
ECOHYDROLOGY
Ecohydrol. 4, 277–287 (2011)
Published online in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/eco.215

Annual runoff and evapotranspiration of forestlands
and non-forestlands in selected basins of the Loess Plateau

of China

Yanhui Wang,1* Pengtao Yu,1 Karl-Heinz Feger,2 Xiaohua Wei,3 Ge Sun,4 Mike Bonell,5,6

Wei Xiong,1 Shulan Zhang1 and Lihong Xu1

1 The Research Institute of Forest Ecology, Environment and Protection, The Chinese Academy of Forestry, Beijing 100091, China
2 Department of Soil Science and Site Ecology, Faculty of Forest, Geo- and Hydrosciences, Dresden Water Center, Dresden University of

Technology, Tharandt 01735, Germany
3 Department of Earth and Environmental Science, University of British Columbia, 3333 University Way, Kelowna, British Columbia V1V 1V7,

Canada
4 Southern Global Change Program, USDA Forest Service, 920 Main Campus Dr., Venture II, Suite 300, Raleigh, NC 27606, USA

5 The UNESCO IHP-HELP Centre, University of Dundee, Dundee DD1 4HN, UK
6 Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK

ABSTRACT

Large-scale forestation has been undertaken over decades principally to control the serious soil erosion in the Loess Plateau
of China. A quantitative assessment of the hydrological effects of forestation, especially on basin water yield, is critical for
the sustainable forestry development within this dry region. In this study, we constructed the multi-annual water balances to
estimate the respective grand average of annual evapotranspiration (ET) and runoff for forestlands and non-forestlands of 57
basins. The overall annual runoff and corresponding runoff/precipitation ratio were low, with a mean of 33 mm (7%) ranging
from 10 (2%) to 56 mm (15%). Taking the grand average of annual precipitation of 463 mm for all basins, the corresponding
grand averages of annual ET and runoff were 447 and 16 mm for forestlands, 424 and 39 mm for non-forestlands, respectively.
Thus, the corresponding ratios of annual ET and runoff to precipitation were 91Ð7 and 8Ð3% for non-forestlands, 96Ð6 and
3Ð4% for forestlands, respectively. Although the absolute difference in grand average of annual runoff was only 23 mm, it
represents a large difference in relative terms, as it equates up to 58% of annual runoff from non-forestlands. We argue that the
large-scale forestation may have serious consequences for water management and sustainable development in the dry region
of NW China because of a runoff reduction. This study highlights the importance of quantifying the ET of forests and other
land uses and to examine how land cover change may affect the water balances in an arid environment. Copyright  2011
John Wiley & Sons, Ltd.
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INTRODUCTION

The Loess Plateau of China suffers from severe water
shortages and soil erosion as a result of several nat-
ural and anthropogenic causal factors (Shi and Shao,
2000). Besides the loose soil properties and erosive rain-
storms, extensive disturbance and conversion of grass-
lands and natural forests have been identified as the key
causes (Fu, 1989). Therefore, over the past five decades,
vegetation restoration, especially forestation, has been
encouraged as an effective measure for controlling soil
erosion (Li, 2004). Such ecological restoration was also
designed to alleviate flash floods, increase forest prod-
ucts and diversify rural incomes. Furthermore, forestation
is increasingly viewed as an effective measure of car-
bon sequestration to partially offset the CO2 emissions.
This policy has brought about an extensive conversion
from grass- and shrub-land as well as slope farmland to
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forest plantation. Taking the example of Shaanxi Province
located in the central Loess Plateau, the forest cover-
age has increased from 30Ð9% in 1999 to 37Ð3% in 2009
(http://news.xinmin.cn/rollnews/2009/12/29/3 188 581.
html). The forest coverage in the Loess Plateau over-
all has increased from 11Ð0% in 1977 to 19Ð6% in 2008
(http://news.hexun.com/2008-07-01/107 104 628.html).

Indeed, the large-scale forestation over the Loess
Plateau has brought major benefits to erosion control
(Wang, 1992), but it has also caused serious concerns
in soil desiccation (Li et al., 2008) and water yield
reduction (Huang et al., 2003a,b; Zhang et al., 2007a,b;
Wang et al., 2008; Yu et al., 2009). Elsewhere, there has
been growing number of studies focused on this issue
worldwide in the last few decades (Farley et al., 2005;
Jackson et al., 2005; Sun et al., 2006; Wei et al., 2008;
Vanclay, 2009). Quantifying the impacts of forestation
on water yield and minimizing its adverse effects to
water resources has now become an important part of
sustainable forestry strategies in China, particularly with
regard to the drier regions such as the Loess Plateau.

Copyright  2011 John Wiley & Sons, Ltd.
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The complex interaction of various environmental
factors, such as climate, topography, soil and vegeta-
tion, controls the water yield of drainage basins and its
spatio-temporal variability. The classic paired catchments
approach has been widely used for determining changes
in water yield caused by forest change and forest man-
agement through excluding the effects of other environ-
mental variables (Brown et al., 2005). Farley et al. (2005)
produced a global synthesis of average water yield reduc-
tion after forestation based on published data of paired
catchment studies. But their work was mostly limited to
small basins in tropical or humid temperate regions with
annual precipitation >1000 mm. Consequently, the con-
clusions of Farley et al. (2005) may not be applicable to
areas with lower precipitation, such as the Loess Plateau.

Conversely, there has been only a limited number
of paired catchment studies undertaken in China (Wei
et al., 2008). Consequently, an alternative approach has
to be introduced to evaluate the hydrological impacts of
forestation. For example, Zhang et al. (2007a,b, 2009)
used the water balance model associated with existing
data sets of mean annual runoff (MAR) and forest
coverage to evaluate the MAR reduction caused by
forests in the coarse–sandy hilly area of the Loess
Plateau. Their results showed a decrease of MAR by
5Ð5% if forested on suitable sites (5Ð8% in area ratio) and
by 9Ð2% if forested on both suitable and less suitable sites
(10Ð1% in area ratio), respectively. They also showed
that the rate of MAR reduction decreased with decreasing
precipitation.

However, a key issue is that current knowledge about
the forestation impacts on annual runoff at large scale
within the Loess Plateau remains too limited to sup-
port the regional forestry development and other land
management. Therefore, we constructed a database of
57 basins in the Loess Plateau for comparing the mean
water balances of forestlands and non-forestlands. The
main purpose is to quantitatively detect the change in the
grand average of annual runoff and evapotranspiration
(ET) over the 57 basins with increasing forest coverage.
A further objective is to provide a sound ecohydrological
basis for improving future forestry development strategies
in the Loess Plateau.

STUDY AREA AND METHODS

Geographic characteristics

The study area is the Loess Plateau (34–41 °N, 100–
115 °E) which is located in NW China The total area of
this feature is 632 520 km2 and accounts for 6Ð3% of the
entire land area of China.

There are several reasons for selecting the Loess
Plateau for this study. The first one is that there are
the serious ongoing forest–water conflicts in this region.
Second, there are sufficient published hydrological data
of the Loess Plateau so that a statistical analysis can be
undertaken. Third, the environmental condition (i.e. soil,
topography and climate) are comparatively ‘uniform’.

Figure 1. Location of study basins and distribution of MAP (mm) in the
Loess Plateau.

These circumstances minimize the confounding effects
from other variables and so facilitate a better understand-
ing of the hydrological impacts of forestation.

The Loess Plateau lies mostly on the transitional
border between the monsoon climatic zone and the
continental arid climate zone. Details of environmental
factors, especially climatic and soil texture features,
were described by Wang and Takahashi (1999). The
mean annual precipitation (MAP) ranges from 110 to
800 mm (Figure 1) and the mean annual temperature
ranges from 5 to 12Ð5 °C from NW to SE. There are
four climatic sub-zones over the plateau, viz : (i) arid
temperate, (ii) semiarid temperate, (iii) semiarid warm
temperate and (iv) sub-humid warm temperate. From
northwest to southeast, the net solar radiation receipt at
the surface progressively decreases with increasing cloud
cover, whereas in contract the temperature, precipitation
and humidity increase. There are no apparent differences
in mean wind speed over the region.

The Loess Plateau is specially characterized by the
huge thickness of loess, generally 100–200 m in depth.
The soils vary across a range of textural types which
are associated with the climatic gradient. Thus, sand,
sandy loam, light loam, medium loam to heavy loam
occur which are associated with the shift from the arid
to sub-humid zones along this climatic gradient. The
corresponding vegetation change along the same gradient
is an increase in the area ratio of crops, shrubs and
forests from NW to SE. Conversely, there is a decrease
in grassland.

Within and around the Loess Plateau, there are several
stony mountains, such as the Liupan Mountains and
Wutai Mountains. The forest coverage in the stony
mountainous basins is generally higher in response to the
improved wetness resulted from increasing precipitation
and decreasing temperature with rising elevation. The
soil type, soil thickness and soil physical parameters are
obviously different from those in the typical loess area.
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However, the basins we selected for this study are not
mountainous basins, but more uniform, loess-dominated
basins.

The locations of the basins selected for this study
are shown in Figure 1. All of them possess a semiarid
climate, with an MAP from 317 to 639 mm (Table I).
Except for two river basins located outside, but near
the Loess Plateau, all the others which were selected
are located within the Loess Plateau. The soil texture
for most basins is dominated by light loam, with sand
loam or medium loam also occurring within a few basins.
The average elevation of these basins lies within a range
from 756 to 2148 m asl. By plotting the forest coverage
and mean elevation of all basins (not shown here), there
is no significant relation between the forest coverage
and elevation. This indicates that the forest coverage
in the Loess Plateau is less controlled by temperature.
Instead, such forest coverage of basins seems to be mostly
controlled by the annual precipitation (Figure 2). When
the MAP is <450 mm, the forest coverage is generally
within 0–10% and increases slowly with MAP, probably
because the forests can only grow on limited wet sites
such as riparian zones and the adjoining lowest segment
of slopes associated with valley bottoms. On the other
hand, when the MAP is above a threshold of 450 mm,
the forest coverage is higher and increases quickly up
to 100% if the MAP reaches 540 mm. Thus, there is
an increasing area covered by forests on slopes. Such
findings are very similar to the relationship between
vegetation and MAP in Loess Plateau, as determined
elsewhere by Xu (2005). This implies that the MAP
of 450 mm can be used as the threshold for dividing
the Loess Plateau or specific basins into two separate
groups associated with the climatic precipitation gradient
in following analysis.

Data synthesis

From peer-reviewed Chinese and international journals
we selected the basin data sets within the Loess Plateau
(Table I). We extracted the data of MAP, MAR and for-
est coverage from the basins with a drainage basin area
>10 km2. The latter area threshold was selected to min-
imize the possible underestimation of runoff because of
potential inter-basin leakage arising from small varia-
tions in topography. The mean annual ET (MAET) of
each basin equals the difference between MAP and MAR.
The length of runoff records, however, remains compa-
rable and ranges from 3 to 21 years, although most of
them exceed 10 years. No duplicate data from any basin
were used in the analysis. The forests in selected basins
are secondary forests with the main tree species being
Quercus liaotungensis, Pinus tabulaeformis and Betula
platyphylla, or tree plantations consisting of Platycladus
orientalis, P. tabulaeformis and Robinia pseudoacacia.
The MAR changes in both depth (mm) and ratio (%) to
MAP were used to assess the forest impacts on water
yield.

The method for estimating the aerial average of MAP
of 42 basins cited from Zhang et al. (2007b) and Liu and

Chung (1978) was based on the area-weighted average
of the weather station records within and surrounding the
basins, but no details were available on how the MAP
was calculated for the other 15 basins. Most important,
there was no information available from the literature
to obtain the errors in estimating the aerial average of
MAP for each basin. Furthermore, the data obtained from
the literature were not available for estimating this error.
These circumstances will introduce an uncertainty into
the quantification of the change of annual runoff and ET
because of a corresponding change in forest coverage
within individual basins, especially the larger basins.
To partly offset such concerns, we deliberately selected
records of longer duration in an attempt to minimize the
inherent errors in precipitation which likely will be larger
for shorter term records, but smaller for longer term
records. We simply cited the MAP provided from the
literature. We believe this is the best one can do within the
current constraints of existing published information. On
the other hand, this study is the first attempt at trying to
condense the state-of-knowledge from existing data sets
available in the Chinese scientific literature. The impact
of possible errors linked with MAP on the results will be
further discussed later.

Estimating ET for forestlands and non-forestlands

Owing to the limited precipitation and soil water in the
Loess Plateau, forests have a low area ratio and are
mostly scattered within a basin. A direct measurement of
the ET over such forests using for example micrometeo-
rological and sap flow methods (Gash and Shuttleworth,
2007) in a river basin scale is very limited or non-existent.
Thus, the separate estimation of annual ET of forest-
lands and non-forestlands from hydrological records is a
step towards a more process-based interpretation of forest
impacts on water yield.

We assumed that the MAP is used as forestland ET,
non-forestland ET and runoff within a basin. The change
in soil water and groundwater storage is assumed to be
negligible over a long period of many years. The Water
Balance Equation (1) below can be used for calculating
the regional average of annual ET from forestlands and
non-forestlands, as follows:

ET D P � R D ETf Ð f C ETnf Ð �1 � f� �1�

where ET is the mean annual ET of a basin (mm), P
(mm) is MAP, R (mm) is MAR, ETf (mm) and ETnf (mm)
are the regional average of annual ET in forestlands and
non-forestlands, f is the forest coverage (decimal) and
(1 � f) is the area ratio of non-forestlands in a basin.
The difference between ETf and ETnf (ETf � ETnf) is
viewed as the regional average of water yield change
caused by forests. The regional averages of annual runoff
from forestlands and non-forestlands are P � ETf and
P � ETnf, respectively.
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Figure 2. Relation between the potential forest coverage and MAP of
basins in the Loess Plateau.

Figure 3. Linear relationship between the MAET and MAP from basins
with forest coverage <10% or >60% in the Loess Plateau.

In dry regions like the Loess Plateau where water
is the limiting factor for ET, the annual ET of both
forestlands and non-forestlands is mainly determined by
the amount of annual precipitation. As shown in Figure 3,
the MAET and MAP of the loess basins appeared a linear
relationship. Therefore, Equation (1) can be expanded
into the following Equation (2) in order to consider the
linear MAET–MAP relationship:

ET D P � R D P Ð af Ð f C P Ð anf Ð �1 � f�

or
ET

P
D aff C anf�1 � f� �2�

where:

ž af and anf are the ratios of annual ET to precipitation
in forestlands and non-forestlands, respectively. These

ratios can be used to calculate the annual ET with
changing annual precipitation.

ž The difference between P Ð af and P Ð anf �P Ð af � P Ð
anf� is the annual runoff (i.e. water yield) change caused
by forests.

ž The annual runoff from forestlands and non-forestlands
is P�1 � af� and P�1 � anf�, respectively.

The coefficients in Equation (2) (as shown in Table II)
were determined by the linear regression analysis using
SPSS 12Ð0 by keeping the constant as zero. This equation
can be used for assessing the change of MAR from basins
with changing forest coverage and also for determining
the maximum forest coverage to maintain certain levels
of water yield under a given annual precipitation. The
latter is critical to determining the most optimal practice
of integrated forest–water management.

In the following analysis, the regional characteristics
of MAP and MAR of the basins in the Loess Plateau
were first evaluated. Thereafter, Equation (2) was fitted
by using the collected data sets of all basins and then
by stratifying the two basin groups with MAP below
or above 450 mm. Subsequently, the respective grand
averages of annual ET and runoff from forestlands
and non-forestlands were estimated. The difference of
the annual ET or runoff between forestlands and non-
forestlands was used to assess the forestation impact on
water yield from loess basins.

RESULTS

The regional characteristics of MAP and MAR

The collected data are presented in Table I. The MAP
showed a large variation among basins, with a grand
average of 463 (š78) mm, ranging from 317 to 639 mm.
The MAR in the basins is very low, ranging from 10 to
56 mm. The grand average of MAR of all studied basins
is only 33 (š11) mm. This figure is very close to the
average of 36Ð7 mm for the entire Yellow River basin
reported by Chang and Wang (2005).

Besides precipitation, many other environmental fac-
tors affect the MAR and MAR ratio (MAR/MAP) of
basins in the Loess Plateau. Thus, there is a very weak
dependency of MAR on MAP, as shown in Figure 4.
Even more surprising is the negative relation as pre-
sented by the regression equation (R D 47Ð66 � 0Ð0311P,
R2 D 0Ð0466, P < 0Ð1), suggesting a decrease in MAR
with increasing MAP. The MAR ratio (Rr, %) is very
low and varies in the range of 1Ð6–15Ð5%, with a mean

Table II. Regression coefficients in Equation (2) showing the regional average of annual ET ratio and runoff from forestlands and
non-forestlands for all study basins in the Loess Plateau and for two basin groups with MAP below or above 450 mm.

P (mm) af anf P ð af

(mm)
P ð anf

(mm)
R2 P ð �af � anf�

(mm)
P ð �1 � af�

(mm)
P ð �1 � anf�

(mm)
af � anf

463 (317–639) 0Ð966 0Ð917 447 (306–617) 424 (291–586) 0Ð9804 23 (16–31) 16 (11–22) 39 (26–53) 0Ð049
394 (317–448) 1Ð064 0Ð903 419 (337–477) 356 (286–405) 0Ð9098 63 (51–72) �25–(20–29) 38 (31–44) 0Ð161
522 (455–639) 0Ð962 0Ð925 502 (438–618) 483 (421–591) 0Ð9647 19 (17–24) 20 (17–24) 39 (34–48) 0Ð037
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Figure 4. Decreasing trends in MAR (left) and MAR ration (right) with MAP for the studied basins in the Loess Plateau.

Figure 5. Decreasing trends in MAR (left) and MAR ration (right) with forest coverage for the studied basins in the Loess Plateau.

of 7Ð5%. It also decreases with increasing MAP (Rr D
18Ð195 � 0Ð0231P, R2 D 0Ð3514, P < 0Ð01).

There is a wide scattering of data points when com-
paring the MAR with the forest coverage of basins
(Figure 5). However, the relation between the MAR ratio
and forest coverage is somewhat better. The MAR ratio
decreased at a rate of merely 0Ð55% per 10% forest
coverage increase, ranging from around 8Ð7% for basins
without any forests to 3Ð2% with full forestation.

The regional average of annual ET and runoff from
forestlands and non-forestlands

Two basin groups were selected from the data sets to
show the variation of annual ET with MAP from the
basins of different forest coverage (Figure 3); the first
group is composed of 34 basins with forest coverage
<10% to represent poorly forested basins, while the other
group is composed of eight basins with forest coverage
>60% to represent highly forested basins. The ratios of
MAET to MAP were 91Ð6 and 96Ð2% for the poorly and
highly forested basins, respectively. This clearly shows
the increase of water consumption by forests.

To secure a more accurate estimation of the ratio of
annual ET to MAP from forestlands and non-forestlands,
all the data were fitted into Equation (2). This is nec-
essary to understand and interpret the forest impacts on
basin runoff where the effects of varying MAP and for-
est coverage are minimized. The regression results are
presented in Table II. The coefficient of determination

between measured and calculated MAET is very high
(R2 D 0Ð9804, P < 0Ð01).

The regression results of all the basins in Table II
suggest that the regional average of annual ET/MAP
ratio for forestlands (af) was 96Ð6%, while it was 91Ð7%
for non-forestlands (anf). These estimations were very
close to the regression coefficients in Figure 3. Under the
regional average of MAP of 463 mm, the corresponding
annual ET was 447 mm for forestlands and 424 mm for
non-forestlands, respectively. The implication of these
results is that the regional average of MAR ratio was
decreased from 8Ð3% in non-forestlands (1 � anf) to 3Ð4%
in fully forested lands (1 � af) This is a reduction of
4Ð9% which is very close to that estimated from the
regression analysis shown in Figure 3. The corresponding
MAR decreased from 39 mm in non-forestlands (P ð
�1 � anf�) to 16 mm in forestlands (P ð �1 � af�). The
MAR reduction of 23 mm may not seem to be significant
in absolute terms, but its proportion to MAR from non-
forestlands amounted to 58%. Moreover, such an MAR
reduction is also much higher than the standard deviation
of MAR (11 mm, see Table I) between individual basins.

A comparison of the forest effect on annual ET
and runoff between dry and wet basin groups

Generally, more forests grow in basins with higher annual
precipitation. An analysis in sub-regions or basin groups
with different MAP may be helpful in further improving
our understanding as to how forestation may affect annual
ET and runoff within the Loess Plateau. Therefore, in
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line with the previous mention, the study basins were
stratified into two groups using the 450 mm threshold
of MAP, as presented by Figure 2 showing the relation
between forest coverage and MAP.

The statistical results in Table II indicate that the
annual ET ratio of forestlands (af) for the less-precipita-
tion basin group (i.e. MAP <450 mm) is higher than
that for the more-precipitation basin group (i.e. MAP
>450 mm), whereas the contrary applies to the annual
ET ratio of non-forestlands (anf). When the averaged
MAP increases from 394 mm in the less-precipitation
basin group to 522 mm in the more-precipitation basin
group, the annual ET from both forestlands (P ð af) and
non-forestlands (P ð anf) increases. On the other hand,
the non-forestland ET increases faster than the forestland
ET. Consequently, the annual ET difference between
forestlands and non-forestlands decreases from 63 mm in
the less-precipitation basin group to 19 mm in the more-
precipitation basin group.

DISCUSSION

The water yield change caused by forestation is usually
assessed by the paired catchment approach (Brown et al.,
2005). Because of the limited number of paired catchment
studies in the Loess Plateau and facing the fact that most
basins were only partly forested (Table I), we had to
adopt an alternative strategy by using a regional water
balance approach to assess the impacts of forestation on
water yield. This was achieved by the estimation and
comparison of the averages of annual ET and runoff from
forestlands and non-forestlands

The above approach has already been shown to be
a simple and effective one which requires minimum
inputs (Zhang et al., 2001, 2007a,b, 2009). By using this
methodology, the actual ET is expressed as an empirical
and non-linear function of the annual precipitation and
potential evaporation. However, in the dry Loess Plateau
with low annual precipitation and very high annual
potential ET, the annual actual ET of both forestlands
and non-forestlands is mainly controlled by the amount
of annual precipitation. Thus, the MAET of basins
increases nearly linearly with MAP, as shown in Figure 3.
Therefore, we simplified this non-linear ET model into
a linear one with annual precipitation as the only one
input parameter. Nonetheless, this simple model will be
less applicable to more humid regions with higher annual
precipitation.

In our study, the regional average of annual runoff
was 16 mm in forestlands and 39 mm in non-forestlands
in the Loess Plateau basins and thus suggests a grand
average of annual runoff reduction of 23 mm after
forestation. However, the forestation impact on water
yield varies with the MAP of basins. This was shown
by the annual ET difference between forestlands and
non-forestlands of 63 mm in the less-precipitation basin
group and 19 mm in the more-precipitation basin group
(Table II).

The forestation impact on runoff is also influenced by
the study scale. In the study by Huang et al. (2003b) with
small paired catchments in the Loess Plateau, the treated
catchment with an area of 0Ð87 km2 was afforested up
to 80% with deciduous species, while the controlled
catchment with an area of 1Ð15 km2 was maintained
as natural grassland. The MAR reduction was 4Ð6 mm
(1960–1980). Elsewhere, Chang and Wang (2005) sum-
marized the findings from plot-scale studies on hillslopes
in the Loess Plateau, all of which have been undertaken
since the 1950s. Such work has mostly monitored the
occurrence of infiltration-excess overland flow generated
during high intensity rainstorms (Bruijnzeel, 2004) and is
the dominant storm flow pathway over the Loess Plateau
landscape (Chang and Wang, 2005). From that synthe-
sis, the average of annual overland flow reduction after
forestation was 7Ð7 mm at the plot scale for the entire
loess region, and more specifically 9Ð4 mm for the hilly
area, and 5Ð9 mm for the hilly-gully area of the Loess
Plateau. Both the above respective estimates of MAR
and overland flow reduction (i.e. of Huang et al., 2003b;
Chang and Wang, 2005) are lower than that in our study.
There could be two possible reasons for this. At the
plot scale, first is not all water flows leaving the plots
could be captured and the second may be because of
the young age of forests (i.e. average age of 9 years,
ranging from 2 to 25 years) in these plot-scale studies.
Certainly in the paired catchment study (Huang et al.,
2003b), these writers did note a progressive reduction in
annual runoff with tree age. The maximum reduction of
about 50% of annual runoff, when compared with con-
trolled catchment, occurred about 15 years after planting.
Furthermore, there are obvious differences between the
respective study scales, i.e. the paired catchments and
runoff plots on the one hand as against on the other,
the much larger river basins in our study. However, the
potential water yield reduction calculated mainly based
on climatic conditions by Sun et al. (2006) was about
50 mm (50%), more than double our result. This means
that the characteristics of forest ecosystems such as the
leaf area index (LAI), root depth and soil properties can
also play an important role in the water yield reduction.
Young or poorly growing forests with low LAI, shallow
root system and less permeable soil may result in more
drainage basin runoff and less ET, while more mature
and fast growing forests with high LAI, deeper root sys-
tems and more permeable soil may lead to less runoff
and more ET. In support, Zhang et al. (2008) reported an
increasing annual ET of plantations in the Loess Plateau
with increasing tree age. So far, it seems that the forests
in Loess Plateau have not yet attained their climatic opti-
mum rates of ET.

The regional average of annual ET from forestlands is
lower than annual precipitation based on the data of all
basins. However, for specific basins with low precipita-
tion and low forest coverage (e.g. the less-precipitation
basin group with MAP <450 mm, see Table II), it is
possible that the annual ET from forestlands can exceed
the annual precipitation. Such a possibility could happen
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especially at smaller scales with annual precipitation at
the lowest end of the spectrum. This phenomenon was
observed in many plot-scale studies in the Loess Plateau
(Yu and Chen, 1996; Wang et al., 2008; Zhang et al.,
2008), suggesting that there may be several kinds of
extra water sources besides precipitation to be consumed
by trees. The first extra water source is the capture of
‘runon’ (i.e. infiltration-excess overland flow) which has
been generated from upslope over more sparsely vege-
tated areas of comparatively low infiltration. Such flow
then penetrates into the floor of scattered forests which,
in return, subsequently infiltrates into the soil (Bonell and
Williams, 1986). The infiltration-excess overland flow
generated during high intensity rainstorms (Bruijnzeel,
2004) is the dominant mechanism of runoff formation
in the loess areas. Forests with improved soil infiltration
ability (as discussed by Yang et al., 2006) can intercept
and then use the overland flow. The second extra water
source is the water stored in the thick loess, which can
be taken up by deep-rooting trees. The latter is evident
by the widely existing phenomenon of soil desiccation in
the Loess Plateau (Li et al., 2008). The third extra water
source may be groundwater or stream water from the
upper reaches of basins (Domingo et al., 2001), which
can be subsequently used by forests growing in valleys.

The key to predict and understand the forest impact is
to know which water balance component is ‘the winner’
in affecting runoff. For example, forests can enhance the
ET and then lead to less runoff. Paradoxically, forests can
also enhance the soil infiltration which leads to greater
percolation to groundwater and thus later could contribute
towards low flow discharges (Bruijnzeel, 2004). The final
impact of forestation on MAR depends on the synthetic
effect of these positively or negatively influencing pro-
cesses. Based on our study and others in the loess region
(Zhang et al., 2007a,b), it is not surprising that ET is
‘the winner’ as the absolute dominant component of the
water balance of the drainage basins after forestation in
the dry Loess Plateau. With the existence of very thick
soils, trees are allowed to develop deep rooting networks
and so tap deeper sources of soil water. This leads to a
runoff reduction after forestation within the whole Loess
Plateau.

Controlling soil erosion is the highest environmental
policy for the ecological restoration of the Loess Plateau
(Fu, 1989) and this can be effectively attained by foresta-
tion (Wang, 1992). Thus, a large-scale forestation pro-
gramme is currently being implemented (Li, 2004) as one
of the most effective measures to control soil erosion and
to improve the environment. However, a small absolute
reduction of water yield after forestation may cause its
high relative decrease in view of the water scarcity in this
dry region. Major socio-economic consequences are then
the result. Therefore, the maintenance of acceptable basin
water yields for community needs is as equally important
as soil erosion control. Consequently, the noted reduction
in water yield is now an emerging critical issue, which
also needs to be seriously incorporated into the design of
future forestry development. Forest ecohydrology studies

should try to contribute towards this forestland manage-
ment dilemma by attempting to balance the ‘green water’
used by forests and ‘blue water’ for mankind (Falkenmark
and Rockstrom, 2006).

According to the results of this study (Table II), we
can roughly estimate the grand average of annual runoff
and its change under certain MAP as well as forest
coverage based on the fitted equation (R D P�1 � aff �
anf�1 � f��. For example, the annual runoff under a MAP
of 500 mm is 41Ð7, 34Ð3, 24Ð4, 17Ð1 mm for a given
respective forest coverage of 0, 30, 70 and 100%. Another
application of our results is to calculate the maximum
forest coverage (f D �1 � R/P � anf�/�af � anf�) under
a given MAP and stipulated annual water yields that
need to be maintained. For example, the maximum forest
coverage is 20, 60 and 80% under the MAP of 460 mm in
this region if water managers want to maintain the annual
runoff at 33Ð8, 24Ð7 and 20Ð2 mm, respectively. However,
the determination of optimal forest coverage in basins has
to be linked with other considerations. The longer term
goal for specific basins is to determine the optimal ‘trade-
off’ by balancing the various environmental requirements
involved in forestation, e.g. to arrest the soil erosion
by increasing forest coverage on the one hand, but on
the other by attempting to minimize the adverse impacts
on society through the inevitable runoff reductions. To
achieve this goal of a balanced reduction in erosion
as against only smaller reduction in water yields to
acceptable levels for community water supply, it requires
the determination of the most optimal forest coverage
by area and spatial location as well as some necessary
forest management activities (e.g. reducing tree density,
selecting water-saving species).

It is important to highlight that there remains a lot
of uncertainty in this statistical assessment of forestation
impacts on water yield. The unknown errors in estimating
the aerial average of MAP in individual basins can affect
the accuracy of fitted parameters in the water balance
equations. Furthermore, other factors were not able to
be included in this study, e.g. the location and spatial
arrangements of forests and related effects. Moreover,
the assumption that precipitation is uniformly distributed
in forested and non-forested areas within a basin is
not entirely valid in Equation (2), especially in larger
basins with greater differences in topographic elevations.
In addition, other causes for the spatial variability in
rainfall at larger scales are well-known phenomena in
meteorology such as the spatial–temporal changes in
the structure (convective, stratiform) of rain fields at the
mesoscale (Houze, 1989; Browning, 1999, 2003). These
factors can lead to an error in the estimation of annual
ET difference between forestlands and non-forestlands.

CONCLUSION

This study provided a simplified analysis of the water
balance of basins in the Loess Plateau of China by using
published literature data in the past 50 years. This dry

Copyright  2011 John Wiley & Sons, Ltd. Ecohydrol. 4, 277–287 (2011)
DOI: 10.1002/eco



286 Y. WANG et al.

region produced low MAR of only 33 mm on average
across all 57 basins studied. Here, ET is the dominant
component in water balance (91Ð7% of MAP for non-
forestlands and 96Ð6% for forestlands) and is strongly
controlled by the amount of MAP with a nearly linear
positive relationship. Our results can be used to assess the
annual runoff change from basins under varying annual
precipitation and forestation area ratio and to calculate
the proper forest coverage for maintaining a certain water
yield.

This study suggests that the regional average of
annual runoff for forestlands is only 16 mm, 58% lower
than that of 39 mm for non-forestlands. The outcome
is that large-scale forestation will likely reduce the
water yield and consequently threaten the regional water
supply and sustainable development. Thus, a trade-off
between the forestation for erosion control and the
maintenance of suitable water yield for water supply
must be carefully balanced. An integrated management
of water and forest/vegetation should be an important
aspect of forestry policy in dry regions.

In the dry regions like the Loess Plateau, the changes in
climate and land use, especially forestation, can ‘tip’ the
water balance resulting in serious social and ecological
consequences (Jackson et al., 2009). Thus, understanding
and quantifying the water yield response to increasing
forest coverage in basins with varying annual precipita-
tion is critical for improving the forestry development
in the dry Loess Plateau region. Process-based models
and decision tools (McVicar et al., 2007; Yu et al., 2009)
are necessary to solve complex forest–water conflicts.
This needs a clear understanding of the forest/vegetation
impacts on processes connected with ET. Future ecohy-
drological studies should focus on ecohydrological pro-
cesses at multiple scales from the individual plant to
paired experimental basins at the headwater and sub-basin
scales and then up through to the large basin scale by
adopting a nested basin approach. Such an approach will
incorporate the influence of factors other than precipi-
tation and forest coverage, such as LAI, slope gradient,
slope aspect, soil porosity and soil texture. Moreover,
the influences of natural climate variability, varying soil
properties and dynamic vegetation structure were not
examined here. The quantification of annual runoff and
ET response to forestation in our study is just a first step
towards a better understanding of such impacts of land
cover change on water resources.
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Puigdefábregas J. 2001. Evaluating the long-term water balance of arid
zone stream bed vegetation using evapotranspiration modeling and hill-
slope runoff measurements. Journal of Hydrology 243: 17–30. DOI:
10.1016/S0022-1694(00)00398-X.

Falkenmark M, Rockstrom J. 2006. The new blue and green water
paradigm—breaking new ground for water resources planning and
management. Journal of Water Resources Planning and Management-
Asce 132: 129–132.
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Jackson RB, Jobbágy EG, Nosetto MD. 2009. Ecohydrology in a human-
dominated landscape. Ecohydrology 2: 383–389.

Li WH. 2004. Degradation and restoration of forest ecosystems in
China. Forest Ecology and Management 201(1): 33–41. DOI:
10.1016/j.foreco.2004.06.010.

Li J, Chen B, Li XF, Zhao YJ, Ciren YJ, Jiang B, Hu W, Cheng JM,
Shao MA. 2008. Effects of deep soil desiccation on artificial
forestlands in different vegetation zones on the Loess Plateau of
China. Acta Ecologica Sinica 28(4): 1429–1445. DOI:10.1016/S1872-
2032(08)60052-9.

Li GY, Xu XX. 2006. Rediscussion about the effects of forests
on precipitation and annual runoff. Journal of Northwest Forestry
University 26(1): 1–611 (in Chinese).

Copyright  2011 John Wiley & Sons, Ltd. Ecohydrol. 4, 277–287 (2011)
DOI: 10.1002/eco



RUNOFF REDUCTION BY FORESTS IN BASINS OF LOESS PLATEAU OF CHINA 287

Liu CM, Chung CH. 1978. The influence of forest cover upon annual
runoff in the Loess Plateau of China. Acta Geographica Sinica 33(2):
112–127 (in Chinese).

McVicar TR, Li LT, Van Niel TG, Zhang L, Li R, Yang QK, Zhang XP,
Mu XM, Wen ZM, Liu WZ, Zhao YA, Liu ZH, Gao P. 2007.
Developing a decision support tool for China’s re-vegetation program:
simulating regional impacts of afforestation on average annual
streamflow in the Loess Plateau. Forest Ecology and Management 251:
65–81. DOI: 10.1016/j.foreco.2007.06.025.

Min QW, Yuan JZ. 2001. Effects of forest on regional precipitation:
results from some different analyses and their comparisons. Journal
of Natural Resources 16(5): 467–473 (in Chinese).

Shi H, Shao MA. 2000. Soil and water loss from the Loess
Plateau in China. Journal of Arid Environments 45(1): 9–20.
DOI:10.1006/jare.1999.0618.

Sun G, Zhou GY, Zhang ZQ, Wei XH, McNulty SG, Vose JM. 2006.
Potential water yield reduction due to forestation across China. Journal
of Hydrology 328: 548–558. DOI:10.1016/j.jhydrol.2005.12.013.

Vanclay JK. 2009. Managing water use from forest plantations. Forest
Ecology and Management 257: 385–389. DOI: 10.1016/j.foreco.2008.
09.003.

Wang YH. 1992. The hydrological influence of black locust plantation in
the loess area of Northwest China. Hydrological Processes 6: 241–251.
DOI: 10.1002/hyp.3360060211.

Wang QX, Takahashi H. 1999. A land surface water deficit model for an
arid and semiarid region: Impact of desertification on the water deficit
status in the Loess Plateau, China. Journal of Climate 12: 244–257.

Wang YH, Yu PT, Xiong W, Shen ZX, Guo MC, Shi ZJ, Du AP,
Wang LM. 2008. Water yield reduction after afforestation and related
processes in the semiarid Liupan Mountains, Northwest China. Journal
of the American Water Resources Association 44(5): 1086–1097. DOI:
10.1111/j.1752-1688.2008.00238.x.

Wang LX, Zhang ZQ. 2001. Impacts of forest vegetation on watershed
runoff in dryland areas. Journal of Natural Resources 16(5): 439–444
(in Chinese).

Wei XH, Sun G, Liu SR, Jiang H, Zhou GY, Dai LM. 2008. The forest-
streamflow relationship in China: A 40-year retrospect. Journal of
the American Water Resources Association 44(5): 1076–1085. DOI:
10.1111/j.1752-1688.2008.00237.x.

Xu JX. 2005. Thresholds in vegetation-precipitation relationship and the
implications in restoration of vegetation on the Loess Plateau, China.
Acta Ecologica Sinica 25(6): 1233–1239 (in Chinese).

Xu JH, Wang L, Wang J. 2003. Analysis of water requirement for
vegetation restoration in the Loess Platreau. Yellow River 25(1): 13–15.
(in Chinese).

Yang G, Ding GD, Chang GL, Yang L. 2006. Study on improving soil
properties of forest vegetation in different land where returning
farmland to forests in Loess Plateau. Research of Soil and Water
Conservation 13(3): 204–210 (in Chinese).

Yu XX, Chen LH. 1996. A study on water balance of protective forest
ecosystem in loess area. Acta Ecologica Sinica 16(3): 238–245 (in
Chinese).

Yu PT, Krysanova V, Wang YH, Xiong W, Mo F, Shi ZJ, Liu HL,
Vetter T, Huang SC. 2009. Quantitative estimate of water yield
reduction caused by forestation in a water-limited area in
Northwest China. Geophysical Research Letters 36: L02406. DOI:
10.1029/2008GL036744.

Zhang L, Dawes WR, Walker GR. 2001. Response of mean annual
evapotranspiration to vegetation changes at catchment scale. Water
Resources Research 37: 701–708. DOI: 10.1029/2000WR900325.

Zhang XM, Yu XX, Wu SH, Chen LH. 2008. Calculation and analysis
of quota of water requirement of main afforestation species in Loess
Plateau. Research of Soil and Water Conservation 15(1): 36–40 (in
Chinese).

Zhang XP, Zhang L, Li R, Yang QK. 2009. DEM-based modeling of the
impact of vegetation restoration on annual streamflow in the Loess
Plateau of China. Chinese Journal of Plant Ecology 33(6): 1056–1064
(in Chinese).

Zhang XP, Zhang L, McVicar TR, Van Niel TG, Li LT, Li R, Yang QK,
Wei L. 2007a. Modelling the impact of afforestation on average
annual streamflow in the Loess Plateau, China. Hydrological Processes
22(12): 1996–2004. DOI: 10.1002/hyp.6784.

Zhang XP, Zhang L, Mu XM, Li R. 2007b. The mean annual water
balance in the Hekou-Longmen Section of the middle Yellow River:
Testing of the regional scale water balance model and its calibration.
Acta Geographica Sinica 62(7): 753–763 (in Chinese).

Copyright  2011 John Wiley & Sons, Ltd. Ecohydrol. 4, 277–287 (2011)
DOI: 10.1002/eco




