fire initiation requires a critical surface fire intensity for the 
start of crowning, such that the scorch height reaches the canopy base 
height (Van Wagner, 1993, 1977). Scorch height (SH) is calculated as, 

SH = 0.148*I2/3 (5)  

where I is surface fire intensity (kW m − 1) (Alexander, 1982; Van 
Wagner, 1973). The constant modifier was set at 0.148 as found by Van 
Wagner (1973) an increase from the 0.094 assigned by Pfeiffer et al. 
(2013). 

Since LPJ-GUESS represents age-based cohorts of PFTs, canopy bulk 
density was calculated for each horizontal canopy layer that was 1 m 
thick (≥0.5 m) to determine canopy base height, canopy height, and 
average canopy bulk density. Canopy bulk density is the sum of leaf and 
1-hour live fuel mass per unit volume of canopy, as this is considered the 
biomass that would burn quickly to sustain crown fire spread (Brown 
et al., 1991; Keane et al., 2005; Reinhardt et al., 1997; Scott and Rein
hardt, 2001). In the following equations, lowercase annotations are used 
for age-cohort crown variables and uppercase annotations are used for 
forest canopy variables. Assuming crown bulk density (cbd) is uniform 
throughout the crown length (cl) for the average individual representing 
each PFT cohort (c,PFT), leaf biomass and 1-hour live fuel biomass (lf 
(class)) were averaged for each crown layer (l) from crown base height 
(cbh) to tree height (h): 

cbdl,c,PFT =
∑h

l=cbh

leafbiomassc,PFT + lf (1)c,PFT

clc,PFT
(6) 

Then crown bulk density was totaled across the number of cohorts 
for each PFT (NcPFT) and summed across tree PFTs to get canopy bulk 
density (CBD) at each layer in the canopy: 

CBDl =
∑6

PFT=1

∑NcPFT

c=1
cbdl,c,PFT (7) 

Canopy base height was determined as the layer height at which the 
summed canopy bulk density for all PFT cohorts was above the mini
mum threshold of 0.012 (kg m − 3) (Reinhardt et al., 2006). Canopy 
height was determined as the height at which the summed canopy bulk 
density for all PFTs dropped below the minimum threshold (Reinhardt 
et al., 2006). The canopy base height was then used as the critical scorch 
height for crown fire initiation. Thereby, in following with Van Wagn
er’s theory (1977), when surface fire intensity reaches the critical value 
for scorch height to exceed canopy base height (CBH), crown fire is 
considered initiated in LMfireCF: 

CFI =
{
1, SH > CBH
0, SH ≤ CBH (8) 

Two criteria defined critical conditions for crown fire spread: 
average canopy bulk density above a minimum threshold (0.10 kg m − 3) 
(Reinhardt et al., 2006) and canopy foliar moisture content equal to or 
below a maximum threshold (80%). These thresholds were calibrated to 
yield active crown fire in LMfireCF while being consistent with values in 
the literature. The average canopy bulk density (CBDavg) was calculated 
by averaging each layer (l) from canopy base height (CBH) to canopy 
height (CH), 

CBDavg =

∑CH
l=CBHCBDl

CH − CBH
(9)  

and the average canopy bulk density is assumed to be uniform 
throughout its depth (Keane et al., 1998). 

Canopy foliar moisture content was assumed to be within the range 
of 50–150% (Scott and Reinhardt, 2001; Van Wagner, 1977). The daily 
water stress (water scalar; ratio of effective water supply to demand) for 
each tree PFT was weighted by its foliar projective cover relative to total 
tree cover to calculate mean daily canopy foliar moisture content in 
LPJ-GUESS-LMfireCF. If both conditions are met; average canopy bulk 
density (CBDavg) and canopy foliar moisture (cfm) are above their 
respective thresholds, then crown fire will spread: 

CFS =

{
1, if CBDavg > 0.10 and cfm ≤ 0.80
0, otherwise (10) 

Eq. (4) can then be written as: 

CF =

{
1, if SH > CBH and if CBDavg > 0.10 and cfm ≤ 0.80
0, otherwise (11) 

In LPJ-GUESS-LMfireCF if the critical conditions were met for both 
crown fire initiation and crown fire spread, then active crown fire is 
assumed to occur, killing 100% of trees in the patch (Scott and Rein
hardt, 2001). If these conditions are not met, mortality can still occur 
due to crown kill for a given PFT cohort, proportional to the ratio of the 
tree height to the scorch height (Pfeiffer et al., 2013), which may be 
considered a representation of passive crown fire. Importantly, mortal
ity due to crown kill operates on individual PFT cohorts in 
LPJ-GUESS-LMfireCF as opposed to the average individual (PFT popu
lation) in a patch in LPJ-LMfire, allowing taller PFT cohorts to survive 
within a patch from passive crown fires. 

2.8. Driver data 

Daymet version 3 and TopoWx version 1.3.0 gridded daily climate 
data from 1980 to 2016 were used as input for LPJ-GUESS-LMfireCF 
(Oyler et al., 2015; Thornton et al., 2017). Mean monthly instanta
neous downward shortwave radiation for 24 h was calculated from 
Daymet daily daylight average incident shortwave radiation. Total 
monthly precipitation was summed from Daymet daily precipitation, 
and the number of days in a month with precipitation summed to create 
monthly wet days. Mean monthly mean, minimum, and maximum air 
temperature was calculated from daily minimum and maximum air 
temperature for TopoWx1.3.0. The Modern-Era Retrospective analysis 
for Research and Applications, Version 2 (MERRA-2, (Gelaro et al., 
2017)) monthly eastward wind speed of lowest model layer and north
ward wind speed of lowest model layer were used to calculate the hor
izontal wind speed vector using the Pythagorean Theorem, then 
resampled using R package ‘raster’ from ~50 km to 1km-resolution 
(Hijmans, 2019). Mean monthly lightning strike values were calcu
lated from World Wide Lightning Location Network data (Lay, 2004). 
Due to the increase in sensors through space and time, the mean monthly 
value across the GYE for 2010–2014 was used for all pixels. Annual 
global atmospheric carbon dioxide concentrations from 1860 to 2016 
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(Le Quéré et al., 2018) were used for all GYE pixels. The multilayer soil 
characteristic gridded data for the conterminous United States (CON
US-Soil) based on the USDA State Soil Geographic Database (Miller and 
White, 1998) was infilled with Harmonized World Soil Database v. 1.2 
for areas with missing data (Fischer et al., 2008) to provide continuous 
soil data for the region. Since LPJ-GUESS version 2.0 used in this study 
does not include soil nutrient limitations, a binary soil layer (Appendix 
D, Figure D1) indicating whether a grid cell had inceptisol soils or not 
was created from YNP soil type data (Rodman et al., 1996). Processing of 
model driver data was completed using Climate Data Operators 
(Schulzweida, 2019), NCO netCDF Operators (Zender, 2014), and R 
packages: raster (Hijmans, 2019), rgdal (Bivand et al., 2018), and ncdf4 
(Pierce, 2017). 

2.9. Model evaluation datasets 

The performance of LPJ-GUESS-LMfireCF was evaluated in four 
areas: biomass, dominant plant cover, fire activity, and forest regener
ation. Estimates of carbon in aboveground live vegetation from the 
USDA Forest Service’s FIA field measurements (Gillespie, 1999) of 312 
plots in YNP measured between 1999 and 2009, were used to bench
mark simulated live aboveground carbon in vegetation. Estimates of 
aboveground live biomass for the year 2010 from the European Space 
Agency’s satellite-based GlobBiomass project (Santoro, 2018) were used 
to benchmark simulated live carbon in vegetation for all of YNP. Glob
Biomass live aboveground biomass estimates were multiplied by 0.5 to 
approximate carbon in live vegetation, assuming carbon content of 
biomass is about 50% (Penman et al., 2003). It is important to note that 
GlobBiomass estimations of carbon in vegetation are only aboveground, 
while values simulated in LPJ-GUESS include belowground carbon in 
the roots, which could account for about 20–30% (Cairns et al., 1997; 
Litton et al., 2003; Santantonio et al., 1977). To account for this dif
ference, simulated carbon in vegetation was multiplied by 0.8 to 
approximate carbon in aboveground live vegetation to compare to 
GlobBiomass and FIA data. Simulated PFT distributions and cover were 
compared to the National Park Service’s Yellowstone 1999 Cover Type 
data, a geodatabase of habitat type and land cover layers created from 
aerial photography and field surveys (Despain, 1990). Simulated fire 
area burned, fire severity, and fire frequency were compared to Moni
toring Trends in Burned Severity (MTBS) data from 1984 to 2016 
(“MTBS Data Access: Fire Level Geospatial Data,” 2017) and fire 
perimeter data acquired from the Yellowstone National Park Spatial 
Analysis Center (provided by Alex Zaideman). Field data of forest carbon 
storage and leaf area index in lodgepole pine dominated sites in YNP 
were used to evaluate simulated postfire recovery with sites that burned 
in the 1988 Yellowstone fires sampled 11 and 24 years postfire to 
measure forest recovery (Turner et al., 2017, 2016, 2004) and for 
mature lodgepole pine forests (>100 years old) from a 300 year chro
nosequence (Kashian et al., 2013, 2012). 

2.10. Statistical analysis 

Normalized mean square error (NMSE) was used to quantify the 
range of spatial correlation between simulated total live aboveground 
carbon and GlobBiomass estimates, because it is less sensitive to extreme 
values than using the standard deviation and it does not require un
certainty estimates which are unavailable for simulation results (Kelley 
et al., 2013). NMSE was calculated as: 

NMSE =
∑

i
(yi − xi)

2

/
∑

i

(

yi − xi

)2

(12)  

where, yi is the modeled value in grid cell i, xi is the corresponding value 
in the benchmarking dataset, and xi is the mean value across all grid 
cells in the benchmarking dataset (Kelley et al., 2013). A NMSE value of 
zero indicates perfect agreement, values >1 suggest the model’s 

performance is worse than the null model, and more generally smaller 
values denote better model performance. Welch two sample t-tests were 
used to compare biomass and LAI for regenerating and mature lodgepole 
pine forests between simulation results and field estimates (RStudio 
Team, 2016). The Welch’s test was used because it does not assume 
equal variance. To lessen the spatial autocorrelation in the simulated 
data, 300 points were randomly selected from the 14,000+ grid cells 
simulated and statistical tests were performed on this smaller sample 
(Dale and Fortin, 2002). 

3. Results 

3.1. Landscape biomass 

Fire model development in combination with the newly parameter
ized regional PFTs greatly improved modeled live carbon in vegetation 
relative to LPJ-GUESS-GlobFIRM (Fig. 5). Field data from FIA plots 
estimated mean total live aboveground carbon to be 50.8 ± 2.04 Mg C 
ha− 1 (range 0–201 Mg C ha− 1), with measurements limited to forested 
areas. Estimates from field data were higher than the satellite-based 
GlobBiomass estimates and LPJ-GUESS-LMfireCF simulation results, 
which included non-forested grid cells. GlobBiomass, a spatially 
continuous dataset was our best reference for total YNP biomass esti
mates, with estimated mean live aboveground carbon in vegetation at 
27.7 Mg C ha− 1 with a total of 39.9 Tg C for the entire YNP for the year 
2010 (Table 3). Simulated carbon in vegetation using LPJ-GUESS- 
LMfireCF with regional PFTs for 2010 resulted in a mean live above
ground carbon in vegetation of 31 Mg C ha− 1 with a total of 44.8 Tg C for 
YNP, a 12% overestimation compared to GlobBiomass benchmark data. 
In comparison, simulated carbon in vegetation using LPJ-GUESS with 
the GlobFIRM fire module and global PFTs resulted in mean carbon in 
vegetation of 156 Mg C ha− 1 with a total of 225 Tg C for YNP, five times 
the GlobBiomass estimated carbon in vegetation for YNP. The simula
tion using GlobFIRM with the regional PFTs resulted in mean carbon in 

Fig. 5. Density curves for carbon in aboveground live vegetation (Mg C ha− 1) 
within Yellowstone National Park for year 2010 from the European Space 
Agency’s satellite-based GlobBiomass estimates (solid line) and simulated by 
LPJ-GUESS (dashed lines) with either the LMfireCF fire module with regional 
plant functional types (PFTs, green dashed line), the GlobFIRM fire model with 
regional PFTs (blue dot-dashed line), or the GlobFIRM fire model with Global 
PFTs (purple dotted line). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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vegetation of 61.7 Mg C ha− 1 with a total of 89 Tg C for YNP, double the 
GlobBiomass estimates. In summary, the newly developed LPJ-GUESS- 
LMfireCF with regional PFTs showed a 97% reduction in simulated 
biomass estimate error compared to LPJ-GUESS-GlobFIRM with global 
PFTs. 

Mapped distributions of LPJ-GUESS-LMfireCF simulated and Glob
Biomass estimated carbon in vegetation are shown in Fig. 6a-b. Esti
mates of carbon in vegetation in the areas dominated by lodgepole pine 
are comparable between simulated and GlobBiomass estimates. How
ever, carbon in vegetation at higher elevation areas in YNP, simulated as 
dominated by spruce-fir (Fig. 7), are overestimated compared to Glob
Biomass (Fig. 6c). The areas of underestimated biomass in the western 
and southern edges of YNP (Fig. 6c) correspond with areas that were 

simulated as grass dominated that are actually forested (Fig. 7), but 
where uncertainty (reported as standard error) was higher for Glob
Biomass (Fig. 6d). Normalized mean square error (NMSE) values indi
cate that model performance was greatly improved by using the 
LMfireCF fire module and regional PFTs, but all simulation results per
formed worse than the null model in estimating aboveground carbon 
(Table 3). 

3.2. Dominant plant cover 

For the new carbon allocation scheme, the size-dependent leaf area 
to sapwood area ratio resulted in more reasonable tree heights. Linear 
relationships between tree height and crown length showed a strong 

Fig. 6. Carbon in aboveground live vegetation (Mg C ha− 1) within Yellowstone National Park for 2010 a) simulated by LPJ-GUESS-LMfireCF b) European Space 
Agency’s satellite-based GlobBiomass estimates, and c) difference between simulated, GlobBiomass estimates, and d) GlobBiomass uncertainty as standard error. 
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correlation for all conifers (R2 ranged from 0.51 to 0.97) and a moderate 
correlation for the deciduous PFT (R2 = 0.34) (Appendix B). The linear 
regression equations better fit the data than the quadratic regression 
equations, so the linear slope and intercept values were used to calculate 
variable crown length based on height in LPJ-GUESS-LMfireCF by PFT. 

To evaluate the ability of LPJ-GUESS-LMfireCF to simulate dominant 
plant foliar projective cover, the fraction of modeled area covered when 
under full leaf cover was mapped for each PFT across YNP. Simulated 
PFT foliar projective cover (Fig. 7) corresponded well with mapped 
National Park Service’s (NPS) Yellowstone primary cover types from 
1999 (Fig. 4). The simulated distribution of lodgepole pine matched well 
with the NPS distribution, with lodgepole pine dominating the largest 
area of Yellowstone. Simulated spruce-fir (Engelmann spruce and sub
alpine fir) occurrence in higher elevation regions of the park is accurate, 
but extensive areas are actually dominated by whitebark pine in the 
observational data. Douglas-fir, quaking aspen, and sagebrush cover was 
highest at lower elevations. The nonforested areas in the northern region 

of the park (Lamar Valley, Fig. 4) were simulated as grass dominated. 
LPJ-GUESS-GlobFIRM simulated PFT foliar projective cover (Ap

pendix E, Figure E1) resulted in spruce-fir dominating the largest area of 
Yellowstone. In comparison to LPJ-GUESS-LMfireCF results, the range of 
area dominated by other PFTs were contracted in the LPJ-GUESS- 
GlobFIRM simulation. Lodgepole pine, Douglas-fir, and cool grasses 
had greatly reduced cover using the GlobFIRM fire module. In the 
GlobFIRM simulation, spruce-fir dominated areas that LMfireCF simu
lated as lodgepole pine or Douglas-fir dominant. GlobFIRM simulated 
lodgepole pine dominated areas that LMfireCF simulated as cool 
grasslands. 

3.3. Fire activity 

LPJ-GUESS-LMfireCF fire activity, evaluated on total area burned 
and burn severity, was greatly improved with our modifications. Total 
area burned from 1984 to 2016 from MTBS data shows that 1988 and 

Fig. 7. LPJ-GUESS-LMfireCF simulated foliar 
projective cover under full leaf cover as fraction 
of modeled area averaged from 1997 to 2016 
for regional plant functional types: lodgepole 
pine (Pinus contorta), a spruce-fir (Picea engel
mannii and Abies lasiocarpa), Douglas-fir (Pseu
dotsuga menziesii), 5-needle pines (Pinus 
albicaulis and Pinus flexilis), aspen (Populus 
tremuloides), juniper (Juniperus scopulorum), 
sagebrush (Artemisia tridentata), a multi-species 
cool grass (C3, for the photosynthetic pathway), 
and a multi-species warm grass (C4).   
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2016 were the largest fire years in the record (Fig. 8). LPJ-GUESS- 
LMfireCF simulated 1988 as the largest fire year and 2016 as a large 
fire year, but also simulated notable area burned in 1994, 2000, 2003, 
2008, and 2012. LPJ-GUESS-LMfireCF simulated that 25% of the area of 
YNP burned in 1988. MTBS and Yellowstone National Park Spatial 
Analysis Center fire mapping show that about 36% of the area of YNP 
burned in the1988 Yellowstone Fires. 

In terms of fire severity, the predominant fire regime in YNP is 
characterized by stand-replacing crown fires. To compare the fire 
modules, a time series of live and dead combusted carbon and uncon
sumed carbon of fire-killed trees was plotted from 1984 to 2016 (Fig. 9). 
While GlobFIRM simulated 1988 as a fire year, fire severity was low 
throughout the simulation period. In contrast, LMfireCF simulated 1988 
more accurately as a high severity fire year, with affected carbon in 
vegetation proportional to area burned. Although LMFireCF showed a 
large spike in affected carbon in vegetation in 1988, ~70% of the carbon 
remained in the system as litter. The discrepancy in fire severity between 
LMfireCF and GlobFIRM is shown in Fig. 10, with LMfireCF causing a 
~28% reduction in aboveground carbon in live vegetation across YNP 
from the 1988 fires, compared to insignificant perturbations in carbon 
due to fire for GlobFIRM throughout the simulation period (Fig. 10). 

3.4. Forest regeneration 

Lodgepole pine stands regenerated quickly after the 1988 fires in 
YNP, both in field measurements and LPJ-GUESS-LMfireCF simulations 
(Table 4). From the simulated burned area in 1988, grid cells were 
subset that were previously dominated by lodgepole pine (>50% foliar 
projective cover), extensively burned (>80% fraction burned), and did 
not burn again on or before 24 years postfire. For these subset grid cells, 
LPJ-GUESS-LMfireCF (n = 240) simulated mean live aboveground 
biomass (25.7±1.16 Mg ha− 1) was seven times greater than field esti
mations 11 years postfire (3.38±0.65 Mg ha− 1) and the range was twice 
the field estimate (Table 4). In postfire year 24, simulated mean live 
biomass (40.1±1.65 Mg ha− 1) was 58% greater than field estimations 
(25.4±2.5 Mg ha− 1), but with a similar range. Simulated leaf area index 
(LAI) was more than two times greater than field estimations, 11 and 24 
years postfire (Table 4). The time series of aboveground carbon in live 
vegetation LPJ-GUESS-LMfireCF simulated across YNP (Fig. 10) shows a 
gradual recovery, with declines corresponding with fire activity. 
Comparing biomass for mature lodgepole pine forests, field-based esti
mates (76.6±3.5 Mg ha− 1) were greater than simulation results for both 
model configurations (Table 4). Interestingly, the Welch two sample t- 
test indicated no evidence of a true difference in mean between simu
lated results and field estimates for LAI in mature forests (p>0.01), 
indicating potential model bias in carbon allocation to sapwood carbon 
pools over leaf carbon pools. 

For a subset of grid cells, LPJ-GUESS-GlobFIRM (n = 152) was a 
much poorer predictor, with simulated mean live biomass (54.3±1.8 Mg 

ha− 1) sixteen times greater than field estimations 11 years postfire, with 
almost four times the range (Table 4). In postfire year 24, LPJ-GUESS- 
GlobFIRM simulated biomass had declined, but the mean remained 
94% greater than the field estimated. Based on observations biomass 
should continue to increase for about 90–100 years post fire (Kashian 
et al., 2013). LPJ-GUESS-GlobFIRM simulated mean LAI was more than 
three times greater than field estimated 11 years postfire and because 
simulated LAI declined, was closer to field estimated 24 years postfire, 
but still overestimated. These subset grid cells burned in 1988 and did 
not reburn, so declines in biomass and LAI were due to other forms of 
mortality represented in the model (e.g. longevity, carbon limitation). 
The low severity fires simulated by LPJ-GUESS-GlobFIRM resulted in 
carbon in vegetation fluctuations due to fire being minor perturbations 
(Fig. 10). 

4. Discussion 

4.1. Landscape biomass 

Developments included in LPJ-GUESS-LMfireCF improved model 
performance in simulating carbon in vegetation in YNP compared to 
LPJ-GUESS with the GlobFIRM fire module (Fig. 5). The parameteriza
tion of regional PFTs (blue dash-dot line) compared to global PFTs 
(purple dotted line) also improved model performance in simulating 
carbon. Total carbon in vegetation in YNP was overestimated by 12% by 
LPJ-GUESS-LMfireCF with regional PFTs (green dashed line) compared 
to GlobBiomass estimations (solid black line), a 97% reduction in 
simulated biomass estimate error compared to LPJ-GUESS-GlobFIRM 
with global PFTs. This demonstrates that both the newly parameter
ized regional PFTs and the process-based model developments individ
ually and combined resulted in more accurate representation of reality. 
Individual grid cell diagnostic plots (Appendix F: Figure F1 and F2) 
suggest the newly developed crown fire dynamics routine specifically 
was a critical process-based model development. When the crown fire 
module was disabled (LMfire), fires occurred at lower severity and more 
frequently from 1980 to 2016 than when using LMfireCF (Figure F1). 
Using LMfire aboveground carbon in live vegetation continued to 
accumulate until the late 1990′s when it gradually declined (Figure F2), 
indicative of PFT longevity-based mortality in LPJ-GUESS for an indi
vidual grid cell. In contrast, using LMfireCF maximum aboveground 
carbon in live vegetation is about half of the maximum using LMfire 
during the timeseries (Fig. F2). 

The remaining discrepancy in simulated carbon in vegetation 
compared to satellite-based estimates is the long-tailed distribution 
simulated by LPJ-GUESS-LMfireCF (Fig. 5), which is due to the over
estimation of carbon in vegetation at higher elevation areas in YNP 
(Fig. 6c). In our simulations, these areas with over-estimated biomass 
corresponded with areas dominated by the spruce-fir PFT (Engelmann 
spruce and subalpine fir, Fig. 7). Adjusting parameters for the spruce-fir 

Fig. 8. Time series of total area burned in square kilometers from 1984 to 2016 within Yellowstone National Park showing Monitoring Trends in Burned Severity 
(MTBS) observations (solid line) and simulated by LPJ-GUESS-LMfireCF (dashed line). 
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PFT could reduce its dominance and carbon accumulation, improving 
modeled estimates of carbon in YNP. Yet, much of this area extent in 
YNP is occupied by whitebark pine in the NPS’s cover type data (Fig. 4). 
However, whitebark pine communities have suffered extensive mortal
ity in the Yellowstone region due to mountain pine beetle (Dendroctonus 
ponderosae) outbreaks and white pine blister rust (Cronartium ribicola) 
infections (Shanahan et al., 2016). Much of the higher elevation areas 
labeled as “non-vegetated” in the satellite-based GlobBiomass dataset 
could be areas of whitebark pine die-off. Even if the high elevation pines 
PFT were simulated to occupy these areas, mortality due to bark beetle 
outbreaks and white pine blister rust would not be captured. Distur
bance agents other than fire are not explicitly modeled in LPJ-GUESS v. 
2.0, instead a generic patch disturbance can be enabled that randomly 
kills patches at a user defined time interval (e.g. 100 years). Further 
model development is needed for these pest and pathogen disturbance 
dynamics to be represented for the GYE, although there were efforts to 
simulate impacts of European spruce bark beetle (Ips typographus) out
breaks in Sweden (Jönsson et al., 2012). 

Underestimated biomass in the western side and southwest corner of 
YNP correspond with areas simulated as dominated by the C3, cool grass 
PFT. The distribution of the cool grass PFT strongly matches climato
logical mean distributions of mean temperature and annual precipita
tion. These areas are lodgepole pine dominated in the NPS’s Yellowstone 
cover type data, implying that the bioclimatic limits of the lodgepole 
pine PFT may need to be adjusted to allow more growth in these areas. 

4.2. Dominant plant cover 

Simulating regional PFTs was critical to approaching satellite-based 
estimates of distribution of biomass in the landscape. Global PFTs were 
so generalized that one PFT type (boreal needleleaved evergreen, see 
Table 2) dominated the landscape. This implies that for regional scale 
resolution, DGVM simulations must include more PFTs to be represen
tative of the vegetation dynamics. While lodgepole pine dominates YNP, 
there still remain important vegetation patterns with elevation that are 
not captured with only one productive PFT. The newly parameterized 
PFTs recreated distinct vegetation types with elevation. Lower- 
elevations were dominated by grass, sagebrush, and Douglas-fir, 
typical of the region. The subalpine was dominated predominately by 
lodgepole pine with some co-occurrence of Douglas-fir at lower eleva
tions and Engelmann spruce and subalpine fir (CW con) at higher 
elevations. 

The simulated dominance of lodgepole pine in YNP on non-rhyolitic 
soils was dependent on the fire module simulating high severity crown 
fires. Lodgepole pine is a relatively fast growing species and in the 
absence of fire, more shade tolerant and slower growing species will 
grow in the understory and then dominate the subalpine overstory 
(Romme, 1982). However, on rhyolitic soils this transition of dominant 
species does not occur and lodgepole continues to dominate (Despain, 
1983). In the case of YNP on non-rhyolitic soils, these more shade 
tolerant species or climax species are Engelmann spruce, subalpine fir, 

Fig. 9. Carbon (Tg C) from combustion of live 
and dead vegetation (red lines) and uncon
sumed carbon (Tg C) of trees killed by fire and 
transferred to litter (black line) from 1984 to 
2016 within Yellowstone National Park simu
lated by LPJ-GUESS using GlobFIRM (dotted 
line) and LMfireCF (dashed line) fire modules, 
both using regional plant functional types. In 
LMfireCF combusted carbon that is emitted to 
the atmosphere, is distinguished from carbon in 
killed live vegetation that is transferred to litter. 
In GlobFIRM live vegetation killed by fire is 
emitted to the atmosphere. (For interpretation 
of the references to colour in this figure legend, 
the reader is referred to the web version of this 
article.)   

Fig. 10. Time series of aboveground carbon in 
live vegetation (green lines), combusted 
aboveground carbon (red lines), and above
ground carbon in killed live vegetation (black 
line) in metric tons of carbon (Tg C) from 1984 
to 2016 within Yellowstone National Park 
simulated by LPJ-GUESS using GlobFIRM 
(dotted lines) and LMfireCF (dashed lines) fire 
modules, both using regional plant functional 
types. In LMfireCF combusted carbon that is 
emitted to the atmosphere, is distinguished 
from carbon in killed live vegetation that is 
transferred to litter. In GlobFIRM live vegeta
tion killed by fire is emitted to the atmosphere. 
European Space Agency’s satellite-based Glob
Biomass 2010 estimate (point) of carbon in 
aboveground live vegetation. (For interpreta
tion of the references to colour in this figure 
legend, the reader is referred to the web version 
of this article.)   
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and, at the higher elevations, whitebark pine (Romme, 1982) simulated 
as two PFTs: spruce-fir and 5-needle pines. The co-occurrence and 
dominance of the spruce-fir PFT in higher elevations is due to lower 
simulated fire activity and the absence of inceptisol soils, allowing them 
to outcompete lodgepole pine PFT. The fire module GlobFIRM failed to 
capture high-severity fires, so the spruce-fir PFT dominated a larger 
portion of YNP compared to the LMfireCF module. 

However, the dominance of whitebark pine in the highest regions of 
the park was missing in the distribution of the high-elevation 5-needle 
pines PFT (whitebark and limber pine), regardless of the fire module 
applied. These two distinct pine species were combined into one PFT due 

to the lack of complete knowledge of their unique bioclimatic limits and 
other physiological characteristics (Weaver, 2001) needed for parame
terization. The actual distributions of whitebark and limber pines 
sometimes overlap (Arno and Hoff, 1989; McCaughey and Schmidt, 
1990), and in the field the species can only be distinguished by their 
female cones, and less reliably by their male cones (Weaver, 2001). The 
tendency of whitebark pine to grow at higher elevations than limber 
pine led to the adoption of an elevation threshold “rule of thumb” used 
for vegetation simulations (Clark et al., 2017). Even in paleoecological 
reconstructions of regional vegetation, whitebark and limber pine dis
tributions are indistinguishable because their pollen cannot be 
discriminated (Iglesias et al., 2015). Current research into distinguishing 
bioclimatic limits between whitebark and limber pine are underway 
(Hansen et al., 2016) and could lead to separate parameterization in 
LPJ-GUESS-LMfireCF simulations. 

The importance of representing different vegetation zones became 
more apparent when we consider applying LPJ-GUESS-LMfireCF to 
simulate potential changes under projected future climate scenarios. In 
YNP there is concern over the potential contraction of forested vegeta
tion types and expansion of sagebrush steppe/grassland vegetation 
types, as climate becomes more or less favorable to different vegetation 
types (Hansen and Phillips, 2015; Piekielek et al., 2016; Westerling 
et al., 2011). Such a vegetation type conversion would drastically reduce 
the amount of terrestrial stored carbon in YNP (Kashian et al., 2006). 
The ability of LPJ-GUESS to simulate multiple PFTs with different 
age-based cohorts within each grid cell allows it to simulate successional 
dynamics and vegetation zones (Hickler et al., 2012, 2004). Further
more, since vegetation zones were emergent, not prescribed through 
initialization, they demonstrate prognostic capabilities of 
LPJ-GUESS-LMfireCF. 

Table 2 
Global plant functional types (PFTs) used for LPJ-GUESS simulations with three descriptive model parameters (Smith et al., 2001). BNE = boreal needleleaved 
evergreen, BINE = boreal shade-intolerant needleaved evergreen, BNS = boreal needleleaved summergreen, TeBS = temperate broadleaved summergreen, IBS =
shade-intolerant broadleaved summergreen, TeBE = temperate broadleaved evergreen, TrBE = tropical broadleaved evergreen, TrIBE = tropical shade-intolerant 
broadleaved evergreen, TrBR = tropical broadleaved raingreen, and C3 = cool grass (C3 photosynthetic pathway), and C4 = warm grass (C4 photosynthetic 
pathway). Geographic ranges correspond with different optimum temperatures for photosynthesis.  

Description & Parameters PFT  
BNE BINE BNS TeBS IBS TeBE TrBE TrIBE TrBR C3 C4 

Geographic range boreal boreal boreal temperate boreal temperate tropical tropical tropical NA NA 
Growth form tree tree tree tree tree tree tree tree shrub grass grass 
Phenology evergreen evergreen summergreen (SG) SG SG evergreen evergreen evergreen raingreen SG SG 
Shade tolerance class tolerant intolerant intolerant tolerant intolerant tolerant tolerant intolerant intolerant NA NA  

Table 3 
Total live aboveground carbon estimates from satellite-based GlobBiomass and 
simulated by LPJ-GUESS with regional plant functional types using either 
LMfireCF or GlobFIRM fire module for all elevation zones in Yellowstone Na
tional Park. The normalized mean square error was calculated to quantify the 
range of spatial correlation between simulated total live aboveground carbon 
and GlobBiomass estimates.  

Total live aboveground 
carbon 

All Elevation Zones (MgC ha− 1) Total YNP (TgC) 
Mean Min- 

Max 
NMSE  % 

Difference 

GlobBiomass^ 27.7±0.19  0–109 1 39.9  
LPJ-GUESS-LMfireCF+

(regional PFTs) 31.0±0.18  0–120 1.95 44.8 12 
LPJ-GUESS-GlobFIRM+

(regional PFTs) 
61.7±0.2  0–145 4.14 89 223 

LPJ-GUESS-GlobFIRM+

(global PFTs) 
156±0.2  0–240 31.7 225 563 

Notes: Error measurement is standard error. 
^ GlobBiomass estimates are from 2010. NMSE is reported for comparison with 

the mean model. 
+ LPJ-GUESS YNP estimates are from simulated year 2010. 

Table 4 
Lodgepole pine leaf area index (LAI) and biomass: estimations from field data (Kashian et al., 2013; Turner et al., 2016) and simulated by LPJ-GUESS with regional 
plant functional types using either the LMfireCF or GlobFIRM fire module for postfire lodgepole pine stands regenerating 11 and 24 years after 1988 fires and for 
unburned mature forests (>100 years old) in Yellowstone National Park.  

Lodgepole pine Postfire year 11 Postfire year 24 Mature Forests 
LAI and biomass Mean Median Min-Max Mean Median Min-Max Mean Median Min-Max 

Total live aboveground biomass (Mg ha− 1) 
field estimations^ 3.38±0.65  1.07 0–31.4 25.4±2.5  22.4 0–85.9 76.6±3.5  73.5 13.2–124.7 
LPJ-GUESS-LMfireCF 25.7±1.16  26.9 0–62.9 40.1±1.65  44.0 0–81.4 58.4±0.8  56.8 33.9–115 
LPJ-GUESS-GlobFIRM 54.3 ± 1.8  53.2 6.0–130 49.2 ± 1.89  47.1 3.32–148 66.6±1.3  62.9 30.4–239 
Leaf area index (LAI) (m2/m2) 
field estimations^ 0.74±0.14  0.21 0–6.7 1.16±0.11  1.03 0–4.0 2.84±0.12  2.8 1.16–5.39 
LPJ-GUESS-LMfireCF+ 2.03±0.07  2.13 0–4.42 2.65±0.86  2.97 0–4.74 3.13±0.03*  3.07 2.34–4.66 
LPJ-GUESS-GlobFIRM+ 2.31±0.06  2.31 0.19–4.06 2.05±0.06  2.08 0.04–4.05 3.1±0.03*  3.01 2.2–4.47 

Notes: Error measurement is standard error. 
^ Postfire estimates are from Turner et al. 2016 for 71 plots measured in 1999 and 2012. Mature forest estimates are from Kashian et. al. 2013 for 48 plots measured 

between 2004 and 2007. 
+ Mature forest estimates are from simulation year 2016, randomly subset to N = 300. 
* Welch two sample t-test p > 0.01, indicating no evidence of true difference in mean between simulated results and field estimates. 
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4.3. Fire activity 

The model development represented here focused on capturing two 
key aspects of fire activity that are relevant to regional and global-scale 
fire modeling: burned area and fire severity. LPJ-GUESS-LMfireCF 
simulated large areas burned in 1988, 1994, 2000, 2003, 2008, 2012 
and 2016. These were all years of notable fire activity in the larger GYE 
(Appendix F, Figure F1). These years correspond to years with low 
precipitation, indicating the sensitivity of the LMfireCF fire module to 
precipitation. Also, since LMfireCF does not simulate fire suppression, 
we expected to overestimate area burned. It may be that these simulated 
fire years could have become larger fire years in YNP in the absence of 
any fire suppression efforts or with increased lightning strikes. 

The simulated area burned is the sum of area burned within each grid 
cell. In LMfireCF, the fraction burned of a grid cell is a function of fire 
rate of spread, slope, and wind speed (Pfeiffer et al., 2013). Fire rate of 
spread is dependent on the amount, density, and moisture of fuels, and 
wind speed. The representation of area burned as determined by 
modeled processes allows LMfireCF simulations to be responsive to 
changing conditions. In comparison, in GlobFIRM the fraction burned of 
a grid cell is based on an empirical relationship with fire season length 
(Thonicke et al., 2001, see Fig. 2). Utilizing fixed empirical relationships 
does not allow for the model to predict fire behavior under novel con
ditions. A more mechanistic fire module, like LMfireCF, can be more 
flexible to novel conditions. 

However, LMfireCF has one important limitation; it does not model 
fire spread between grid cells and thereby cannot predict fire patterns or 
fire size. Since fire occurrence is emergent in LPJ-GUESS-LMfireCF as 
opposed to prescribed, there is no expectation that spatial patterns of fire 
would strongly correlate with observed fire patterns on the landscape. 
Moreover, it would be difficult to simulate the influence of past burned 
areas on restricting future fire spread. Under extreme weather condi
tions conducive to large fires, fire paths are most dictated by the current 
wind conditions (Bessie and Johnson, 1995). LMfireCF runs at a daily 
timestep so it does not capture the hourly fluctuations in weather con
ditions that drive the spread of large fires. Furthermore, as simulations 
in LPJ-GUESS are run as one grid cell at a time in sequence, as opposed 
to all grid cells at the same timestep in parallel, the model framework 
inhibits simulating the spread of fire between grid cells. Without 
cell-to-cell fire spread it is not possible to realistically simulate observed 
fire scars or fire extents, and to include the spatial interactions of fire 
pattern on future fire activity. 

The greatest improvement to modeling fire behavior in YNP pre
sented here was the simulation of high severity, stand-replacing crown 
fires from the development of crown fire dynamics in the LMfireCF fire 
module. In prior versions of LMfire, fire dynamics were based on the 
surface fire equations (Chaste et al., 2018; Pfeiffer et al., 2013). LMfire is 
most often used within LPJ which does not represent forest stand 
structure because it simulates average individuals of a PFT population. 
LPJ-GUESS simulates age-based PFT cohorts, simulating forest stand 
structure, enabling the distinction between surface and crown fires 
when coupled with a fire module that simulates both. The original fire 
module in LPJ-GUESS v. 2.0, GlobFIRM greatly underestimated fire 
severity in YNP simulations. Similarly, with the newly developed crown 
fire routine disabled, LPJ-GUESS-LMfire simulated low severity fires 
(Appendix F: Figures F1 and F2) unable to represent the high severity, 
stand-replacing crown fires characteristic of the region. 

While in theory it would be possible to calibrate the parameters in 
these fire modules to simulate high severity fires in a given region, it 
diminishes the ability to also simulate mixed and low severity fires. 
Effectively, optimizing parameters in a surface fire module could 
compensate for the lack of crown fire dynamics, mimicking observa
tions, i.e. equifinality (Tang and Zhuang, 2008), but would not be able to 
provide emergent results (Keane, 2019; Wilson and Botkin, 1990). By 
developing crown fire dynamics in LMfireCF, high severity fires were 
emergent based on complex interactions between vegetation, climate, 

and fire dynamics. LMfireCF is a fire module that is applicable to various 
fire regimes; surface or crown-fire dominated, as opposed to being 
over-calibrated to fit one fire regime. 

Another important component of simulating fire severity is esti
mating carbon fluxes to the atmosphere due to fire. In GlobFIRM live 
aboveground biomass that is killed by fire and dead vegetation that is 
burned, is considered entirely combusted and added to the flux to the 
atmosphere that year (Smith et al., 2001; Thonicke et al., 2001). Both of 
these assumptions are incorrect. Even in stand replacing crown-fires the 
fine live and dead fuels may be combusted (1 and 10 hour fuels), but 
only a portion of larger live and dead fuels (100 and 1000 hour fuels) are 
combusted and instead remain in the ecosystem as deadwood. In LMfire 
and LMfireCF a fraction of live biomass killed is assumed to combust and 
the rest is transferred to litter (Chaste et al., 2018; Pfeiffer et al., 2013). It 
follows that if GlobFIRM is calibrated to simulate high-severity fires it 
would overestimate carbon fluxes to the atmosphere unless the module 
is altered. By LMfireCF partitioning live biomass killed by fire into 
combusted or added to litter it can estimate immediate (combustion) 
and delayed (decomposition or combustion in future fires) carbon fluxes 
to the atmosphere. Therefore, the distinction in LMfire of carbon that is 
combusted and carbon that is transferred to litter ensures that carbon 
fluxes and pools are more accurately simulated in LPJ-GUESS. 

4.4. Forest regeneration 

LPJ-GUESS-LMfireCF simulated more rapid lodgepole pine forest 
regeneration in YNP than estimated from field measurements. Further 
model developments could be implemented to improve results and these 
are described below. Post-fire lodgepole pine forest regeneration as 
measured by stem density varied with pre-fire serotiny levels, fire 
severity, and fire patch size (Turner et al., 1997). Serotiny was missing in 
LPJ-GUESS-LMfireCF, so all grid cells were assumed to have the same 
availability of propagules independent of their fire history, not including 
a critical restraint on lodgepole pine regeneration. More generally, PFT 
establishment was simulated as stochastic, with the number of saplings 
randomly drawn from a Poisson distribution constrained by a maximum 
sapling establishment rate (PFT specific parameter ‘est_max’ (sapling
s/m2/year)). Thereby variation in stem density between grid cells is 
based on bioclimatic limits to establishment and survival, and random 
probability. Yet, the est_max parameter value for lodgepole pine was set 
to one tenth the mean stem density 24 years after fire. Also, biomass was 
simulated as lower than field estimates for mature forests, implying 
growth curves need to be adjusted so growth rates are reduced for young 
cohorts. Growth rates are controlled by carbon assimilation, allocation, 
and allometry equations and associated parameters so these are the 
areas to focus further model development and calibration. 

4.5. Future implications 

Climate change is expected to alter the fire and vegetation dynamics 
in the YNP. Annual air temperature is expected to increase 1 to 5 ◦C in 
the GYE by 2099 (Chang and Hansen, 2015) . The climate conditions 
associated with large, high-severity fires are predicted to become com
mon by mid to late century (Westerling et al., 2011). Warming and 
drying conditions that threaten seedling survival (Harvey et al., 2016) in 
conjunction with short-interval severe fires are projected to affect 
postfire subalpine forest regeneration (Hansen et al., 2018; Hansen and 
Turner, 2019; Turner et al., 2019). Suitable climate space for the 
dominant alpine and subalpine tree species is projected to decline, with 
expansion of suitable climate space for arid shrub and grasslands 
(Hansen and Phillips, 2015). All of these conditions combine to threaten 
the resiliency of subalpine forests in YNP and weaken carbon sinks 
(Turner et al., 2019). 

Process-based models can help us address pressing questions about 
the impact of disturbance and climate interactions on forest regenera
tion and carbon storage in the future. Process-based forest simulation 
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models FireBGCv2 (Clark et al., 2017; Keane et al., 2011) and iLand 
(Hansen and Turner, 2019; Turner et al., 2019) have been applied to the 
YNP to make inferences about future dynamics. While both models 
predict decline of lodgepole pine dominated forest on the landscape, 
FireBGC predicts that forest cover will persist as Douglas-fir increases on 
the landscape (Clark et al., 2017) and iLand shows that Douglas-fir could 
also fail to regenerate under future climate scenarios (Hansen et al., 
2018). The complexity and high-resolution of iLand and FireBGC limit 
the scale of simulations to individual stands up to watersheds. The 
advantage of LPJ-GUESS-LMfireCF is that by simulating age-based co
horts, instead of individual trees, the computational efficiency makes it 
possible to run simulations at regional up to global scales. The higher 
resolution forest simulation models appear to be better suited to address 
stand-level questions around mechanisms of regeneration failure. The 
strength of LPJ-GUESS-LMfireCF is that it can be applied to project 
regional level forest cover and carbon storage, while capturing land
scape heterogeneity. 

At the global scale, projections of the terrestrial carbon sink rely on 
predictions of forest biogeography, disturbance turnover, and forest 
regrowth. First, predictions of future vegetation cover rely on pro
jections of human land use and land cover change (Arneth et al., 2017; 
Friedlingstein et al., 2019; Poulter et al., 2011), but also projections of 
future forest resiliency and species distributions (Walker et al., 2019; 
White et al., 2000). The use of regional PFTs in DGVMs as presented here 
can enhance the ability to model forest biogeography, simulating cur
rent vegetation zones along elevation and climate gradients. Using 
regional PFTs also improved simulated productivity, with biomass es
timates drastically closer to benchmarking data than by using global 
PFTs. Secondly, even small changes in fire regimes could have a strong 
influence on the forest carbon sink (Pugh et al., 2019a). The influence of 
disturbance turnover on long-term carbon fluxes necessitates modeling 
of stand-replacing crown fire regimes (Pugh et al., 2019a). 
LPJ-GUESS-LMfireCF demonstrates the potential for modeling crown 
fire dynamics in DGVMs and the fire module described here may serve as 
precedent for developments in other DGVMs. Finally, forest regrowth 
may be responsible for more than half of the terrestrial carbon sink 
(Pugh et al., 2019a). DGVMs need to represent forest structure and 
successional dynamics to best estimate forest regrowth. LPJ-GUESS has 
been demonstrated to simulate forest structure and successional dy
namics in several regional studies (Hickler et al., 2012, 2004; Smith 
et al., 2001), but further development of LPJ-GUESS-LMfireCF is needed 
to approximate estimates of biomass regrowth rates in regions with 
stand-replacing crown fire regimes. 
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