
1.  Introduction
The Earth as a whole is greening up since the beginning of the 21st century (Chen et al., 2019; Guay et al., 2014; 
Schaepman et al., 2011; Zhang et al., 2017b; Zhao et al., 2018; Zhu et al., 2016). Vegetation greening has impor-
tant implications for the biogeochemical and hydrological cycles, particularly evapotranspiration (ET) at multiple 
scales (Bai et al., 2020; Teuling et al., 2019; Ukkola et al., 2016; Zeng et al., 2018). ET plays a vital role in linking 
water, energy, and carbon cycles (Jung et al., 2010; Sun, Alstad, et al., 2011; Wang & Dickinson, 2012). Changes 
in ET due to vegetation greening directly affect water yield from headwater watersheds for large river systems 
(Jung et al., 2010; Sun, Caldwell, et al., 2011; Zhang et al., 2015). Understanding the cascading effects of vege-
tation greening on the hydrological cycle is important in integrated watershed management to address contem-
porary water resources issues in the context of land-use/land-cover change and climate change (Hao et al., 2015; 
Sun et al., 2006; Y. Li et al., 2018). However, the interactions among climate, vegetation, and water are highly 
complex, and significant knowledge gaps remain regarding the influence of forest on water yield under a chang-
ing climate (IUFRO, 2018), especially at a large scale (Schwarzer, 2021).

Afforestation is the dominant driver of vegetation greening in many regions of the world (Chen et al., 2019), 
particularly in East Asia and Europe (Buitenwerf et al., 2018; FAO, 2020). However, the main intentions of af-
forestation are to increase carbon storage and reduce soil erosion while water is rarely considered to be a priority 
in forest management (IUFRO, 2018). Guiding principles on water-centered forest management have been de-
veloped only recently (FAO, 2021). Concerns have emerged from reports that afforestation programs with a sole 
focus on promoting carbon sequestration (Fang et al., 2018; Ji et al., 2020) and water quality improvement (Fu 
et al., 2011; Yang et al., 2015) resulted in significant decrease in water yield (Bai et al., 2020; Kim et al., 2014; 
Li et al., 2018; Teuling et al., 2019).
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Serious ecological consequences have been observed when the trade-offs among ecosystem services were not ful-
ly considered in large scale afforestation programs. For example, in the Loess Plateau of China, an arid/semi-arid 
climate region, streamflow significantly decreased largely due to afforestation and ecological restoration (Feng 
et al., 2016; Liang et al., 2015). Although greening did not alter as much water yield in tropical/sub-tropical re-
gions as in the Loess Plateau (Guo et al., 2008; Tang et al., 2018), hydrological effects of afforestation in tropical/
sub-tropical regions manifest with more uncertainties on water availability and people’s wellbeing in the context 
of increasing frequency of extreme weather events as a result of global climate change (Stocker,  2014; Sto-
tt, 2016). For example, afforestation with exotic pine species in Nepal caused spring water decline (Lama, 2019). 
Vegetation greening potentially induced an increased risk of hydrologic drought in a subtropical watershed in 
southern China (Zhang et al., 2021).

The Yangtze River Basin (YRB) in southern China drains the world’s third longest river system. The YRB is one 
of the areas with the most widespread subtropical forests around the world (FAO, 2020). YRB has a high spatial 
heterogeneity in terrain, vegetation, land use, and climate. Significant land cover changes (Zhang et al., 2014), 
vegetation greening (Chen et al., 2019), and climate variability (Qu et al., 2018) have been observed since the late 
1990s. The forest coverage of the YRB increased from 29.5% in 2000% to 43.0% in 2020 largely due to a series 
of large-scale forest conservation and restoration programs (National Forestry and Grassland Administration of 
China, 2020). Consequently, the YRB experienced more vegetation greening than any other basins with compa-
rable sizes in the world (Chen et al., 2019). Increasingly severe water shortage and flooding in different parts of 
the YRB were reported in recent years due to an increasing frequency of extreme weather events (Table S1). One 
example was the most recent 2020 summer flood that seriously affected the livelihoods of 30.2 million people in 
the basin. The YRB can be a good testbed for investigating the hydrological effects of vegetation greening in the 
subtropics, providing insights for water resources management under a changing climate for large basins.

Separating the effects of vegetation on watershed hydrology from climate and other factors can be challeng-
ing at a large scale. Many remote-sensing-based ecohydrological models have been developed to understand 
vegetation–water interactions (Mu et al., 2011; Wang & Dickinson, 2012). Based on the methods used in cou-
pling photosynthetic carbon uptake and water loss via transpiration, these models can be generally regrouped 
as water-centric or carbon-centric models (Zhang, Song, et al., 2016). Most traditional hydrological models are 
water-centric models that heavily rely on the Penman–Monteith equation to estimate ET with more focus on soil 
water movement and river flow routing or empirical/semi-empirical equations (e.g., WaSSI, GLEAM) (Martens 
et al., 2017; Sun, Caldwell, et al., 2011). However, these models often oversimplify the biophysical processes 
of vegetation without coupling the transpiration processes in response to changes in vegetation characteristics. 
Therefore, water-centric models lack the rigorous biological constraint of photosynthetic carbon uptake on ET, 
which is directly affected by vegetation greening. In contrast, vegetation condition and biological processes are 
emphasized in carbon-centric models. The ET process is mechanistically integrated in modeling carbon uptake 
in those carbon centric models. Therefore, the carbon-centric models can provide improved and direct biological 
understanding of the hydrological effects of vegetation greening.

To fill these knowledge gaps and better understand the regional hydrological response to vegetation greening in 
the YRB, we adapted a remote sensing-driven carbon-centric model (Zhang, Song, et al., 2016, 2019) to estimate 
ET and water yield (WY) from 2001 to 2018. We hypothesize that the significant vegetation greening during the 
study period could induce a strong ET increase, thus may cause WY to decrease. Specifically, our study focuses 
on the following questions: (a) What were the spatial and temporal patterns of vegetation greening and climate 
change in the YRB during 2001–2018? (b) How did ET and WY change temporally and spatially? and (c) To 
what extent did vegetation greenness change affect ET and WY? Our overall goal was to improve the understand-
ing of the effects of vegetation greening on water resources for a large basin amid climate change and variability.

2.  Methods and Data
2.1.  Study Area

The Yangtze River originates from the east of Qinghai-Tibet Plateau and flows into the East China Sea, winding 
through 19 provinces with a length of over 6,300 km. The Yangtze River Basin (YRB) (24°30' ∼ 35°45'N and 
90°33' ∼ 122°25'E), covers an area of ∼1.8 million km2, which makes up 18.8% of China’s land area (Figure 1). 
The multi-year average runoff of the YRB is 961.6 km3/yr, ranking the third in the world. The topography of 
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the YRB shows a decreasing complexity from the west to the east, having high landscape heterogeneity from 
the Tibetan Plateau (over 4000 m a.s.l.) to the relatively flat Yangtze River Delta (below 50 m a.s.l.). Therefore, 
there are huge variabilities in climate and consequently vegetation communities within the basin. The YRB can 
be divided into 12 large sub-basins (Figure 1). The YRB resides in a subtropical monsoon climate characterized 
by distinct four seasons with abundant moisture and heat (Su et al., 2006) except for the Tibetan Plateau (parts 
of sub-basin I, II). Moreover, the YRB is an important economic region, contributing to 41% of China’s gross 
domestic product and supporting the livelihoods of more than 400 million people (Yang et al., 2015). The water 
resources in the YRB not only directly influence the sustainability of the economic growth in the region, but also 
major cities in Northern China through a South-to-North Water Diversion Project to mitigate water shortage.

The YRB experienced large-scale deforestation for timber production, and consequently land degradation during 
the 1950s–1990s (Wei et al., 2008; Zhang & Song, 2006). From 1957 to 1986, the forest cover of the YRB was re-
duced by half while soil erosion doubled (Yin & Li, 2001). The disastrous flooding event across the entire YRB in 
1998 was the largest flood since 1954, killing more than 4,000 people and causing a direct economic loss of more 
than US$20 billion (Zhang et al., 2000). In response, the Chinese government initiated the Natural Forest Con-
servation Program (NFCP) that banned timber harvesting in natural forests in the upper reaches of YRB (Zhang 
et al., 2000) and the Conversion of Cropland to Forest Program that encouraged farmers to convert cropland on 
slopes to forests or grassland (Uchida et al., 2005; Zhang et al., 2017a; Zhang & Song, 2006). These programs 
significantly increased forest cover in the YRB (Qu et al., 2018; Zhang et al., 2014). During the same period, 
unprecedented urbanization occurred in the YRB, primarily at the expense of croplands (Kuang & Dou, 2020).

2.2.  The Coupled Carbon and Water (CCW) Model

The CCW model is a remote sensing-based data-driven model (Zhang, Song, et al., 2016), which effectively cou-
ples carbon and water in a simple framework to estimate gross primary productivity (GPP) and ET at the monthly 
scale. The CCW is a carbon-centric model, in which ET estimation is constrained by GPP and the underlying 
water-use efficiency (UWUE) (Zhou et al., 2014). The CCW was calibrated based on global FLUXNET data 
(Pastorello et al., 2020) and has a much simpler model structure but comparable accuracy with the more complex 
process-based models for ET (Zhang, Song, et al., 2016, 2019). The key model elements in the CCW include:

GPP = APAR × � = (PAR × FPAR) × (�pot ×��) × (�� ×��)� (1)

ET = GPP × VPD0.5

UWUE
� (2)

Figure 1.  The geographic location and topography of the Yangtze River Basin. The 12 sub-basins include the Upper Jinsha 
River (I), the Lower Jinsha River (II), the Mintuo River (III), the Jialin River (IV), the Wu River (V), the Upper Mainstream 
(VI), the Dongting Lake (VII), the Han River (VIII), the Poyang Lake (IX), the Middle Mainstream (X), the Lower 
Mainstream (XI), and the Tai Lake (XII).
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where GPP is the Gross Primary Production; APAR is the absorbed photosynthetically active radiation (MJ·m−2), 
and PAR is the incident photosynthetically active radiation at the top of vegetation canopy, which is assumed to 
be 45% of the total shortwave radiation (Running et al., 2000); FPAR is the fraction of PAR absorbed by plants; 

𝐴𝐴 𝐴𝐴pot (g·C/MJ) is the potential light use efficiency (LUE) under optimal conditions; 𝐴𝐴 𝐴𝐴𝑠𝑠 , 𝐴𝐴 𝐴𝐴𝑠𝑠 , and 𝐴𝐴 𝐴𝐴𝑠𝑠 are respectively 
the environmental scalars for diffuse radiation, temperature, and moisture stresses on primary production, each 
of which takes a value within the range of [0,1]. The UWUE, underlying water use efficiency (Zhou et al., 2014), 
was derived from FLUXNET data (Pastorello et al., 2020) for each biome. UWUE values range from 4.5 to 8.4 g 
C/kg H2O for different biomes. CCW uses biome-specific parameters and is suitable to examine the effects of 
land cover change on carbon and water balances. More details of the theoretical framework for CCW can be found 
in Zhang et al. (2016b, 2019).

Here, WY represents the sum of changes in soil water storage and both surface and groundwater flows. We cal-
culate annual WY by subtracting modeled ET from precipitation (P) with an assumption of negligible changes in 
soil water over a long period (one year or longer):

𝑊𝑊 𝑊𝑊 = P − ET� (3)

The YRB was divided into 1,782 watersheds with an average area of around 1000 km2 for estimating mean WY 
from gridded WY. The watershed boundaries were derived from the HydroSHEDS dataset, which is a suite of 
geo-referenced data sets, including river networks, watershed boundaries, drainage directions, and flow accumu-
lations, generated with high-resolution elevation data obtained by NASA’s Shuttle Radar Topography Mission 
(SRTM) (Lehner & Grill, 2013).

2.3.  Remote Sensing Data

The land cover data were derived from the MODIS annual 500-m land cover product (i.e., MCD12Q1 v006 data-
set) from 2001 to 2018 (Table 1). This dataset was produced based on the 17-class International Geosphere-Bio-
sphere Program (IGBP) classification scheme, processed with a hierarchical classification model where the class-
es included in each hierarchy reflect structural distinctions of land cover properties (Sulla-Menashe et al., 2019). 
The biome-specific parameters of CCW were determined based on IGBP land cover classes. To facilitate land 
cover change analysis, we merged the 17-class IGBP land cover into seven biome types, that is, cropland, forest, 
shrubland, grassland, urban land, barren land, and water.

The monthly normalized difference vegetation index (NDVI) data were derived from MODIS MOD13Q1 v006 
dataset for the same period at 250 m spatial resolution with the sinusoidal projection. MODIS NDVI does not 
have sensor inconsistency issue like in the coarse-resolution GIMMS3g NDVI product based on AVHRR or the 
fine scale Landsat NDVI (Land 5/7/8), and its sensor degradation issues in v005 dataset had been satisfactorily 

Dataset Usage
Original resolution 
(spatial/temporal) Period Source

Land cover Drive model 500 m (Yearly) 2001–2018 MODIS, MCD12Q1 v006

NDVI Drive model 250 m (16-day) 2001–2018 MODIS, MOD13Q1 v006

Climatea Drive model ∼4 km (Monthly) 2001–2018 TerraClimate (http://www.climatologylab.
org/terraclimate.html)

Reported streamflow for sub-basins Model evaluation Yearly 2001–2018 The Water Resource Bulletin of the Yangtze 
River Basin

Measured small watersheds streamflowb Model evaluation Yearly 1986–2019 On-site streamflow records and the regional 
flow summary reports of government.

Five published ET datasets Model evaluation Yearly or Monthly 2001–2014 (or 2015, 2018) See Table S2 for detailed source information
aClimate data include precipitation, temperature, vapor pressure deficit, and shortwave radiation. bThe periods of measured streamflow for different watersheds vary; 
more details can be found in Table S3 in the Supporting Information.

Table 1 
Hydrology, Climate, and Vegetation Data for Model Validation in the Yangtze River Basin
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corrected in the v006 (Zhang et al., 2017b). The 1-km NDVI data were smoothed with TIMESAT 3.2 software 
and upscaled to 500-m resolution based on the cubic convolution resampling method.

2.4.  Climate Data

The climate data included precipitation, air temperature, vapor pressure deficit (VPD), and shortwave radia-
tion (SRad). The relevant climate data for 2001 to 2018 (Table 1) were derived from the TerraClimate dataset 
(Abatzoglou et al., 2018), which is a monthly dataset generated with climatically aided interpolation, combining 
high-spatial-resolution climatological norms from the WorldClim dataset. Given there was no mean air temper-
ature in the dataset, we calculated it by averaging monthly maximum and minimum temperatures. We validated 
this dataset with observed precipitation (subbasin scale) and temperature (station scale) before using it as model 
drivers. TerraClimate precipitation and temperature are strongly consistent with the corresponding observed cli-
mate data (R2 of 0.97 and 0.99 respectively). The original climate datasets were downscaled from a ∼4 km (1/24°) 
spatial resolution to 500-m with the cubic convolution resampling method.

2.5.  Model Evaluation

The original CCW model was calibrated and evaluated based on the global FLUXNET data (Pastorello 
et al., 2020). To better evaluate the model performance of CCW in the YRB, we further compared CCW ET 
with five existing ET products, including (a) the Global Land Evaporation Amsterdam Model (GLEAM; ver-
sion 3.5a) (Martens et al., 2017; Miralles et al., 2011); (b) MOD16A3GF (v006) (Running et al., 2019); (c) the 
Penman-Monteith-Leuning model (PML_V2) (Zhang, Peña-Arancibia, et  al.,  2016); (d) the Priestley–Taylor 
Jet Propulsion Laboratory model (PT-JPL) (Niu et al., 2020); (5) FLUXCOM (Jung et al., 2019). The five ET 
products are derived with different algorithms, such as Penman–Monteith-based models (MOD16, PML_V2), 
microwave remote sensing and Priestley–Taylor-based model (GLEAM), remote sensing-based Priestley–Taylor 
Jet Propulsion Laboratory model (PT-JPL), and FLUXNET data-based machine learning methods (FLUXCOM). 
We compared CCW ET with the five datasets at both the whole YRB and sub-basin scale. More details about the 
ET datasets can be found in Table S2.

In addition, we further evaluated CCW ET using water resource records for 12 sub-basins of the YRB (Figure 1) 
from 2001 to 2018 (Ministry of Water Resources of China, 2019). We calculated annual ET (P-Q method) of 
sub-basins by subtracting streamflow (Q) from precipitation, assuming that the change in soil water storage is 
negligible at the annual time step, and then used it to evaluate the annual ET generated by the CCW model. We 
also assembled streamflow data for 15 relatively small watersheds distributed over a wide range of climate and 
land cover conditions within the YRB (Hao et al., 2015; Liu et al., 2020) (Figure 1). Given that streamflow data 
of the 15 small watersheds covered different periods due to differences in data sources, we compared multi-year 
average CCW ET and streamflow-based ET at the watershed scale. It should be noted that the YRB is a densely 
populated area where human activities, such as water extraction for domestic use and countless reservoirs for 
irrigation and hydropower, could greatly influence natural streamflow and thus ET estimates.

2.6.  Scenario Designs

To explore the relative contributions of vegetation change and climate change on ET and water yield, we designed 
two scenario experiments. First, we estimated actual ET and WY by allowing land cover type, NDVI, and climatic 
variables to change dynamically from 2001 to 2018. The ET and WY changes relative to 2001 in this scenario 
would be the actual effects of the combined climate and vegetation changes. Second, to quantify the effect of 
climate alone on ET and WY, we designed an experiment in which we only allowed climate variables to change 
with time and both LULC and NDVI were fixed at the level of 2001. Thus, the effects of climate on ET (or WY) 
would be the ET (or WY) in the second scenario relative to 2001. Thereby, the difference between ET (or WY) 
for the previous two scenarios would be the effects of vegetation change.

To investigate the effects of vegetation change on ET or WY, the linear temporal trend of NDVI and that of ET 
(or WY) was regressed for vegetation change only and vegetation-climate combined effects, respectively, at the 
watershed scale. If the change rates of NDVI and ET (or WY) are tightly coupled, vegetation change can be re-
garded as the dominant factor associated with ET (or WY) change.
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3.  Results
3.1.  Vegetation and Climate Changes During 2001–2018

The annual mean NDVI over the YRB showed a significant upward trend with a rate of 0.4%/yr (p < 0.01) (Fig-
ure 2a). Spatially, 90.4% of the area exhibited an increasing trend, of which 76.4% showed a significant (p < 0.05) 
increase, mainly distributed in the middle and the eastern upper reaches of the YRB. A small portion of YRB 
in the lower reaches showed a downward NDVI trend (Figure 2b), which is mainly located in the Yangtze River 
Delta as a result of urbanization (Gao et al., 2012; Hao et al., 2015, 2018).

Significant land cover changes were observed during the study period. The total area of forest in the YRB in-
creased from 15.6% (278,416  km2) in 2001% to 19.0% (339,069  km2) in 2018 based on MODIS land cover 
product, and 98.1% of the new increased forests were converted from shrublands. The change in shrubland cov-
erage was relatively small compared to forests. The new shrublands originated from croplands and grasslands 
(71,472 km2 or 4.1% of the YRB), roughly offsetting shrublands’ conversion to forests. The new shrublands 
are likely the early stage forests established through the Conversion of Cropland to Forest Program (Zhang & 
Song, 2006). Although the total urban land area was small (about 1.9% of the YRB) compared to other land cover 
types, it increased substantially in relative term by 42.3% during the study period, almost exclusively coming 
from croplands (45.0%) and grassland (49.6%).

Annual climate (temperature, VPD, and shortwave radiation) did not show any significant trend even at the 
90% confidence level during 2001 and 2018, except annual total precipitation showing an increase of 6.7 mm/
yr (p = 0.08) (Figure S1 in Supporting Information S1). Temperature, VPD, and shortwave radiation all had 
insignificant trends during 2001–2018 (0.01°C/yr, p = 0.30 for temperature; −0.01 hPa/yr, p = 0.65 for VPD; 
−0.06 W/m2/yr, p = 0.76 for shortwave radiation) (Figure S1 in Supporting Information S1).

3.2.  Model Evaluation

The modeled ET by CCW compared well with existing ET data products. The R2 values were above 0.7 for four 
of the five ET products at the whole YRB scale. At the sub-basin scale, CCW ET had an average R2 of 0.75 with 
a median of 0.82 for linear regression with the ET products. The CCW ET was relatively close to most of the ET 
datasets in magnitude. Annual ET rates of the YRB from different sources ranged from 550 to 650 mm (CCW, 
MODIS, PML_V2, PT-JPL). It appears that ET for GLEAM and FLUXCOM (700–770 mm) was much higher 
than others, while streamflow-based ET was the lowest (480–580 mm) (Figure 3a).

Among the five ET products, all three ET datasets covering 2001–2018 (MOD16, GLEAM, PML_V2) showed a 
statistically significant upward trend (p < 0.05) (Figure 3a). Similarly, PT-JPL ET that covers 2001–2015 had an 
upward trend (p = 0.06) (Figure 3a). The streamflow-based ET also showed an upward trend in annual ET for the 
YRB (p = 0.15) despite not as strong (Figure 3a). The CCW ET also showed a consistent trend with those of the 
five ET datasets at the sub-basin scale, with an average R2 of 0.52 and a median of 0.57.

Compared to streamflow-based ET estimates (P–Q) at the sub-basin scale, the CCW ET captured about 64% of 
its variation (R2 = 0.64) at the annual scale with a minor systematic bias (Figure 3b) and a root mean square error 
(RMSE) of 127.0 mm for the 12 sub-basins in YRB. The simulated WY is highly consistent with the observed 

Figure 2.  The vegetation change from 2001 to 2018 in the Yangtze River Basin: (a) basin-wide annual normalized difference 
vegetation index (NDVI) change over time and (b) spatial pattern of NDVI change rate and direction from 2001 to 2018.
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streamflow for the whole YRB (R2 = 0.91). The average annual CCW ET compared better with ET estimated by 
the P-Q method for the 15 small watersheds, with higher R2 (=0.90) and a lower RMSE (=62.9 mm) (Figure 3b).

3.3.  Effects of Vegetation and Climate Change and Variability on ET

Annual ET in YRB significantly varied spatially, decreasing from the east to the west (Figure 4a). At the sub-ba-
sin scale, the average annual ET ranged from 412 mm in sub-basin III to 772 mm in IX except sub-basin I which 
has a much lower ET than all others (Figure 4a). The annual ET in the YRB significantly increased at a rate 
of 3.1 mm/yr (p = 0.01) under the combined influence of climate and vegetation change from 2001 to 2018 
(Figures 4b and Table 2). A positive trend of ET was seen over 80.5% of the basin, where ET increased with an 

Figure 3.  (a) The temporal variation of annual evapotranspiration (ET) for coupled carbon and water (CCW), the five ET 
products, and the ET derived from streamflow; (b) the comparison between the CCW annual ET with annual ET estimated 
from water balance-based ET (i.e., precipitation -streamflow) for the 12 sub-basins of the Yangtze River Basin from 2001 to 
2018 (black circles) and that for15 small watersheds on multi-year mean ET (red solid triangles). The blue dashed line in (b) 
represents the 1:1 line.
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average rate of 4.3 mm/yr (Table 2). Moreover, ET increased significantly 
(p < 0.05) in 40.3% of the basin (Figures 4c and Table 2). The most sig-
nificant ET increasing area was in the eastern upper reach and the northern 
middle reach of the YRB (Figure 4c). In contrast, the plain area of the YRB 
showed a downward trend, particularly around the metropolitan areas in the 
Yangtze River Delta (Figure 4c).

The enhancement in ET over the YRB was mainly due to vegetation greening 
(Figures 4b and 4d). Annual ET had a significant positive trend (3.3 mm/yr or 
0.7%/yr, p < 0.01) from 2001 to 2018 as a result of vegetation changes (Fig-
ures 4b and Table 2). Spatially, 81.0% of the total area showed ET increase 
from vegetation greening, of which 70% increased significantly (p < 0.05) 
(Figure  4d). Most of the greening-induced ET increase area was found in 
central and eastern YRB (Figure 4d). Most areas where NDVI increased also 
had a positive trend in ET with a high spatial correlation (R = 0.7, p < 0.01) 
between trends of NDVI and ET for the combined effects (Figure 5a). The 
correlation was much stronger, when the effects of climate were removed 
(R = 0.9, p < 0.001, Figure 5a).

By land cover type, stable vegetation contributed 92.5% of the ET increase. The proportions of stable cropland 
(13.3%) and forest (13.9%) to the total area are close, but the contribution of the stable forest to ET increase was 
only 61.1% of that from cropland. The majority of the croplands are rice paddies that have evapotranspiration 
rate close to potential ET. In contrast, an insignificant trend was attributed to climate (−0.2 mm/yr, p = 0.8) from 
2001 to 2018 (Figure 4b). A significant ET increase trend (p < 0.05) due to climate was observed in only 6.3% 
of the YRB (Table 2).

ET in the YRB exhibited a strong seasonal pattern with the highest ET in the wet season (June to August) and 
the lowest in the dry season (December to February) (Figure 6). However, the change rates of monthly ET from 
greening showed a different pattern among seasons. All months have an increase in ET under the influence of 
vegetation change alone during 2001–2018. The monthly ET changed most from vegetation greening in the 
spring and autumn months (i.e., April–May and October–November) with a rate of 0.4–0.6 mm/yr, while the 
monthly ET in summer (June–August) had a much weaker trend (0.1–0.4 mm/yr) (Figure 6). The change rates 
and directions of changes in ET for each month were consistent with those of NDVI and even greater than the 
change rates of NDVI in months other than June to September.

Effects

Change rate ET increased area ET decreased area

mm/
yr p

Slope 
(mm/
yr)

Area 
proportion 

(%)

Slope 
(mm/
yr)

Area 
proportion 

(%)

Combined 3.1 0.01 4.3 80.5 (40.3) −0.6 16.0 (3.1)

Climate −0.2 0.74 1.1 45.8 (6.3) −0.5 50.0 (1.0)

Vegetation 3.3 <0.01 4.4 81.0 (56.2) −0.5 15.5 (4.0)

Note. The values in the parentheses are the proportion of areas (%) reaching 
a statistical significance level (p < 0.05).

Table 2 
Summary of the Combined and Individual Effects of Vegetation and Climate 
Changes on Evapotranspiration (ET) in the Yangtze River Basin (YRB) 
From 2001 to 2018

Figure 5.  The relationship between the rate of change in evapotranspiration (ET) (a) and water yield (WY) (b) with the rate 
of change in normalized difference vegetation index (NDVI) at the watershed scale, where each dot represents a watershed, 
the red dots show the combined effects of climate and vegetation changes on ET (or WY), and the blue dots show the effect of 
vegetation change alone on ET (or WY).
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3.4.  Effects of Vegetation and Climate Change on WY

The multi-year average WY was 481 mm, accounting for 45.9% of the mean 
annual precipitation (1,047  mm). Spatially, the highest WY was above 
800 mm in the eastern coastal area of the YRB, while the lowest WY was 
less than 200 mm in the southwest and middle north of the YRB (Figure 7a). 
At the sub-basin scale, sub-basin VIII (Han River basin) had the lowest WY, 
which was only 266 mm, while the sub-basin IX (Poyang Lake Basin) had 
the highest WY (809 mm, Figure 7b). Meanwhile, the sub-basin VIII (Han 
River basin) also had the lowest WY/P ratio of 0.29 (Figure 7b). The inter-
annual variation of WY was almost perfectly correlated with that of P, and 
the coefficient of correlation between WY and P was above 0.9 for all 1,782 
watersheds within the YRB. In contrast, the correlation coefficient of ET and 
WY was not significant, only −0.3 (p = 0.19).

The vegetation change had significant negative effects on WY with a rate of 
−3.3 mm/yr (p < 0.01) (Figure 7d). These negative greening effects on WY 
were offset by the effects of climate variability, which caused a marginally 
significant increase in WY, with a rate of 6.8 mm/yr (p = 0.10) (Figure 7d). 

As a result, annual WY showed an increase with a rate of 3.5 mm/yr (p = 0.33) under the combined effects of 
vegetation and climate from 2001 to 2018 with great inter-annual variations (Figure 7c). Spatially, only a small 
proportion of the YRB showed a significant (p < 0.05) trend in annual WY due to its great fluctuation. The areas 
where significant urban expansion occurred, for example, Yangtze River delta, showed an increase in WY, while 
the southwest region showed a decrease in WY.

The cumulative changes in WY from vegetation greening from 2001 to 2018 for the entire YRB were significant 
in both absolute magnitude and relative percentage. Vegetation greening exerted a negative effect on WY in most 
of the YRB except a few small areas in the Yangtze River Delta and the southwest (Figure 8). There was a strong 
correlation (R = 0.9, p < 0.001) between the change in NDVI and the change in WY (Figure 5b) when the climate 
effects were excluded. In contrast, such a strong correlation disappeared between the change rate of NDVI and 
the combined effects on WY (Figure 5b). The effects of climate variation, therefore, masked the effects of vege-
tation greening on WY. WY in most of the middle and eastern YRB was reduced by more than 50 mm in 17 years 

Figure 6.  The average monthly evapotranspiration (ET) and precipitation (P) 
and the monthly ET change rate under the effects of vegetation greening alone 
during 2001 and 2018 in the Yangtze River Basin. The error bars represent the 
standard deviation of ET or P. The symbols ** and * represent that the trend of 
ET is significant (p < 0.05) and marginally significant (p < 0.1), respectively.
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(Figure 8a). The proportional changes in WY due to greening showed a different spatial pattern (Figure 8b). The 
middle north and middle west area of the YRB had the most decrease in WY in percentage (Figure 8b). Annual 
WY decreased above 25% in the middle north area and 15%–25% in the middle west area in 17 years (Figure 8b). 
The southeast coastal area, where the absolute WY change due to greening was as great as the middle north and 
middle west, did not show a high proportional decrease in WY from greening because of a much wetter climate. 
At the sub-basin scale, sub-basin IV and VIII showed the most greening effects on WY in percentage to WY in 
2001. WY decreased 78.2 mm due to greening in sub-basin IV (Jialin River basin), accounting for 33% of WY in 
2001 (238.2 mm). The greening effects on WY were −74.8 mm in 17 years accounting for 74% of WY in 2001 
(93.4 mm) and 26% of the average WY (266.1 mm) in sub-basin VIII (Han River basin, HRB).

4.  Discussion
4.1.  Greening and ET Rise

Our finding that vegetation greening induced an increase in ET was consistent with previous studies. Many glob-
al-scale studies revealed that vegetation greening was the dominant factor of global ET rise (Zeng et al., 2018; 
Zhang et al., 2015, 2016a). At the continental scale, strong positive correlations (R > 0.5) between the trends of 
ET and LAI were observed in North America, Europe, India, and southern China (Zeng et al., 2018). Teuling 
et al., (2019) also found that the forest cover increased significantly from 1960 to 2010 in Europe and had positive 
impacts on ET. The significant ET increase from vegetation greening was also observed in many other areas expe-
riencing greening in China, for example, the Loess Plateau (Shao et al., 2019), and the southern coastal areas (Bai 
et al., 2020). However, Zhang, Peña-Arancibia, et al. (2016) found that a large proportion of transpiration increase 
from vegetation greening was offset by its negative effects on soil evaporation in southern China, India and North 
America, suggesting a large uncertainty in vegetation dynamics and their impacts on water resources in the YRB.

The vegetation greening in the YRB happened through two processes. The first was forest area increase. Accord-
ing to China’s National Forest Inventory data (National Forestry and Grassland Administration of China, 2020), 
forest coverage in YRB increased from 29.5% in 2000% to 43.0% in 2020. The second process was vegetation 
thickening as indicated by the increase in NDVI for stable vegetated areas. The enhancement of vegetation ac-
tivity in stable vegetated areas accounted for 75.5% of the increase in annual mean NDVI, while the increase in 
forest area only contributed 6.7%. Accordingly, the enhancement of vegetation activity (NDVI increase) of the 
stable vegetation contributed 80.3% of the GPP increase, which resulted in the most crucial contribution (85.7%) 
to the increase in ET. The rise in greenness for stable vegetation is likely due to the forest conservation and res-
toration programs initiated in the late 1990s, notably the Natural Forest Conservation Program and Conversion 
of Cropland to Forest Program (Qu et al., 2018). CO2 fertilization was also reported as a major driver for global 
greening (Zhu et al., 2016), and may have contributed to the greening of the stable vegetation in the YRB as well. 
The significant greening trend induced an increase in GPP with a rate of 12.3 g C/m2/yr (0.9% of the annual GPP 
in 2001, p < 0.01) in the YRB during the study period. Together with the enhancement of vegetation productivity, 
ET increased significantly, consuming more water as a tradeoff.

Intensification of hydrologic droughts was generally a consequence of increasing ET (Han, Huang, et al., 2020; 
Padrón et al., 2020; Teuling et al., 2013). Our study showed that vegetation greening had stronger effects on ET 

Figure 8.  The cumulative absolute (a) and relative (b) effects of vegetation change on water yield (WY) from 2001 to 2018 at 
watershed-scale.
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in spring and autumn months (Figure 6), which could potentially exacerbate droughts (Bruijnzeel, 2004; Padrón 
et al., 2020). In contrast, vegetation greening had minor effects on the intensities of summer droughts (Figure 6).

4.2.  Greening Effects on Water Yield

This study found that vegetation greening induced an increase in annual ET significantly by 56 mm from 2001 
to 2018 over the YRB, thus decreased WY. This was equivalent to 13% of the annual WY in 2001 (427 mm). 
The greening effects on WY might be more significant in some local regions. For example, the Han River basin 
(HRB, VIII) had much less precipitation but similar ET compared to other subtropical sub-basins of the YRB 
(Figure 7a). Vegetation greening induced an increase in ET by 74.8 mm from 2001 to 2018 in HRB, accounting 
for 25% of its mean annual WY. The HRB suffered droughts in 2012 and 2013, when enhanced ET from vegeta-
tion greening on WY accounted for >60% of the mean WY in the HRB. Thus, the hydrological drought risk might 
have been significantly enhanced from vegetation greening.

However, we also revealed that climatic factors, especially precipitation, were more important in determining 
WY in the YRB. The increase and variability of precipitation masked the negative effects of vegetation greening 
on WY for YRB as a whole. Similar finding was also reported in other areas around the world. For example, 
in central Sweden, annual streamflow decreased by 39 mm during 1960–2010 due to afforestation, while pre-
cipitation induced an increase in streamflow of 67 mm (Teuling et al., 2019), masking the greening effect. In 
contrast, water yield is more sensitive to vegetation changes in arid/semi-arid areas (Cao et al., 2011, 2016; Feng 
et al., 2016). For example, vegetation greening and/or afforestation in China’s Loess Plateau, an arid/semi-arid 
area, significantly altered local water availability. In this area, the ratio of annual WY to precipitation decreased 
from 8% during 1980%–1999% to 5% for 2000–2010 as a result of vegetation greening (Feng et al., 2016). It 
appears that the background climate, watershed size, and magnitude of disturbances are major determinants to 
the hydrological responses. A global scale study (Zhou et al., 2015) found that climatic factors (precipitation, 
potential ET), instead of land cover, play the dominant role in hydrological cycle in most of the humid regions. 
Therefore, the hydrological effects of vegetation greening are most likely masked by the great variability of 
climatic factors in humid regions of the world. These masked effects are generally missing in records of hydro-
logical gauging stations.

The frequency of extreme weather events significantly increased globally and is predicted to increase in the 
future due to climate warming (Stocker, 2014; Stott, 2016). On the other hand, ET is relatively stable especially 
in humid regions such as in the southeastern U.S. according to in-situ data-based studies (Liu et al., 2018; Oishi 
et al., 2018). Consequently, in meteorological drought periods with precipitation less than normal, the enhanced 
ET from the increased vegetation cover would aggravate hydrological drought (lower water yield than normal), 
although its effect is often not strongly seen in years with expected precipitation amount and temporal pattern.

4.3.  Implications for Water Management

The large-scale forest conservation and restoration programs play an important role in vegetation greening in 
China, enhancing carbon sequestration (Chen et al., 2021; Fang et al., 2018; Ji et al., 2020) and mitigating soil 
erosion (Fu et al., 2011; Yang et al., 2015). Meanwhile, excessive implementation of these programs caused water 
shortage concerns in the arid regions of northern China (Feng et al., 2016). Our study revealed that the annual ET 
increase in the YRB was very small relative to precipitation at the large basin scale. However, local and seasonal 
drought could frequently occur in some parts of the basin, for example, the southwestern region of YRB (Yang 
et al., 2012). As the frequency and severity of drought and other extreme weather events increase (Stocker, 2014; 
Stott, 2016), enhanced ET could exacerbate drought impacts (Teuling et al., 2013). Therefore, the effects of af-
forestation on local WY in the humid regions on water yield should not be neglected.

An improved water resource management plan is needed to deal with effects of the rising ET to mitigate drought 
impacts in the future. Several forest management measures could be adopted to minimize the impact of forest 
growth on water resource: (1) avoid using fast growing exotic tree species in afforestation to minimize their water 
use while still serving soil erosion control and ecological restoration purposes, (2) thin stands to reduce water 
use, and (3) allow native vegetation to naturally regenerate as a greening strategy other than artificial plantations.
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Securing agricultural water supply for irrigation is also critical for drought impact mitigation. The YRB is one 
of the most important grain production areas in China (Xu et al., 2019). Water availability for irrigation and crop 
yield is tightly connected. Our study showed a significant ET increase in cropland in the YRB, indicating a rise 
in agricultural water demand. Globally, cropland contributed one-third of the net increase in leaf area during 
2000–2018, ranked the first among all land cover types (Chen et al., 2019). Consequently, the total grain pro-
duction in the world increased by about 50% from 2000 to 2018 (data from the World Bank, https://data.world-
bank.org/indicator/AG.PRD.CREL.MT). Irrigation played a critical role in this increase of the grain production 
(Mueller et al., 2012) in addition to other intensive agricultural management, such as multiple cropping (Ray & 
Foley, 2013) and increased fertilizer usage (Mueller et al., 2012; Zhang et al., 2018). Thus, water demand for 
grain production sharply increased. Any fluctuation of water supply for croplands could influence food security. 
Therefore, local water demand by natural ecosystems and the agricultural sector needs to be considered in the 
regional sustainable development.

4.4.  Research Limitations

There are several limitations in this study that needs to be improved in the future. As a carbon-centric model, 
CCW ET is tightly associated with carbon uptake (GPP). In the winter months, GPP could be almost zero when 
vegetation activity ceases. Consequently, ET estimated by CCW would be low as well. However, evaporation 
would not cease together with transpiration in winter although evaporation is low at this time when evaporation 
and transpiration decouple. Moreover, UWUE parameters and ET evaluation in the Tibetan Plateau region have 
more uncertainties than other areas. Few eddy flux sites exist in the FLUXNET dataset for model calibration 
have a similar environment as the Tibetan Plateau. Besides, the upscaled climate data in the Tibetan Plateau have 
larger uncertainties due to the sparse distribution of meteorological stations (Li et al., 2014, 2020). Overall, CCW 
might underestimate ET in the Yangtze River source region and winter months. However, such uncertainties have 
limited influence on our main conclusions since most of the greening occurred in other parts of the basin.

Our estimate of WY change essentially represents the sum of the change in river flow and soil water storage. 
A recent study argued that annual WY (or ET) estimated based on water balance has great uncertainties due 
to the dynamic nature of soil moisture, especially in arid/semi-arid and sparsely vegetated areas (Han, Yang, 
et al., 2020). However, the water balance-based WY in the humid and densely vegetated areas (e.g., the YRB) has 
a minor deviation of less than 10% (Han, Yang, et al., 2020). Studies on water storage of the YRB also revealed 
that the inter-annual variation of water storage for the whole YRB was mostly below 20 mm (Huang et al., 2013; 
Long et al., 2015). Overall, we believe water balance-based WY estimation in our study is reliable at the YRB. 
However, future studies on vegetation effects for specific watersheds and different stage of the greening processes 
may need to consider variations in soil water storage and river flow separately.

Some limitations may come from the data used. We noted that the streamflow-based ET for model evaluation for 
the sub-basins V and VI (Figure 3b) was only around 500 mm, which was likely too low for subtropical forested 
areas. These streamflow data used to estimate ET were not the original records from the gauging stations but from 
government summary reports (Ministry of Water Resources of China, 2019). Combined with uncertainties from 
countless human activities, future studies should not solely rely on streamflow data for model evaluation. Param-
eters of CCW were calibrated with data from FLUXNET (Pastorello et al., 2020) for uniform biomes. However, 
many modeling units are mixtures of multiple biomes to varying degrees. Therefore, biome-specific parameters 
may cause uncertainty for ET estimation in the area with mixed biomes. In addition, land cover products are often 
inconsistent (Hua et al., 2018; Ran et al., 2010; Wu et al., 2008). For example, the total forest cover of the YRB in 
MCD12Q1 v006 (16%–19%) is much lower than that of v005 (25%–35%) (Zhang et al., 2014) as a result of the al-
gorithm used in v006 that imposes stronger constraints on the amount of tree cover (Sulla-Menashe et al., 2019). 
Adoption of ensemble land cover data from multi-sources could be a way for improvement in the future study.

5.  Conclusions
This study examined the individual and combined effects of vegetation and climate changes on terrestrial ET and 
water yield (WY) with a process-based, carbon-centric, remote sensing-driven model in the Yangtze River Basin 
(YRB) from 2001 to 2018. We detected a significant vegetation greening trend in the YRB, likely a result of eco-
logical conservation and restoration, cropland productivity improvement, as well as climatic changes. We found 

https://data.worldbank.org/indicator/AG.PRD.CREL.MT
https://data.worldbank.org/indicator/AG.PRD.CREL.MT
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that annual ET increased significantly due to strong vegetation greening, but not climate. However, the enhanced 
ET did not significantly alter annual water yield at the YRB scale due to the large interannual variability of pre-
cipitation. Our study implies that vegetation greening has the potential to cause significant water supply decline, 
especially in dry seasons and years in relatively dry sub-watersheds. This study suggests that climate variability 
could mask the greening effects on water yield in large basins. Disaggregating the effects of vegetation greening 
and climate change on ET and WY provides more specific information for watershed management to mitigate 
threats to water resource security. Future monitoring studies on the effects of vegetation on watershed hydrology 
should focus on not only streamflow measurements at the watershed outlets but also on ET processes within the 
watersheds under a changing climate.

Data Availability Statement
Datasets used for driving the model and modeling results evaluation were obtained from numerous sources as 
described in Table 1. All the experimental data of this study can be found at https://osf.io/c8ysg/.
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