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Abstract

Context Ecological data often contain spatial struc-

tures that are latent indicators of ecological processes

of interest. The emergence of spatial pattern analysis

has advanced ecological studies by identifying spatial

autocorrelation and testing its relationship to underly-

ing processes. Spatial point pattern tests such as

Ripley’s K function were designed for identifying

spatial patterns, however they are not without their

limitations.

Objectives Recently another graphical technique,

AG-curve, was proposed. This paper examines its

suitability for classifying disturbance patterns in

remote sensing scenery containing tens of thousands

of pixels.

Methods To answer the question, Is there a signif-

icant pattern of disturbance or decline present?,

landscapes that were subject to disturbance from

mining, wildfire and logging activities were analyzed

and compared using the AG-curve technique, which

classifies spatial patterns in a window as either

random, aggregated, or regular (dispersed).

40 9 40 km windows of NDVI data covering the

three prototypical disturbance landscapes and one

undisturbed landscape were analyzed for the presence

of patterns.

Results From a raster representing the net change in

NDVI spanning 18 years, the AG-curve correctly

classified the spatial pattern of disturbance in the three

disturbance landscapes as a pattern of aggregation

among the net-loss in NDVI pixels. In contrast, the

undisturbed landscape was classified as random.

Conclusion The AG-curve is a descriptive classifi-

cation technique useful for identifying spatial patterns

in remote sensing imagery and discerning clustered

from dispersed patterns. Results highlight that infor-

mation about the spatial scale of the pattern is also

apparent when interpreting the AG-curve graph.

Keywords Pattern analysis � Landscapes �
Disturbance � Remote sensing � AG-curve �
Hierarchical clustering

Introduction

Ecological data, when examined geographically, often

contain structures that exhibit some degree of spatial

autocorrelation. These structures are often latent

indicators of ecological processes of interest such as

epidemic tree death. Consequently, spatial pattern

analysis has become an integral part of ecology and a

focus of landscape studies. In general, pattern analysis
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tends to either focus on fitting an observed pattern to a

theoretical model for significance testing and predic-

tion, or focuses on testing if a pattern differs from a

null model produced by random chance. Although

many metrics for pattern analysis have been found (see

Gustafson 2018; Frazier, this issue), the search for new

methods continues. This paper examines the suitabil-

ity of a new graphical pattern analysis technique, the

AG-curve (Takai et al. 2017), as a possible method for

identifying the presence of disturbance patterns (or

any pattern) in remote sensing scenes containing on

the order of 105–106 pixels.

Traditional statistical tests do not always work well

for spatial pattern analyses, because they’re often

based on assumed independence among the observa-

tions. That is, processes at point pi are assumed not

influence processes at its neighboring point pj. In

recent decades spatial statistics have evolved from a

contrasting premise, acknowledging that landscape

features often give rise to spatial autocorrelation,

necessitating new approaches. Spatial tests, such as

Ripley’s K and L (Ripley 1977) are used not only to

examine the difference between the observed pattern

and Complete Spatial Randomness (CSR), but also to

compare against a non-random theoretical expecta-

tion. Both kinds of alternative hypotheses are repre-

sented graphically on the K-function graph by an

envelope that indicates the range of possible

realizations.

Since the introduction of the original K-function

test (Ripley 1977), various improvements have

expanded its capacity (e.g., Besag and Diggle 1977;

Diggle 2003) for dealing with more challenging data

sets. However, the K-function has some disadvantages

that are related to its cumulative nature. While very

useful for testing statistical significance, K(t) at

distance ti contains information at all scales less than

and equal to ti, which complicates interpretation.

There are alternative techniques such as the G-

function (Diggle 2003). However, this also has its

own set of limitations. For example, certain kinds of

patterns cannot be discriminated using the G-function

graph because they produce identical curves (See

attraction and repulsion patterns in Figs. 4, 5 in Takai

et al. 2017).

Recently another graphical technique for classify-

ing spatial patterns, called the AG-curve (agglomer-

ative), was proposed as an approach for bridging this

gap. As the name implies, it addresses issues in pattern

identification using agglomerative hierarchical clus-

tering. Takai et al. (2017) introduced and tested AG-

curve performance using micro- and macroscopic data

sets. Given the abundance of modern satellite imagery

there are strong incentives to test the applicability of

the AG-curve on remote sensing data, not only for

analytical efficiency, but also for skill in simultane-

ously searching across spatial scales for patterns.

The AG-curve methodology

The AG-curve is used to graphically classify a given

pattern into one of three categories:

Random: Point patterns that tend to reveal neither

attractive nor repulsive processes;

Aggregated: Patterns characterized by clustered

points due to attractive processes;

Regular: Patterns that tend to show regularly spaced

dispersion among points due to repulsive

processes.

The AG-curve combines two analytical steps (the

initial test for CSR and subsequent determination of

regular or aggregated pattern) into a single graphical

test for classifying point patterns.

The steps in developing an AG-curve from a set of

coordinate data are as follows (A link to our computer

code for replicating these steps is provided at the end

of this section.):

(1) From a set of n spatial points calculate an n x n

distance matrix

(2) Hierarchically cluster the distance matrix

(3) From the cluster output, extract dendrogram

height h at each cluster merge k, from k = n - 1

to k = 1.

(4) Graph the results as h(k) by k

It is apparent in the steps above that the AG-curve is

actually an alternate representation of the cluster

dendrogram that extracts the rate of change informa-

tion embedded in the dendrogram branching. In its

most basic form the curve can be expressed as:

h kð Þ for k ¼ 1; 2; . . .; n� 1
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where n is the total number of spatial points. (Note that

the agglomerative clustering process actually pro-

ceeds in the opposite direction, k = n-1, n-2, …, 1,

beginning from those with the smallest distance until

the most distant point/cluster is merged.

The graph of the AG-curve includes a second

feature, the null model envelope. The envelope is also

calculated through steps 1, 2, and 3 above, but is done

repeatedly each time with a new set of random points.

Each set of points is derived from a simple random

sample, also with n points, from the null model

domain. After all iterations, the minimum and max-

imum values of h(k) are used to plot the upper and

lower bounds of the envelope at each increment of

k. As is discussed below in the examples, the intent of

this paper is to explore patterns indicating loss of

vegetation, such as disturbance, within the larger

landscape. Therefore the AG-curve is based on the

subset of n points showing decline, whereas the

envelope is constructed from random sets of n points

from the complete set of points in the landscape.

Computation of the AG-curve is a memory inten-

sive process. To calculate the AG-curve for a

landscape window containing n points, an n x n

distance matrix must be constructed. For example, a

40 km 9 40 km window consisting of

250 m 9 250 m MODIS pixels contains 25,600 pix-

els, from which a 655 million (25,6002) element

distance matrix is constructed for hierarchical cluster-

ing. Assuming the distance matrix is single precision,

2.4 gigabytes (25,6002 9 4 bytes) of memory are

required just to store the matrix. This can pose a

problem for smaller computers, which may have as

little as 4 GB of memory. In terms of computational

time, the AG-curve of one full 40 km 9 40 km

window as described above with 655 million pixels

took less than 30 s to compute on the standard desktop

computer used here. However, computation time for

the four prototypical AG-curves took 2 h per case,

because each CSR envelope was based on 500

iterations of calculating the AG-curve of n pixels

(where n was determined by the number of net-

negative NDVI pixels in the window). It is noteworthy

that both the number of iterations and the sample size

affect the width of the CSR envelope. For example, the

CSR envelope based on iterations over the complete

set would simply produce a single line, because all

iterations would result in the same min and max

values. Alternatively iterations over a miniscule

sample of say 5% would tend to produce a broad

envelope, because sampling variance would likely

change dramatically between iterations.

Computer code for calculating the AG-curve is avail-

able for the R programming language (R Core Team

2017), and can be downloaded from our repository at

https://github.com/LandscapeDynamics/AGcurve/. Alter-

natively, within R execute ‘‘devtools::install_

github(‘LandscapeDynamics/AGcurve’)’’, then ‘‘library

(AGcurve)’’, and finally ‘‘?AGcurve’’ to see the code

documentation.

AG-curve Interpretation

The AG-curve is the product of clustered spatial

coordinates. h(k) represents the distance between the

two merged-clusters at that point along the monotonic

curve. For example, assuming single-linkage cluster-

ing is used, h(k) at any given clustering stage (e.g.,

k = n - 1, n - 2,…) represents the distance between

the two nearest points from the two clusters being

merged (Fig. 1). One way to view the curve is as a

scale that indicates the capacity for resolving spatial

patterns as a function of distance. That is, at any scale

(distance), h(k), the complete set of points are only

resolvable from one another as though there were just

k points. As a hypothetical example, the complete set

of 100 points, viewed from a distance of 20 meters

might only be resolvable as 40 distinct clusters of

points.

Figure 1 shows a three-dimensional representation

of an example hierarchical clustering of four points.

On the left, the locations of the four points are marked

by the diamonds. The first cluster merge of the nearest

two points, at k = 3, occurs over the shortest distance

(see cyan colored line). The next nearest points are

merged at k = 2 over a slightly longer distance. Finally

both groups are merged at k = 1, by the nearest point

in each cluster, across the longest distance. The

resulting topology of the AG-curve on the right

reveals the rate of change in distance during spatial

clustering, and it is this rate that provides novel

information about the type of pattern present.

Since the AG-curve is an indication of the rate of

change in the clustering of spatial points, a few

principles follow. A backwards-L topology, where

initially h(k) changes little then rapidly increases
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nearing k = 1, indicates a pattern of points that tend to

be aggregated into groups. Aggregated point patterns

tend to plot like the lower dotted line in Fig. 2. On the

other hand, if the curve lies above the CSR envelope

and tends toward a horizontal topology, this indicates

underlying dispersal processes that produce regularly

spaced point patterns (at the scale of the horizontal

line). Finally, if the curve falls entirely within the

envelope of CSR then the pattern is said to be

indiscernible from randomness. Thus, what category

the point pattern falls into is determined by where the

disturbance AG-curve plots relative to the CSR

envelope. To illustrate how spatial point patterns

translate to AG-curves, Fig. 3 provides a specific

example for AG-curve interpretation. Synthetic data

were generated for the three pattern categories

(aggregated, regular, random) and then categorized

using the AG-curve.

AG-curves of landscape disturbance

To evaluate the suitability of the AG-curve as a

preliminary classification method for landscape dis-

turbances observed through satellite imagery, MODIS

NDVI (normalized difference vegetation index) ima-

gery (Spruce et al. 2016) for a set of three prototypical

disturbances and one undisturbed landscape were

analyzed. Each disturbance landscape has an NDVI

history reflecting a pronounced loss in vegetation

density. Rather than analyzing a scene of NDVI at one

point in time, which convolves disturbance patterns

with patterns of stable but heterogeneous vegetation

communities, an integrated image (raster) represent-

ing the total record of 18 years of NDVI change

(2000–2017) was analyzed. Net change in NDVI was

calculated for each image point (raster pixel), the same

as is net change in elevation, as the sum in every NDVI

gain minus every loss. The result is an image that is

standardized across all locations despite vegetation

type, so patterns from landscapes as different as

Fig. 1 Left, a simple

example of agglomerative

hierarchical clustering using

single-linkage distance

measure (Reproduced after

Fig. 1, Takai et al. (2017).

Note however that we have

reversed the x-axis direction

to coincide with the

sequence of cluster

merging). The colored lines

on left, show the distances

between nearest points, that

correspond to the heights for

successive cluster merges on

the right

Fig. 2 Diagram of a hypothetical AG-curve showing the curve

for three different types of patterns: (1) random point pattern,

solid line, (2) aggregated point pattern, dotted lower line and (3)

regularly spaced point pattern, dashed upper line (note the x-axis

is reversed to coincide with the sequence of cluster merging)
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deserts and swamps can be compared equitably, and

based solely on their change in vegetation density.

The four prototypical landscapes are illustrated in

Fig. 4. They are as follows: a landscape with multiple

timber harvests (2002–2016) in Oregon, the Cascade

Complex Wildfire (2007, 2008) in Idaho, and two

landscapes in West Virginia including a mountaintop

mining site (2008) and an undisturbed mixed-use

forest for reference. In creating the AG-curve graph

for each landscape, a 40 km 9 40 km window was

analyzed. The AG-curve of disturbance for each

landscape was developed from the subset of n points

(pixels) that showed a net-loss in NDVI, which are

shaded red in Fig. 4. The CSR envelope, on the other

hand, also consisted of n points, but was sampled from

all points whether they showed a net-gain or loss in

NDVI, or neither. Note that by setting the threshold for

disturbance to include all points with negative net-

NDVI values, we are also lumping together the most

extreme losses in NDVI (e.g., severe wildfire) with

points that witnessed only slight losses (e.g., gradual

shifts in community composition). As can be seen in

Fig. 4, roughly half of the conterminous US landscape

seems to fall into the broadly inclusive ‘‘disturbance’’

category. A more nuanced approach, for example,

could have filtered for moderate to severe disturbances

by setting a more specific threshold for net loss in

NDVI.

The disturbance case for logging is in Umpqua

National Forest in Southern Oregon. Prior to logging

activities, the forest suffered the effects of a mountain

pine beetle epidemic, killing large numbers of lodge-

pole pines. Through the Healthy Forest Restoration

Act, a project has allowed for forest thinning and

timber sales of various tracts of land in Umpqua N.F.

since 2002. The forest gaps, better seen here (http://bit.

ly/2Y6NroJ) on the LanDAT map viewer, are char-

acterized by abrupt declines in NDVI that occurred in

different years depending on when the timber sale

occurred.

Fig. 3 Aggregated, regular

and random patterns are

plotted separately in x, y

space, along with their

corresponding AG-curves in

the lower right sub-plot
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The wildfire disturbance in Fig. 4 comes from the

Cascade Complex Wildfire, which occurred over

several years, particularly 2007 and 2008. Massive

mortality of lodgepole pine has shifted the landscape

phenology signature from evergreen dominant to the

current mixture of deciduous seral communities (see

time series here, http://bit.ly/2vS5jIb). The spatial

pattern of wildfire is spread over a broad area, and has

mottled the landscape with patches of differential

recovery.

The final prototypical disturbance, the mountaintop

removal case, occurred mid-way through the NDVI

record (circa 2008–2009). Many of the points within

the 40 km 9 40 km area reveal an abrupt loss in

NDVI with little recovery and even further decline in

NDVI (see time series here, http://bit.ly/2YpHsMm).

Much of the area outside of the mining footprint shows

little appreciable change in NDVI.

For each of the three disturbance cases, the mapped

data were translated to AG-curves by first extracting

the x,y spatial coordinates of the n points (raster

pixels) showing a net loss in NDVI. The coordinates

were transformed to a distance matrix, which was then

clustered. The dendrogram output h(k) and k were

extracted and used to generate AG-curve plots. The

CSR envelope that accompanies each curve was

formed from repeated simple random samples, also

of n points, from the complete set of all points

(disturbance and its complement) within the

40 9 40 km area. Note that each subset (disturbance

or CSR) was hierarchically clustered using the average

point distance metric (unweighted pair group method

with arithmetic mean). Thus cluster height, h(k), at

each cluster merge, k, represents the average distance

between point pairs between the two cluster groups.

Fig. 4 Visual imagery map showing the locations of the four

landscapes. Transparent red overlay are MODIS NDVI data

showing points (pixels) that have a net loss in NDVI vegetation

density. Note that NDVI-loss is larger than the mine footprint.

This highlights that there are factors outside of the mine’s

footprint that are driving some level of decline there as well.

Interestingly, when examined at a continental scale the region

with the least NDVI-loss is the southern Rocky Mountains
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Compared to curves presented in the original paper

by Takai et al. (2017), the most prominent feature of

the AG-curves in Fig. 5 is that the CSR envelope has a

surprisingly compact range (Fig. 5). The AG-curve

envelopes here differ because the underlying data have

different distributions and the sample sizes differ by

orders of magnitude. The sample size of points

analyzed in Takai et al. was on the order of 102,

whereas here 104–105 points were analyzed for each

AG-curve. By increasing our sample size, incidentally

we decreased the sampling distribution of the sample

variance, which is why the CSR envelopes here are

more constrained. However, this in no way reduces the

reliability of the results presented here, but it does

suggest that even small divergences of AG-curves

from the CSR envelope do signify important spatial

patterns.

The AG-curves of all three prototypical disturbance

landscapes in Fig. 5 do show that spatially aggregated

patterns of disturbance exist. In further examining the

graphs of logging, wildfire and mining in Fig. 5, the

divergence of the disturbance curve from the CSR

envelope reveals the spatial scales at which these

disturbances are significant (i.e., the average distance

between cluster merges as mentioned above). Among

the disturbance cases, the AG-curve of mining

diverges from the CSR envelope at the largest scale

near 4.5 km, followed by logging near 3 km and

wildfire near 2.5 km. On the other hand, the AG-curve

of the undisturbed forested landscape remains com-

pletely within the envelope.

The AG-curve is a representation of the rate at

which points merge in a dendrogram. If the AG-curve

and dendrogram are examined side-by-side, intervals

where more dendrogram branching occurs will corre-

spond to flatter slopes in the AG-curve. In Fig. 5, all

three prototypical disturbances diverge below their

envelopes, indicating that points are more aggregated

than would be expected under complete spatial

randomness. Note that the AG-curves of logging and

Fig. 5 AG-curves for four

example landscapes. The

curve of the disturbance

points are represented by the

black line, and the curve of

the complete sets of points

(CSR envelope) are

represented by the colored

bands. (note the x-axis is

reversed so as to coincide

with the sequence of cluster

merging) Each AG-graph

has a subplot showing the

distribution of the

disturbance values in black

and their complement,

represented by the colored

distributions. (The CSR

envelopes were sampled

across both black and

colored distributions) Their

means are given by the

vertical dashed line in the

distribution plots
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mining diverge more strongly than does wildfire,

which means that their patterns will appear more non-

random on a map. This does not mean that the degree

of disturbance from wildfire is weak (Note the wide

range in NDVI values in the distribution subplot of

wildfire, Fig. 5), only that the pattern contrast between

disturbed versus non-disturbed (or regrowth) is less

pronounced. This points to a wildfire disturbance

pattern that is more scattered, and more random, than

that of logging or mining. This comes as no surprise, as

the pattern of red (NDVI loss) in Fig. 4 is visibly more

scattered than the other two disturbance cases.

Following wildfire it is not uncommon for recovery

to be rather heterogeneous across space, at least by

comparison to the checkerboard pattern of clearcuts

from logging and mining.

Summary

Pattern identification in satellite imagery can be a

difficult task. Chief among the difficulties is the sheer

volume of data to search. Even at 250 m MODIS

resolution there are more than 146 million pixels

covering the Conterminous US. Our intent is to

improve capacities to monitor landscapes by filtering

windows that do not contain spatial patterns. In this

work we evaluated the suitability of the AG-curve as a

technique for categorizing whether a window of

remote sensing pixels: contains patterns that do not

differ significantly from a null model (e.g., complete

spatial randomness), contains patterns of pixels

exhibiting clustering, or contains patterns of pixels

that are non randomly dispersed. The example land-

scapes of mining, wildfire and logging serve as

prototypical cases of disturbances that we expect any

pattern analysis technique to correctly classify.

In this paper each AG-curve graph includes a CSR

envelope representing complete spatial randomness.

Unlike the AG-curves in the original paper by Takai

et al. (2017), the CSR envelopes for these data are

surprisingly compact (Fig. 5). This is a consequence

of the large number of pixels sampled in each spatial

window (* 104 to 105), which is inversely related to

the sampling distribution of the sample variances.

Nonetheless, the curves of the prototypical distur-

bances are still distinguishable enough from CSR to

indicate the presence and scale of patterns.

The AG-curve is a descriptive statistical test that is

easier to apply to remote sensing imagery than spatial

pattern analyses approaches that include inferential

test statistics, such as a p value. We do not mean to

imply that statistical significance testing of patterns

can be bypassed (sensu Amrhein et al. 2019; Wasser-

stein et al. 2019). Rather we point out that the AG-

curve can be a powerful tool for surveying remote

sensing imagery, and that it also could be paired with a

test statistic if statistical inference is necessary. To

demonstrate this we used a raster representing the net

change in NDVI over 18 years, and searched for

patterns within the negative pixels, comparing them to

CSR envelopes sampled from the complete set of

negative and positive net-change pixels. This targeted

the question: Is there a significant pattern of distur-

bance or decline present? We could have further

constrained the threshold to sample a specific type of

disturbance or even searched a different input raster

that instead separated pixels that experienced an

abrupt loss in NDVI (e.g., extreme disturbance).

While both of these alternatives would have improved

the specificity in identifying disturbances, for this

paper, we only intended to describe a minimal test case

given a roughly equally divided input data set into loss

and gain subsets.

As a method for detecting coherent disturbance

patterns, such as clearcut logging, the AG-curve was

able to correctly identify spatial patterns of distur-

bance. If the appropriate input data is analyzed, the

AG-curve could be useful in binary classification of

windows for presence/absence of spatial patterns (and

clustering/dispersal in patterns). Windows with sig-

nificant patterns could then be flagged for later

inspection to classify the exact kind of pattern (e.g.,

tornado, wildfire, mining, urbanization). The tests in

this work say nothing about the confidence in identi-

fication of the AG-curve technique for landscape

pattern classification (nor do we test for error of

commission/omission), but they do offer a window

through which one can assess landscape shifts.
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