
Chapter 6
Carbon fluxes and storage in forests
and landscapes
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Abstract We begin this chapter with a discussion of the major carbon fluxes

(e.g., gross primary ploductlon, ecosystem respiration) and stocks (e.g., aboveg-
round biomass) m forest ecosystems, as well as thmr relatmnships, and plovide
examples of their values from selected case studies. We pay special attention to the
magnitudes of these fluxes and stocks m different forests and biomes. Howevel,
studies of carbon cycling at a landscape scale lag significantly behind those at an
ecosystem level. The objective of this chapter is to provide a ghmpse of cmrent
knowledge of carbon fluxes and storage m folests at both ecosystem and landscape
scales. Due to the overwhelming hterature on this topic, we have limited our review
to lessons from selected empirical studies that demonstrate the tempolal and spatial
variations of the carbon cycle in a range of lepresentatlve environments We further

discuss out current understanding of carbon cycles across forests and landscapes in
the contexts of climate change, the llnpact of natural dlstmbances, and legulation of
the carbon cycle by management actions. We present a new conceptual fiamework
for the changes in net ecosystem ploductlon following a disturbance as a foundation
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to guide future stu&es. Finally, we share our vision of the dnectlon of future carbon

cycle research from both basic and apphed perspectives. We support our leview by
citing relevant papers that plovlde lmpol tant references fol leaders

6.1  Introduction

Ecosystem play a majoI role m the global carbon cycle, as they store 45 % of the
terrestrial carbon and account for ~50 % of soil calbon sequestration (Bonan 2008)
A recent report based on long-term global mventoiy data indicated that the total
forest carbon sink since 2000 amounts to 22 % of the global carbon sink, and that
this sink is offsetting 33 % of current annual fossil fuel emissions (Pan et al. 2011).
However, both carbon fluxes and storage in folests vary sÿgmficantly over time (e.g.,
annual, decadal) and space (regional, global), and both ale &rectly regulated by
natural events (e g., climate change, drought, wildfires, pest or &sease outbreaks)
and human actlvmes (e.g., deforestation, plantation estabhshment, urban splawl,
management practices). For example, tropical deforestation is responsible for the
release of about 1 5 Gt C per year, accounting for ~15 % of total anthmpogenic
carbon emlssmns (Peters et al. 2011). As the mternatmnal community begins to

address the impacts of global chmate change through the development of adaptatmn
plans (IPCC 2007), a thorough undelstandlng of the forest carbon cycle as well as
the mechanisms that regulate coupled human and natmal stlessors becomes increas-
ingly Important for both the scientific commumty and the declsionmalcang commu-
nity (Baccml et al. 2012, Blrdsey et al. 1993, Davldson et al. 2012).

Scientific investigations of forest carbon cycling during the past three decades
have been conducted using different representations of carbon storage that were

based on societal needs. Prmr to the 1980s, the carbon cycle was mostly investi-
gated from the perspectives of timber yield and ecosystem productmn In the 1980s,
forests were hypothesized to be responsible for the missing carbon needed to close
the global carbon budget, and some researchers beheved that the abdlty of forests to
sequester carbon had been significantly underestimated.

When ecosystem management emelged as the new paradigm m natural resource
management in the early 1990s, researchers took advantage of the rapid advances'in

technology (e.g., remote sensing, eddy-covananee flux towers, stable-Isotope anal-
ysis) and of new generations of ecosystem models to seek answers for questions
such as the following What determines the carbon sink strength of forest ecosys-
tems under alternative forms of management? Can increased carbon sequestratioiÿ
be achieved through more intensive management? What is the relative importance
of chmate and disturbance m affecting the mean carbon flux and its valiatlon? How
do different fragmentation patterns affect landscape-scale carbon fluxes? Through
the promotion of data sharing among research labs across the globe, the scientific
commumty has made significant progress In understanding how foIests &ffer in
theil carbon fluxes and stocks. This collective effort using open data sources has led
to lncleasing studies of the carbon cycle at regmnal, continental, and global scales

(eg, John et al. 2013, Tmner et al 1995, Xiao et al 2009, 2010, 2011, YI et al
2010; Zhang et al 2012).

Recently, pressing issues allslng from the high demand for renewable enelgy

(e g., fast-growing crops such as poplal (Populus spp ) and eucalyptus (Eucalyptus
spp ) plantations to produce cellulosic ethanol) and the CO2 emission-reduction
targets adopted by many countries (e g., IPCC 2007) hlggered a new dimension
in carbon cycle science (e.g., hfe-cycle assessment of the carbon cycle; Gelfand
et al, 2011), emphasmng carbon's role in global warming (Robeltson et al 2008)
and linking the carbon cycle with somoeconomlc systems (e.g., carbon stocks,
urbanization; Peters et al 2011) In addmon, the increasing magnitude and fie-
quency of natural dlstulbances and extreme climatic events challenge om m-
depth understanding ot their roles m regulating catbon fluxes and stocks (e.g,
Davidson et al. 2012, Gu et al 2008) Howevel, the cole ecologmal resealch on
this topm focuses on undelstandlng the magmtude of cmbon fluxes and stocks
and identifying the underlying mechanisms lesponslble for changes in these fac-
tors in tÿme and m space.

6.2  Carbon cycling in forests

Carbon enters a forest from the atmosphere, mostly through photosynthesis, and ItS
storage in the forest is commonly known as "gxoss pllmary production" (GPP) or
"carbon assllmlation". A small amount is also input from the weathering of bedrock

(Me) and by lateral transfer by animals (Ac) and by the wind (Wÿ). GPP is simultane-
ously used to create blomass and to maintain plant metabolism through autohophlc

respiration (RA) of hve tissues (e.g., leaves, stems, and roots). RA can be broadly
separated into aboveglound and belowground lesplratlon (Le, RA, and RAn, lespec-
tively, Hanson et al. 2000). Net primary production (NPP) equals the difference
between RA and GPP, and can be divided into aboveground (ANPP) and below-
ground (BNPP) components. The remaining portion of GPP (i.e., NPP) can be
divided into aboveground carbon allocation (AGCA) and belowground carbon allo-
cation (BGCA), which serve as a food source fol ammals (Aÿ) and as a substrate fo!
decomposition by decomposer orgamsms (D) into various tlace gases (e.g., CO2,
CH4) before returning to the atmosphere Emlssmns from Aÿ and D me telmed "het-
erotrophlc respiration" (RH). Forests include both live and dead organic matteI (e g.,
snags, dead branches, leaves), suggesting that a small amount of aboveglound het-
erotrophm resplratmn (RH,) exists This is especially true for the tloplcal and sub-
tropical ramforests, where eplphytes me abundant for elevated decomposition of
aboveground dead organic matter due to the high temperatme (Clink et al 2001)
The sum of RA and RH lS the total respiratory loss of a folest and is lefeHed to as
ecosystem resplratmn (R,). The total amount of carbon loss from the soils--the sum
of belowgl ound autotrophlc respiration (RAb) and belowground hetemtl ophlc respi-
ration (Rrtb)--IS termed "sod lesplratlon" (Rÿ; Curtis et al 2005, Hanson et al. 2000,
Li et al. 2012) Most folests are on slopes and, thelefoie, the latelal fluxes of carbon
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RHa

GPP = [NEP +Rÿ]
NPP = [GPP- RA]
NPP = [ANPP + BNPP]
ANPP = Vegetation Growth- LitteI fall
BNPP = Root Growth- Root Mortality
Ro = [RA + g.] - (Mo)
RA = RAÿ + RAb
R, = [R,a + RHb] -- (Mÿ)
NEP = [AGCA + BGCA] + (Sÿ + T¢ + G¢ +A¢- Mo)
Rs = [RAb + RHb] -- (Me)

where NEP represents net ecosystem production, the flux terms Inside the square
brackets account for large proportions of the total, and those inside the round brack-
ets are minor or difficult to quantify.

through the wind (Tÿ, such as fine litter, leaves) and of organic mateilals through
animals (Aÿ) may be significant. Finally, surface runoff (Sÿ) and vertical water leach-
ing (Gÿ) will carry small amounts of carbon into or out of a forest (Fig. 6.1). These
carbon fluxes and their relationships can be summarized as follows"

Figure 6.1 Illustration of the major carbon fluxes in a forest ecosystem, including gross primary
production (GPP), ecosystem respiration (R¢), aboveground carbon allocatmn (AGCA), below-
ground carbon allocation (BGCA), soil respiration (Rÿ), aboveground heterotropbm respiration
(Rÿ,), aboveground autotmphlc respiration (RA.), surface runoff (Sÿ), lateral fluxes of carbon
through the wind (We) and animals (Ac), vertical water leaching (Gÿ), and upward movement
through diffusion after weathering of bedrock (MD in the soil

The magnitudes of these flux terms vary significantly among ecosystems and
over time Among them, GPP and Re me the two largest fluxes, and the dxffetence
between them detelmmes the calbon sequestlation strength of an ecosystem (Chen
et al. 2004, Schwalm et al. 2010) For example, Yuan et al (2009) found that GPP
explained a significant ploportlon of the spatial variation of NEP acioss eveigieen
needleleaf forests (also see Luyssaert et al 2007). Conversely, Rÿ detelmines the
magnitude of NEP for a range of deciduous bloadleaf foiests (Yuan et al 2009) The
global average GPP of forests is approximately 880 g C m-ÿ yl-ÿ, but valles flora
less than 500 g C m-2 yl-I to neaily 3000 g C m-ÿ yr-1, with the highest values in the

humid tiopics (e,g., Amazonia, centlal Afrma, southeast Asia), where both tempeia-
tree and moistme requirements are satisfied for photosynthesis (Sun et al. 2011,
Yuan et al 2010) Extremely high GPP has also been repolted in plantations of
loblolly pine (Pinus taeda; >2300 g C m-a yr-ÿ; Gough et al 2002, NooImets et al
2012) and eucalyptus in Brazil (Eucalyptus spp ; 6640 g C m-ÿ yi-l; Stape et al.
2008). The deciduous forests at tugh latitudes (e g., the boieal region) have lowei
GPP levels, at 460 g C m-2 yr-ÿ or lowei (L1 et al 2007a). The growing season
length, annual piempitatlon, and temperature are the three most Clltlcal vailables
that determine GPP and ItS changes over time Recent studies have shown that
extended droughts (Xlao et al 2009) and disturbances (Amaro et al. 2010) can sub-
stantlally reduce NEP, pllmarily by reducing GPP while simultaneously alteilng Rÿ.

For forests that are caibon sinks, Rÿ is slightly smaller than GPP but of similar
magnitude and varies from 300 to 600 g C In-ÿ yr-I in boreal forests, from 600 to
900 g C m-ÿ yr-ÿ in temperate forests, and from 1000 to 2500 g C m-ÿ yr-ÿ in aopi-

cal forests (Yuan et al  2010)  The global average Rÿ is approximately
790 g C m-2 yr-ÿ, with the highest values occuirzng in the tloplcal moist forests and
lowest values in the cold tundra and dry desert Ieglons. Luo and Zhou (2006) also
repol ted that the tloplcal moist fol ests have significantly higher Rÿ than other eco-
systems, which lesults in mean NEp values of 400, 275, and 120 g C m-2 yr-ÿ for

the tropical, temperate, and boreal foiest blomes, lespectively (Bonan 2008) In
forest plantations, NEP can exceed 1000 g C m-ÿ yi-ÿ, making them good candi-

dates for bioenergy systems for ethanol pxoductlon (e.g., from eucalyptus oÿ
poplar). Consequently, alternative management practices are often sought to
increase GPP or deciease Rÿ because forest NEP is detelmlned by their balance.
For recently dIstuibed or old-growth forests that release caibon Into the atmosphele,

Re is typically larger than GPP
Fol many forests, the amount of carbon emitted by forest soils as RAb and Reu

(i.e., as Rÿ) accounts for the majority of Rÿ (60 to 80 %) Rÿ depends stiongly on soil
temperature, soil moisture, and total soft organic matter, whmh are impoltant regtz-
latols of the metabolic piocesses Involved in belowgiound Rib and RHb (Edwalds
and Solhns 1973, Martin et al. 2009) Consequently, soil tempelatme and molstuxe
aie often used to calculate Rÿ using simple tempelature-based exponential models oa
othm model forms such as the Lloyd and Taylor oi Boltzmann-Aaahenms models
(Davldson et al. 2005, L1 et al. 2012; Noormets et al. 2008, Perlqns et al 2011,
Relchstein et al. 2005; Richardson et al 2006, 2007). Intelestlngly, the iegulation of
Rÿ by thermal and moisture conditions is not linear, Instead, optimal and thieshold
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values exist (NIu et al 2012, Xu et al 2011) In recent years, the scientific commumty

has recogmzed that both phenology and GPP can directly affect RAb (DeFolest et al.
2006, Hogberg et al 2001) Currently, we lack reliable methods to partmon RAb and
RHb, pl eventlng us flora estimating the magnitudes and dynalmcs of these two tei ms

For managels who are interested in incieasang carbon sequestlatlon (1 e, increasing
the sink strength), soil seems to be the only place to store carbon an the long teim
because tlees and understory vegetation will ultimately die and then decompose,

leleaslng CO2 back into the atmosphere (Noolmets et al. 2012) Consequently,
researchers who study the cmbon cycle have focused on Rÿ (Eusklrchen et al. 2003,
Noormets et al. 2008, Xu et al 2011)

Other carbon flux terms ate typlcally small and have received significantly less
attention despite their importance In some forests For example, few studies have
examined the amount of carbon lost thi ough runoff and ga oundwater that will even-
tually leave the forests through streams and rivers (Bohn et al 1979; Cardflle et al
2007, Hope et al. 1993, 1997; Roulet and Moore 2006) Rlchey et al (2002)
found that outgasslng ("evasion") of CO2 from the rlveis and wetlands of the
central Amazon basin constitutes an Important carbon loss process, equal to
1.2 Mg C ha-1 yr-1, which is equivalent to more than 30 % of forest NEP in the
region Two major studies on the efflux of CO2 leleased from inland rivers and
streams In the United States found that they were supersatuiated with carbon and
emitting 97 _+ 32 Tg C yr-ÿ (Butman and Raymond 2011, Melack 2011). Nevertheless,
the loss of carbon In most of the world's watersheds remains unknown. In addition,
carbon fluxes associated with horizontal movements by wind and wlldhfe that
dnectly carry carbon into or out of a folest have not been studied In the context of
the complete carbon cycle.

The magnitudes of all of the components of the carbon cycle are not static, but
vary greatly over time. Although pronounced seasonal changes are coupled well
with lnterannual climatic variations, mounting evidence suggests that the variations
over periods of two or more years (i.e., an interannual scale) or even at decadal
scales are significant (Gough et al. 2008b, Pdchardson et al. 2007). Fol example, at
the Oak Openings forest in northwestern Ohio, we found higher-than-average NEP,ÿ
with values that vaiied flom 1.9 to 4.1 Mg C ha-ÿ yr-ÿ, likely due to a combination
of chmatlc variation, drought, and disturbances such as fires (Noormets et al 2008).

In a maple (Acer spp.) forest in Japan, Satgusa et al. (2005) estimated the annual
NEP to be 237+92 g C m-2 year-ÿ (mean+SD) from 1994 to 2002, but NEP varied
from 59 to 346 g C m-2 yr-ÿ between years (i.e, an mterannual variability of up to
287 g C m-2). In the Pacific Northwest of North America, Krlshnan et al. (2009)
found that a 57-yeaI-old Douglas-fir (Pseudotsuga menziesti) stand was a moderate
catbon slnk, with annual NEP ranging fiom 267 to 410 g C m-2 yr-1 dunng a 9-year
period This variation was much higher than that in an old-growth foiest in southern
Washington State, which was generally a weak carbon sink and could occasionally
become a carbon source (Chen et al. 2004).

The cumulative NEP IS the amount of carbon stoIed in a foiest without physical
removal of carbon from the ecosystem by disturbances such as timber hatvesting,
commercial thinning, or wildfire (I.e., carbon stoiage=ÿ][NEP-iemovals]).

Forests stole a lmge amount of calbon, with 471 Pg C (55 % of total forest catbon)
In tropical folests, 272 Pg C in boreal forests, and 119 Pg C m tempeiate tolests
(Pan et al 2011) This totals an estimated 862 Pg C, with 44 % in the sods, 42 %
In hve blomass, and 8 % in deadwood However, these propoitlons valy greatly
among ecosystem types, climates, disturbance histories, land-use hlstolÿes, man-

agement types, and soils (McKinley et al 2011). Globally, tropical forests stoled
56 and 32 % of carbon In their biomass and soil, respectively, wheieas boleal
forests store 20 and 60 % of the catbon In the blomass and soil, lespectlvely (Pan
et al. 2011). In the United States, McKinley et al. (2011) reported that the forests
contained ~41 000 Tg C and that this stoIage lncleased at a rate of 192 Tg C yr-ÿ

The major carbon pools in forests include living overstory and undelstoly vege-
tation, dead blomass (e g, coatse woody debris, snags, lltterfall, dead lOOtS), and
soils The amount of carbon stoied in animals is small in most ecosystems and has
I alely been studied Ol considered in the context of a forest's carbon budget. Howevel,
this distribution varies greatly among folests and legions A few selected sites from
the hterature have total catbon storage (excluding animal blomass) ranging flora
less than 100 Mg C ha-1 to as high as 700 Mg C ha-l, but most values are between

200 and 450 Mg C ha-1 (Table 6.1) On average, mineral soils contain the largest
carbon pools m the national and north-centlal regions of the United States, wheie

they account for approximately 42 and 52 % of total folest carbon, respectively
(Turner et al. 1995). In contrast, live trees replesented the largest carbon pool m the
Missouri Ozatks and the Pacific Northwest, iespectively, accounting for about 55
and 71% of total forest carbon (L1 et al 2007b). The catbon pools of a mixed oak
(Quercus spp ) forest in the southeasteln Mlssoun Ozarks contain 182 Mg C ha-t
(L1 et al 2007a), with 80 2 Mg C ha-1 In living trees, 22 9 Mg C ha-1 in dead hio-
mass, 20 0 Mg C ha-1 in ioots, and 53.7 Mg C ha-1 in the soil (i.e., total soil catbon

except roots). The mean live tree catbon pool at the site was ~17 and 21% hlghel
than the national average and the average for the north-centl al United States, 1 espec-
tlvely (Turner et al 1995), but it was 16 % lower than the avelage fol the Pacific
Northwest (SmIthwick et al. 2002). The mean soil carbon was about 16 % higher
than that In the Pacific Noithwest (Smithwlck et al. 2002), but was 12 and 22 %
lower than averages for the nation and for the north-central United States, ÿespec-

tIvely (Turner et al 1995). On average, these results suggest that temperate forests
store approximately 50 % of their catbon as aboveground hiomass (AGB) and 50 %
as belowground blomass (BGB) However, this estimate is implecise because car-
bon pool estimates are influenced dlffelently by site-specific disturbance ieglmes
and because the definitions of some major caibon pools (especially for dead organic
matter) vary significantly among studies (Biadfold et al 2008, Griel and Logan
1977, Matthews 1997, Schlesinger 1997).

The catbon storage in global forests varies gleatly In both Its magnitude and its
within-system distribution (Table 6 1). Overall, tlopical folests have high AGB but
not necessarily high BGB (e.g, 305 Mg ha-1 AGB but neghglble BGB for the
Tapajos National Foiest in the east-central Amazon, Sanel et al 2012) Kelth et al
(2009) claimed that Eucalyptus regnans folests In Victoria, Australia, have the high-
est bIomass In the woIld In contlast, the BOREAL study found that up to 88 % of
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the boieal foiest ecosystem cmbon was stored m the soil (Gowei et al 1997) This
dÿfference was more evident in the black spruce (Ptcea mat iana) stands in

Saskatchewan and Manitoba, Canada, and less evident in the aspen (Populus spp )
or jack pine (Pinus banksiana) stands wÿthin the same region (Table 6.1)
Abovegiound caibon pools at five AmeiiFlux sites in the folests of the eastern

Umted States (Curns et al 2002) differed significantly from those at mole produc-
tive southern sites and from those In less ploductlve northern haidwood sites In

Michigan and Wisconsin (Table 6.1.). Howevel, the Willow Creek Site in Wisconsin,
which was dominated by aspen and northern hardwoods, had more sod carbon than
other sites in the region (Cuitis et al. 2002). In the southern hemisphere, old-growth
Chilean forests were found to have gieateÿ biomass of coarse woody deblls than
most temperate foiests other than those in the Pacific Nolthwest of North America
(Schlegel and Donoso 2008).

6.3  Carbon dynamics in forested landscapes

Changes in carbon fluxes and storage acioss forested landscapes (1.e., across mul-
tiple ecosystems arranged m a cohesive mosaic) have been difficult to understand
and measure due to the complex Interactions between landscape structure and eco-
system processes and changes in these interactions over time. The two critical issues
that must be accounted for in any landscape-scale research are heterogeneity and

scaling Although both topics have leceived extensive attention during the past 20
years, much less effort has been spent on their relationship to carbon cycles, due
mostly to the hagh costs of such studies and a lack of effective methods. At the eco-
system level, seveial mature methods (e.g., the eddy-covarlance technique, blomet-
nc samphng, chamber-based flux measuiement, ecosystem modeling) can pIovlde
us wÿth Iehable estimates of both fluxes and storage (Chen et al. 2004). However,
scaling-up of ecosystem-level carbon fluxes and storage to a landscape level is not

always accurate because of the presence of many smaller elements (e.g., corridois)
and of inteÿactmns among patches (Desal et al. 2008).

Intensive measurements of carbon fluxes and stoi age foi the dominant landscape
elements have attempted to support scaling-up of the estimates to the landscape
level (Chert et al 2004, Jenkins et al 2001, 2003, Pan et al. 2009, SmlthwIck et al
2009; Tulner et al. 2011; Turneÿ et al. 2004) For example, Eusloichen et al. (2003)
measured the Rs, maciochmate, and litter depth of six dominant patch types in a
managed forest landscape in northern Wisconsin in 1999 and 2000 They found not
only a sigmficant difference among the patches but also a 37 % hÿgher Rÿ in 1999
than in 2000, suggesting that the changes in any flux term over time must also be
accounted for in any effort to understand the landscape-scale caibon cycle. A simi-

lar bottom-up approach for scaling up NEP was attempted by Instalhng permanent
and mobile eddy-covanance towers (Ryu et al 2008) in an effort to include hetero-
geneous patch types and their associated chaiactenstics in landscape-scale estimates.
This effort was assisted by a cross-lab collaboranon that combined spatiotempoial



data from eddy-covarlance towers (Desal et al 2008, Noormets et al 2008), Rÿ
measurements (Mmtln et al. 2009), and models (Ryu et al 2008, Zhang et al 2012).
However, the resulting carbon flux estimates remain pioblematIc because no con-
sidei ation was given to the influence of patch interactions or the contributions from

minor elements of the landscapes (e.g., roads, small lakes). The lesults of these

studies will nonetheless suppol t scaling-up if they can be coupled with the spatially
continuous characterlstms of the landscape structure (Zheng et al. 2004) and will
support the validation of modeled landscape-scale cmbon fluxes and storage (Xlao
et al. 2009).

Few studies have attempted landscape-level investigations of the caibon cycle.
Several studies have been conducted in the Brazilian tropical foiest legion under the
Large-Scale Biosphere-Atmosphere Experiment (http//lba.cptec.lnpe.br/lba/sIte/).
The researcheis found that Amazonla constitutes a large global carbon store. Forest
convelsion In Amazonia is turning these forests into a net souice of atmospheric
carbon (Davldson et al 2012, Tian et al 1998) Recent measurements Indicate that
undisturbed Amazoman forest systems may be a net carbon sink, although the
importance of carbon sequestration in regrowIng forests on abandoned land is

unclear (also see Pan et al. 2011) Dantas de Paula et al. (2011) found that carbon
stocks vaned greatly among landscape patches and that forest interiors letained
nearly tinee times the carbon (202.8+23.7 Mg C ha-1) of forest edges due to edge
effects They found that 92 % of the forest stored only half of its potential carbon
due to fragmentatmn and the lesulting edge effects, including wind damage and
exposure to drought. These findings contradict those of a study in the Delawme
Raver landscape, where fiagmented landscapes had higher NPP (Jenldns et' al.
2001). In Northern Wisconsin, a 395-foot-tall tower was used to directly measure

the net exchanges of carbon, water, and enelgy in a landscape dominated by north-
ern hardwoods (Bakwm et al. 1998, Chen et al. 2008). The NEP and Re reported
from tins tower represent the cumulative values for an eddy-covariance tower with

a fetch length greater than 10 km in which different ages and types of patches coex-
ist. To scale up the lesults to a regional level, both mmraft-based flux measurements
(Stephens et al. 2007) and intensive field campaigns were conducted to quantify the
C fluxes and storage, including the Midwest Intensive Field Campaigns conducted
by the North American Carbon Program (http.//www.nacarbon.org/nacp/)

Coupling remote sensing with ecosystem modeling and ground measurements of
carbon fluxes and storage can also provide good estimates of carbon fluxes (e.g.;
Sun et al. 2011; Xlao et al. 2010, 2011) and pools (e g, Blackard et al 2008) at
landscape, regional, and global scales because the emphasÿs is on the overall region,
and several rehable satellites can cover the globe with a coarse resolution (e.g.,
MODIS). At the landscape scale 0 e., tens of kalometers solution), no satelhte data
can quantify the parameters (e g, leaf area, microchmate) required to model carbon
fluxes or storage with sufficient spatial or temporal iesolutIon. Landsat imagery has
the necessaiy spatial resolution (30 m), but has insufficient temporal resolutmn
(due to the 16-day repeat cycle of the satellites and data gaps that result from cloud
contamination) and measures only a limited number of spectral bands, thereby

preventing acculate estimation of carbon gains and losses A few promising, Ingh-
Iesolutlon remote-sensing technologies are being tested in carbon cycle research,

such as LIDAR (Chopping et al 2012, Pinker et al. 2004) and AVIRIS (Roberts
et al 2004), although application of the latter technology outside of the western
countries remains difficult. Pledlctlons of belowground caibon storage and carbon

fluxes based on remote sensing are not feasible Consequently, OUl current knowledge
of landscape-scale caibon fluxes and stoiage is based on the pIedlctlons of ecosys-

tem models (e.g., belowground caibon; Gowel et al. 1997) or on spatial Interpola-
tions between point estimates (e.g, Euskalchen et al 2002; Pan et al 2009, Turnel
et al. 2004, 2009)

A small handful of studies were conducted to link landscape structure with key
caibon fluxes or stoÿage pools (Jenkans et al. 2001, Noormets et al. 2007, 2hiner

et al 2004, Zheng et al. 2004) Based at the Chequamegon National FoIest in
Wisconsin, Zheng et al (2004) produced a hlgh-iesolutmn map of stand age
calculated from field measurements of tree diameter. Vailous vegetation Indices
were derived from Landsat 7 ETM+ Imageiy through multiple-regression analyses
to produce an lmtial AGB map. This study is among the few m winch AGB was
estimated over a long study period (heie, 30 yeais) based on near-mfraled reflec-
tance and the normahzed-dlffeience vegetation index. Howevei, carbon fluxes and

storage from other ecosystem components (e.g., the soil) may not be determined
using tins approach.

Scaling-up flora trees and stands to landscapes (i.e., a bottom-up approach)
appears to be more plausible than satellite-based approaches because many smaller
structural elements cannot be quantified even from Landsat Images, such as smaller
woodlands, aIeas of edge influence (AEI, 1.e., areas along the edges of fragmented
stands where edge effects are significant), riparian zones, and narrow comdors.
These structural features may be the dormnant features of a landscape (e.g., dotted
woodlands in the Midwest Legion of the Umted States) or may play mgnificant roles
in estimating landscape-scale carbon fluxes and storage. For example, integrating
the terrestrial and aquatic components of regional carbon budgets in managed land-

scapes has been among the iesearch fore (cf Buffam et al. 2011). Glese et al. (2003)
investigated the caibon pools of a managed riparian forest In the coastal plains of
South Carolina and found a high potential for caibon storage, especially as BGB. A
recent study by Rhelnhardt et al. (2012) found that the cmbon stoied in riparian
zones in the headwater reaches of a watershed in an agrlcultuIe-dominated land-
scape amounted to only about 40 % of the potentml capacity.

As anothel example, forests Influenced by clearcut edges were found to be
iesponsible for a 36 % reduction of blomass in a Blazihan tropical forest (LauIance
et al. 1998). Zheng et al (2005) used the changes in land covei type and composi-
tion from 1972 to 2001 and an Rs model to assess the contribution of AEI to carbon
emission In the Chequamegon National Folest m Wisconsin They found that
changes In land coveÿ Increased landscape Rÿ by approximately 7 % during the
30-yeai period. This is likely to be significant because of the laige poitlon of AEI in
the landscape. However, these pmneermg studies ale fm fiom plovlding a compIe-
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henslve understanding of all major carbon fluxes and storage After 14 years
investigating the Chequamegon National Fotest landscape (Chen et al 2006), we,
are still Incapable of predicting the carbon fluxes and stoI age in AEI, roadside.areas, !ÿ

ripauan forests, and lakeshole forests L1 et al. (2007b) found that the total AES
amounted to approximately 48, 74, 86, and 92 % of the landscape with the depth of
edge influence (i.e., the distance inside a forest stand to which the edge effect is

significant) set at 30, 60, 90, and 120 m, respectwely AEI and ioads accounted
48 and 8 %, respectively, of the landscape in this study area, and then proportions:i
had increased from 1972 thlough 2000 (Bresee et al 2004). Acloss the Uni
States, the total amount of AEI accounts for 42 8 % of our national forests (Riitters
et al. 2002), but its contnbution to the landscape carbon cycle iemains
(Harper et al. 2005)

There are also many ignored landscapes for which our knowledge
fluxes and storage is limited. This list includes urban areas, despite the
effects of intensive management, direct interactions between human

and then environment, and the high potential of these areas to sequester
This gap in our knowledge is particularly important because urban
growing at a faster rate than any other land-use type (Lal and Augustin 2012
et al. (2011) argued that urban areas contributed 71% of global energ)
emissions m 2006. The United Nations reported that the global urbanization
0 e., the proportion of the population living In cities) was 49.6 % m 2007 and
expected to ieach 70 % by 2050 (http'//esa.un.org/unpd/wuphndex.htm). Almost
of this increase will come from urbanization of developing countries,

both a challenge and an opportunity to manage carbon emissions. Davies
(2011) examined the quantitms and spatial patterns of AGB in Lemester,
surveying vegetatmn across the entire urban aiea and reported stora
3.16 kg C m-2, with 97.3 % of this pool being assomated with trees rather than
herbaceous and other woody vegetation. McKinley et al. (2011) stated that the
bon density of urban landscapes m the United States was similar to that
forests. In summary, it is clear that the structure of and changes in
Important components of landscape-level carbon fluxes and stora
et al 2007, Turner et al. 2009). Yet desDte this importance, there remain
knowledge gaps fol predmtlng the carbon cycle at this scale.

6.4.1  Climate change and the carbon cycle

Forests and landscapes are not statm, rather, they are constantly
in large temporal changes in carbon fluxes and storage. Three dnvlng forces for
these changes often act together (Caspersen et al. 2000, Pan et al. 2009, Smithwick
et al. 2009): changes in the environment (e.g., chmate, sod, atmospheric chemistry)
of the ecosystem or landscape, natural disturbances, and management practices.

6.4  The roles of climate and disturbance

Global climate change now appems to be inevitable and will have profound impacts
on natural ecosystems at all spatml scales The feedbacks between foiests and ch-

mate are complex, but a umque chatacteustic among the multiple feedbacks results
from the longevity of trees and forests. Trees, in genmal, seem to be morn tolerant
of change than shrubs and heibaceous specms (i e., they exhibit relatively slow
responses), but fast Iesponses of carbon fluxes and storage to chmate change have
been widely ieported because climatm factols dnectly regulate all flux trams foI a
forest ecosystem (Chen et al. 2002). The "fertdlzatmn" of trees by increasing atmo-

sphenc CO2 will mostly hkely enhance GPP (Pan et al 2009), but elevated tempeia-
increasing atmospherm concentrations of CO2 and other gleenhouse

gases (CH4 and N20) will also promote iesparatory losses (Rÿ), resulting in an uncm-
taln change in NEP (Bonan 2008).

Large-scale expenments to simulate the effects of chmate change (CO2, 03, tem-
perature, precIpitatmn) have been Inmated In seveial forests, including the cool-

,crate Harvard Forest (Mehllo et al 2011), a poplar plantatmn m nolthern
(Karnosky et al 2003), and a loblolly pine plantatmn m the Duke Foiest
et al. 2012, Oren et al. 2001), but the results fiom these experiments

to different trends for the dlffeient flux terms, with gleat uncertainties. One
reason for the uncertainty is that no experiment has consldeied more than

three factors related to the futuie climate due to the complexity and high costs of such
Consequently, these predictions will need to be based on vahdated models.

gly, climatic extremes me predicted to be one of the majol consequences of
ge, yet little IS known about the effects of chmate extremes on ecosystem

l!pmeesses (Cials et al 2005, Xmo et al. 2009), especmlly ff multlple extreme events
simultaneously (e.g, a heat wave plus drought). Although much experimental
has been conducted on the effects of cbaonlc warrmng on ecosystems, most of

experiments were (understandably) conducted with short vegetation such as
and shrubs (e.g., Hovenden et al 2008, Shaw et al. 2002) Few past studms

examined the effects of acute heat stress (sholt-term, hlgh-tempeiatuie events)
natuially occunmg vegetatmn (Mellllo et al. 2011) Recent reviews have high-

mgmficant negative impacts of heat stress on trees and forests (Allen et al.
Rennenbeig et al. 2006) In additmn, resemchers have not examined how land-

ond to the changing chmate, adding one more challenge
changes in carbon fluxes and Stolage

The responses of carbon fluxes and storage in forest ecosystems and folested
es to ehmate change are difficult to predict because the undmlyIng mecha-

much moie complex than pÿ eviously thought. Several pai tlcularly vexing
associated with chmate change imse the following questions'

l, How the impact of climate change will extend beyond the effects of chromc
warn-nng and CO2 fertihzatmn to Include mtelactlons among multiple factors
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(e g, 03, N deposition) and extreme physical and biological events (e g., dxought,
asymmetric warrmng, Gutschick and BaSSlllrad 2010, IPCC 2007)9

2 How significant variation in both the driving forces and the ecosystem iesponses
across temporal and spatial scales will affect forest processes (Jung et al. 2010,
MartInez-Meler et al. 2008, Xlao et al 2010)?

3. How our knowledge of the regulatoly mechanisms for different fluxes that arise
from feedbacks among the driving processes must be improved to allow these
mechamsms to be lncorpoiated in ecosystem models?

Ecosystem models have become lncieasingly impoitant tools to answei these
questions. Hundreds of ecosystem models have been developed dui lng the past four
decades and all have included a iange of components in the carbon fluxes and stor-

age pools. However, comparisons among the models and validation against field
measurements of carbon fluxes and Stolage indicate that none of the models can be

leliably applied to all ecosystem types Ol at all scales (Schaefer et al 2012)
Landscapes are composed of multiple ecosystem types, thus the modeling commu-
nity faces the challenge of developing a new generation of models that accounts for
this diversity. Another frontier in addressing landscape-scale responses to the chang-
lng climate will be to develop location-specific predictions of the future climate so

that ecosystem models can be properly parameterized (e g., regional downscahng
modeling; Spak et al. 2007). This is because the spatial resolutions of the cun'ent
global circulation models are too coalse (>100 km) and therefore cannot capture the
effects of heterogeneous landscape elements, which frequently act at resolutions as
low as 10 m. One well-known exercise is the Wisconsin Initiative on Climate Change

Impacts (http://www.wicci.wisc.edu/), in which high-resolution regional predictions
are being made to assess the impacts of climate change on Wisconsin's ecosystems.
The program combines cutting-edge climate modeling capabilities with field exper-
tise to assess the impacts on forest production, biodiverslty, and the development of

practical decision-support information at fine scales.

The responses of the carbon cycle of forested landscapes to natural disturbances
have received much attention (Amiro et al. 2010, Balshi et al 2009, Goetz et al.
2012, Kurz et al. 2008, Turner 2010). This is because natural disturbance often
changes the landscape structure immediately, resulting in rapid changes in the mag-
nitudes and directions of carbon fluxes and storage. Wildfiies, outbreaks of insects
and diseases, and windstorms are among the major natural disturbances in the
northern hemisphere that have profound effects on forest carbon cycling (Amiro
et al. 2010). Worldwide, fire is a key Influence on global vegetation patterns, and
especially on the distribution of forests; In the absence of fire, forest cover would
about double, fiom 27 % of the vegetated land suiface to 56 % (Bond et al. 2005).
Thus, fire also has a profound influence on carbon storage.

6.4.2  Disturbance and the carbon cycle

Wildfires have been the most lmpoitant disturbances in many ieglons. They not
only dliectly pIoduce calbon loss duiing the buln but also produce significantly dif-
ferent environments that, in turn, change the magnitudes and dnectlons of subse-

quent carbon fluxes Gowei eta!. (1997) used an ecosystem model to simulate the
carbon balance of the Canadian boreal foiest since the 1930s and found that the
effects of CO2, tempeiatuie, and precipitation varied lntelannually but genelally
balanced out oveI long time penods and lalge aieas Forest fires during this peilod
had the greatest dnect impact on calbon emissions from the system Balshl et al.
(2009) estimated that decadal-scale CO2 emission caused by fires in the boieal
region of North America will inciease to 2 5 to 4.4 times the present level by the end
of this century. Vasxleva et al (2011) found that wddfires in centtal Sxbeila ale
among the major factois dilving the short-term (synoptic) varlabIhty of near-surface
CO2 during the warm season. At the stand level, Conclho et al. (2006) found that R,
not only vmied in response to fiie intensity but that its spatml and tempoial valIa-

tlons were also gieatly dependent on the patch patterns of the undex story vegetation
One of the best examples of alteration of the carbon cycle at the landscape level ts
from Yellowstone National Park, wheie lalge wildfiies in 1988 burned 47 % of the
lodgepole pine (Pinus contorta) forests, a majol forest type In the paik that is plone
to fires; it covers a total alea of 525 000 ha. These flies caused a loss of 13 6 Mg C ha-ÿ
(Kashlan et al 2006, Turner et al. 2004) However, postfire caibon accumulation
can be rapid relative to tustorical fire intervals In the park, about 80 % of the piefiie
carbon is typically recovered within 50 yeal's and 90 % IS recovered within 100
years, although ecosystem carbon is sensitive to variations in stand stiucture (e g,
basal area) and stand age (Kashlan et al 2013). Forests in the park would store
substantially less carbon, however, if fire intervals decreased substantially as the

climate warms (Westerhng et al. 2011).
Defoiestatmn caused by timber harvests, fuel-reduction treatments, and other

types of land management are major anthropogenIc disturbance agents that shape
carbon cycles in the world's forested landscapes Compared to natural distuibances,

the influences from human activities on carbon cycling ale direct, dramatic, exten-
sive, and sometimes long lasting. For example, rainfolest fiagments in central
Amazoma have been found to expeIlence a marked loss of AGB caused by sharply
increased rates of tree mortality and damage near the margins of the residual patches
(Laurance et al. 1998). In the eastern United States, the cuirent high carbon stoiage
and NEP in forests are the consequences of forest regiowth after large-scale cleallng
of these foiests between 1860 and the 1960s (Pan et al. 2009). Howevei, manage-
ment plotocols during the late twentieth century weie designed to maximize tlmbel
pioductIon, control erosion, prevent wildfires, and conseIve species diversity With
increased awareness of other ecosystem services, such as caibon sequestration, oui
current challenge is to ievisit the conventional management protocols at both stand
and landscape levels to sustainably achieve multiple objectives.

Our knowledge of the carbon cycles In forested landscapes is not solely about the
magnitudes of caIbon fluxes and stoiage but also about how they change ovei time
Obviously, both human and natural disturbances must be Included in the concep-
tual fiamework. These changes were fiÿst discussed In the pioneering resemch of
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Disturbance-dominant
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Figure 6.2 A hypothetical framework for predicting the changes in net ecosystem productwlty
(NEP) caused by climate variation superimposed on the effects of &sturbances as a function of the
Ume following a &sturbance and four &fferent stages (V1 to V4)

Odum (1969), but research has expanded greatly during the past two decades
(Arnlro et al. 2010, Chen et al. 2004, Euskirchen et al. 2006, Gough et al. 2008a,
Hmmon et al. 1990, Kashlan et al. 2006, Pregltzer and Euskarchen 2004, Turner
et al. 2011). Here, we offer a brief hypothetical &scusslon of NEP gwen that much
of the current attention is on the strength of forest sequestration of carbon (i.e., on
the magnitude of NEP).

Although the general pledietlons of Odum's (1969) succession theory explain
ontogenetlc changes, they do not address the variabdlty among stands. Direct
measurements of NEP have shown that considerable vanabdlty exists between'
stands of similar ages and developmental stages. A disturbance event is thought to
move a stand forward or backward within the successional time series. The implicit
assumption is that the sequence of condmons that constitute the successional series
is constant and mvariant. Here, we propose an alternative view. a thee-stage
conceptual framework based on the changes m NEP after a disturbance (Fig 6.2).

Dining Stage 1 (V1, Fig. 6.2), the nature and sevellty of a preceding distmbance
are hkely to be the major determinants of the ecosystem carbon balance. The
increase m respiration caused by an increase in dead orgame matte1, changes in soil
compacUon and aeration, and changes in the ecosystem energy balance relatwe to

Low

o                }        Odum's p, edlctlon   i        ÿ 'ÿ
°             i i                  High

High  ÿ     Legacy effect i           Chmate effect        i Chmate+Dtsturbance effect

,                                 i
young ÿ                       Chronological Age..................................................  > old

Climate-control
Susceptible to disturbance

the decrease m assimilation caused by a teductmn m the effectwe leaf mea and an
altered radiation balance that affects the latio of evaporation to tianspnatlon may

vary greatly depending on the &sturbance type, &sturbance lntenmty, and prml site
conditions. Consequently, the range of valmtion of NEP is high duling this stage
(see Almro et al. 2010, Chert et al. 2004, Euskmchen et al 2006, Gough et al 2008a)
As legacy effects weaken during subsequent stand development and as lesplratlon

becomes dependent on new carbon inputs, the stand enters Stage 2 (V2, Fig 6.2), m
which the magnitude of NEP depends most strongly on ecosystem composition and
structure and NEP ÿs increasingly sensitive to variations m chmate. Dining

late-successmnal stages (V3 and V4, Fig 6.2), as the trees leach and pass then age
of maxlmum growth rate, the site's nutrient and watel availability are likely to ÿen-
de1 the folest increasingly susceptible to chmate anomahes Recently, scientists
concluded that old-growth forests absoIb substantial amounts of CO2 flom the

atmosphere (Carey et al. 2001, Luyssaelt et al. 2008)--a finding that contladmts
Odum's theory and that has been touted as the basis for a global forest carbon man-

agement policy based on the preservation of these commumties. However, with
incleasing mortahty of overmature trees, the uUhzation of the dead oÿganic matter
in lespiration will respond mole strongly than assltmlatlon to chmate fluctuations,
contributing to greater mterannual variability of NEP (Chert et al. 2002, Gough
et al. 2008a) Clearly, late-successmnal ecosystems have higher mterannual van-
abihty in NEP that depends strongly on vanatmns in the relationship between cli-
mate and &sturbance.

Our hypothetical framework can be summarized as follows: varlatmn m ecosys-
tem NEP during the eally development stages is pumanly determined by the natme
and seventy of the preceding &Stulbance event 0.e, a legacy effect), the effects of
chmatÿc vmmblhty on NEP are most slgmficant during the late-successmnal stages,
and stands m mtermedmte developmental stages are most resilient against these
influences and their NEP is determined most tÿghtly by intrinsic vegetation propel-
ties and edaphÿc constraints.

The carbon cycle has long been a cole component in many large-scale mampnla-
twe experiments that evaluated alternative management options. Foÿ example, the
carbon sequesuatmn capacity of a forest ÿs broadly determined by the balance
between ÿts photosynthetic gains and its resplratow losses To maintain optimal
short- and long-term sequestration rates, the forest can be managed by letainmg

sufficient trees 0.e, leaves) to maintain a hÿgh late of photosynthesis and provide a
good buffer for the understory and soft mlcrocllmate (e.g, decreased respliatlon
through lowered temperatme) The foundation foi this framework is that forests can
be managed best by maintaining hÿgh photosynthetic rates 0 e., carbon gain) by
retaining a sufficient number of green trees (Le, leaves) and by reducing ecosystem
respnatmn 0 e., losses) by modelating the forest and sod mmroclimate and struc-
ture. In the Mÿssoun Ozark Forest Ecosystem Ptoject, we fiÿst examined the changes
m carbon storage under different management regimes and found that smgle-tÿee
uneven-aged management and cleaÿcut even-aged management of stands leduced
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total calbon storage from 182 Mg C ha-ÿ to 170 and 130 Mg C ha-ÿ, respectively.
Although these changes are expected due to the removal of timber from the sites, the
harvests leduced carbon pools in live tree blomass by 31% under uneven-aged

management and by 93 % under even-aged management, and increased coalse
woody debris cmbon pools by 50 % under uneven-aged management and by 176 %
under even-aged management compared with the levels in the absence of harvesting
(Lt et al. 2007b). In a pmallel study, Concilio et al. (2005) found that selective
thinning In an experimental foIest m the Sierra Nevada Mountains produced a
similar effect on both mixed conlfelous and hmdwood forests by elevating soil
respiration, moistuie content, and temperatuie and, consequently, thinning increased
Rÿ by 14 %. Xu et al (2011) found that the summer mean Rÿ and soil moisture
tended to be higher m wet years (2004, 2006, and 2008) and lower In dry yeals
(2005 and 2007) under even-aged and uneven-aged management than in unhar-

vested stands in the Missouri Ozark Forest Ecosystem ProJect experiment. L1 et al.
(2012) reported a significant difference m the various respiration fluxes among the
treatments in thÿs study. Altogether, it is clear that these management activities
changed not only the total storage and calbon distribution in the forest but also the
magnitudes and temporal dynamics of the carbon fluxes

Landscape management, by definition, will alter the landscape's spatial hetero-
geneity and will consequently change both carbon pools and fluxes Howevei, we
found only a few manipulative landscape studies that linked structural changes and
carbon pools, preventing us from developing sound landscape-level management
guidelines that would let managers design the temporal and spatial characteristics of
landscape mosaics (Chen et al. 2006) Several investigations concluded that forest
fragmentation and the resulting edge effects will produce negative impacts on
carbon sequestration (e g., Dantas de Paula et al 2011). Therefore, future manage-
ment should be designed to reduce fragmentation, a recommendation that agrees

with the guidehnes for conservation of biological diversity (Harper et al. 2005).
Nevertheless, our knowledge of how altelnative landscape patterns will affect the
carbon cycle IS still lacking.

6.5.1  Temporal and spatial dynamics of carbon

Carbon studies have gained tremendous momentum In the past two decades because
of their central roles In many pressing global issues that face society, such as climate

change, energy security, shortages of natural resources, and rapid growth of
the world's population and the global economy. Forest ecosystems will increasingly
play a critical role in these Issues, in large part due to the large carbon fluxes and
storage In tenestnal ecosystems. Based on our htelatuie review, future research on
the carbon cycle in forested landscapes should be strengthened In the following
three areas

6.5  Outlooks

The carbon cycle In forest ecosystems has been investigated foi decades, yet theie

remain many unknowns about the distiIbutlon, temporal changes, and iegulatoIy
mechanisms for caibon other than the effects of climate. For example, the distribu-

tions and dynamics of carbon in complex terrain are characteiized by many small

carbon fluxes that are incompletely understood (Fig 6 1). Lnnlted data and
knowledge are available regarding carbon dynamics in some ecosystem compo-
nents (e g., deep soils, wetlands, the urban-iuial interface, the land-ocean interface,
and othei critical zones) From a theoretical perspective, the piedictions by Odum
(1969) about the responses of the carbon cycle after a disturbance have been chal-
lenged because of a lack of thoIough validation Although significant plogress has
been made in genetics, population and community ecology, and carbon cycle science,
consensus on the lnteiactions between the diversity of a forest ecosystem and eco-
system function has not been reached. Finally, understanding the caibon cycle moie
hohstically by including indirect dlIvers and feedbacks should be explored

6.5.2  Landscape-scale carbon cycles

Our understanding of carbon fluxes and storage at the landscape level has lagged
significantly behind our knowledge at ecosystem and landscape levels. This is pm-
tlally due to the limitations of existing methods and technology, which are both
costly and labor intensive Sound landscape-scale experiments have not been widely
pursued, thus testing and validation of the basic concepts and principles of land-

scape ecology have been inadequate. Although carbon and water fluxes and storage
are well coupled In both vertical and holizontal dimensions (Govind et al. 2010, Ju
and Chen 2005, Sun et al. 2011), sound estimates of the horizontal flows of carbon
as well as their relationship to landscape-scale processes are rare in current models
This lack of a satisfactory landscape-scale perspective is pmtlcularly unfortunate
because most forests aie owned and managed at a landscape level, and fragmenta-
tion is on the lISe. Innovative proposals that can overcome these scientific and man-

agement challenges are urgently needed

6.5.3  Humans and carbon cycles

The relationships between carbon sequestration and societal issues (e g., global

warming, fire management, urban growth) need to be studied more intensively fi om
a moie hohstic pelspectlve that couples humans with the natural systems that sus-
tain us. The traditional approach of linking forest management and calbon cycles
Independently of human influences must be expanded to Include functions that
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ale ielevant to human soctety, such as society's needs for calbon management

(e.g., stock markets, biological conselvation, Noenergy) and conservation of othel

ecosystem services.
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Chapter 7
Forest landscape change and biodiversity
conservation

Santiago Saura, Emi Martin-Queller, and Malcolm L. Hunter Jr.

Abstract Forest landscapes ale changing at unpiecedented rates in many legions
of the world. This may have piofound consequences for the diversity and resilience
of forest ecosystems and may impose conmdelable challenges fol their manage-

ment. In this chapter, we review the &ffelent types of change that can occur in a
forest landscape, Including modifications in forest habitat amount, quality, fi agmen-
tation, connectivity, and heterogeneity. We describe the conceptual dtfferences and
potential interactions among these changes and provide a summaly of the possible
lesponses of folest species depending on their degree of habitat specialization, dis-
persal abilities, and other factors. We review the main current drivels of change in
different legions of the world and how they ale affecting (often synergistically) fol-
est blodiveÿslty: deforestation, climate change, forest flies, abandonment of rural
land, land-use Intensification, spread of mvasive species, forest management, and
the increasing amount of plantation fox est We conclude by providing a summary of
recommendations and stxategies for mttlgatxng and mlmmlzlng the undesirable
effects of landscape change on foxest bIodlveIslty.

7.1  Introduction

Despite increasing conservation effolts (Rands et al. 2010), global biodwersÿty,
which comprises the diversity of life in all its folms and levels of orgamzatlon
(Hunter and Schrmegelow 2011), has declined in recent decades (Butchatt et al 2010)
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