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A B S T R A C T   

Future water availability is influenced by both climate and associated vegetation dynamics. This study coupled 
vegetation projections from a dynamic global vegetation model (MC2) with an ecohydrological model, Water 
Supply Stress Index (WaSSI), to predict water yield at the 8-digit Hydrologic Unit Code (HUC8) watershed level 
for the conterminous United States (CONUS) for the 21st century. We considered two contrasting warming 
scenarios (Representative Concentration Pathways 8.5 and 4.5) and accounted for simulation uncertainty by 
using a large ensemble of climate model outputs. The coupled model projects a decrease in water yield across 
much of CONUS, especially towards end-century (2080–2099) under RCP 8.5 (warmer scenario), reaching up to 
− 30% at the regional level, relative to the 2008–2027 baseline period. Overall, the projected water yield 
reduction under RCP 8.5 is roughly twice as high as under RCP 4.5. Substantial changes in water yield for 
watersheds in the central and southeastern United States are expected by mid-century (2040–2059), reaching up 
to − 40% (RCP 4.5) and − 75% (RCP 8.5) at at the century’s end (2080–2099), relative to 2008–2027, respec
tively. Climate change, rather than vegetation change, strongly dominates the projected future changes in water 
yield, with contributions typically one order of magnitude higher. For a small number of watersheds, the effects 
of vegetation change can mitigate or exacerbate the effects of climate change on water yield. Our simulation 
results suggest a widespread increase in aridity and evaporative indices and a decrease in soil moisture, espe
cially under RCP 8.5. Our integrated modeling results can inform policy makers and resource development 
planners quantitative information of future water availability.   

1. Introduction 

Global water availability is rapidly changing due to climate change 
and human activities (Heidari et al., 2021a; Song et al., 2023; Sun et al., 
2023b; Zhang et al., 2023). Watershed water yield is often used as a 
surrogate of ecosystem and societal water availability. Water yield is 
defined as the total water produced as the sum of surface flow, subsur
face flow, and baseflow. The mean annual water yield represents the 
long-term (multi-year) mean difference between precipitation (P) and 
evapotranspiration (ET) within a watershed (Sun et al., 2015a). Pre
cipitation and air temperature are the key climatic drivers of water yield 
(Duan et al., 2017). Under a warmer climate, the partitioning of pre
cipitation between streamflow (i.e., water yield) and ET is generally 
expected to shift towards ET (Duan et al., 2017). This would further 
reduce water yield in watersheds projected to receive less precipitation 

in the future and offset the increase in water yield for watersheds pro
jected to receive more precipitation. In addition to climatic factors, land 
cover/land use also directly impacts water yield, given its effects on ET 
(Hu et al., 2021; Li et al., 2020; Liu et al., 2016; Sun et al., 2015a; Zhang 
et al., 2024). The interception of precipitation by vegetation and pos
terior evaporation are directly associated with its leaf area index (LAI), 
and so are its transpiration losses (Yang et al., 2023). In addition to 
potential land cover/land use changes projected for the future (e.g., 
urbanization and agricultural expansion), global vegetation cover in 
terms of total leaf area, stomatal conductance, leaf phenology, and plant 
species distribution is expected to respond to future climate change and 
increasing atmospheric CO2 and temperature (Gonzalez et al., 2010; 
Mekonnen and Riley, 2023; Teng et al., 2023). For instance, warmer and 
CO2-richer conditions may promote plant growth and lead to increased 
transpiration due to higher LAI and atmospheric evaporative demand 
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(Zhang et al., 2023). At the same time, stomatal conductance is generally 
expected to decrease in response to increasing atmospheric CO2 (Li 
et al., 2023; Medlyn et al., 2001), which would downregulate transpi
ration and contribute to reduced water stress on plants. As global 
climate change intensifies, shifts in precipitation regimes, increased air 
temperature, and associated changes in vegetation state and function 
may substantially impact water yield worldwide (Yang et al., 2023). 
Potential future reductions in water yield compounded with projected 
increases in water demand across water use sectors may lead to more 
severe, frequent, and widespread water shortages, impacting ecosystems 
and human welfare (Brown et al., 2019; Sun et al., 2008; Warziniack 
et al., 2022). 

Future climate projections from the Coupled Model Intercomparison 
Project Phase 5 (CMIP5) indicate a substantial increase in surface air 
temperature in CONUS by the end of the twenty-first century 
(2070–2099), ranging from 1.3◦ to 3.7 ◦C under the Representative 
Concentration Pathway 4.5 (RCP 4.5, a moderate warming scenario in 
which anthropogenic greenhouse gas emissions peak at mid-century) 
and from 3.0◦ to 6.1 ◦C under RCP 8.5 (a high warming scenario in 
which emissions increase throughout the 21st century), relative to 
1986–2015 (Hayhoe et al., 2018). Under RCP 8.5, much of CONUS 
annual mean surface air temperature is projected to permanently depart 
from its historical variability range in the next couple of decades 
(2029–2050; Kerns et al., 2016). Surface air temperature projections 
under different warming scenarios (e.g., RCP 4.5 and 8.5) diverge sub
stantially at mid-century, with high and increasing variability among 
individual general circulation model (GCM) projections within each 
scenario (Wuebbles et al., 2014). Winter and spring precipitation is 
projected to increase by up to 25% in the northern Great Plains, the 
upper Midwest, and the Northeast, and decrease by up to 25% in the 
Southwest at end-century under RCP 8.5 (2070–2099 relative to 
1986–2015; Hayhoe et al., 2018). The frequency of heavy precipitation 
events is projected to increase in all regions of CONUS, with end-century 
increases of about 50–100% under RCP 4.5 and 100–200% under RCP 
8.5 relative to historical regional values (Easterling et al., 2017). 

Several studies have investigated the impact of climate change on 
water yield over CONUS using hydrological models and downscaled 
CMIP5 climate projections (e.g., Duan et al., 2017; Heidari et al., 2021a, 
2021b; Mahat et al., 2017; Naz et al., 2016). While the future twenty- 
first century projections in Naz et al. (2016) and Heidari et al., 
(2021b; “intermediate” and “wet” GCMs) indicate an overall increase in 
water yield in CONUS under RCP 8.5, the projections in Heidari et al., 
(2021a), Heidari et al., (2021b; “dry” GCM), and Mahat et al. (2017) 
indicate an overall decrease in water yield. The spatial patterns of future 
water yield change projected by Heidari et al., (2021a), Mahat et al. 
(2017), and Duan et al. (2017) are in general agreement, showing a 
reduction in water yield across extensive parts of CONUS, especially in 
the central U.S., with more accentuated changes under RCP 8.5 
compared to RCP 4.5. However, these patterns of change contrast with 
those projected by Naz et al. (2016), which are generally reversed in 
sign, showing an increase in water yield across much of CONUS 
including the central U.S. under RCP 8.5. The variation across the cited 
studies is associated with different modeling approaches or simulation 
periods. Modeling approaches have included different hydrological 
models such as the Variable Infiltration Capacity (VIC; Cherkauer et al., 
2003; Liang et al., 1996, 1994) and the Water Supply Stress Index 
(WaSSI: Caldwell et al., 2012; Sun et al., 2011), and different GCM en
sembles and GCM downscaling approaches, such as dynamic and sta
tistical downscaling methods (Bias Correction and Constructed Analog, 
BCCA, Version 2: USBR, 2013; Multivariate Adaptive Constructed An
alogs, MACA: Abatzoglou and Brown, 2012; MACAv2-LIVNEH: Livneh 
et al., 2013). However, a common denominator across these studies is 
the assumption of a fixed land cover throughout the twenty-first century 
simulations, despite the fact that land cover is projected to change in 
response to climate change and increasing atmospheric CO2 (Gonzalez 
et al., 2010; Mekonnen and Riley, 2023; Teng et al., 2023). Empirical 

studies show that vegetation matters to water balances and water 
availability at multiple scales (Oudin et al., 2008; Zhang et al., 2001, 
2017). 

Differently from hydrological models, terrestrial biosphere models 
(TBMs) can account for biogeochemistry and simulate the water and 
carbon cycles in a coupled fashion, including land cover dynamics. 
TBMs with dynamic vegetation modeling capability, also known as dy
namic global vegetation models (DGVMs), allow not only the vegetation 
state (e.g., LAI and biomass) but also the distribution of plant functional 
types to respond dynamically to climate and atmospheric CO2, while 
typical TBMs prescribe the distribution. The added complexity in TBMs 
and DGVMs, however, comes at the price of being more computationally 
expensive to run in comparison to simpler hydrological models, hin
dering their application at the fine spatial resolutions typically desired 
for hydrological studies, especially for large spatial domains. The 
dependence on a much higher number of model parameters also makes 
the calibration of TBMs more challenging. Therefore, a common 
approach for studies focused on future hydrological projections is the 
use of relatively simple water-centric models and the assumption of a 
fixed land cover, as in the studies cited in the paragraph above (Duan 
et al., 2017; Heidari et al., 2021a, 2021b; Mahat et al., 2017; Naz et al., 
2016). However, changes in land cover are expected to play a significant 
role in the modulation of future water yield. For instance, Sun et al. 
(2015a) investigated the sensitivity of water yield in response to percent 
changes in LAI across the CONUS using the WaSSI ecohydrological 
model. They found an overall increase in water yield in CONUS of 3%, 
8%, and 13% associated with LAI decreases of 20%, 50%, and 80%, 
respectively, and a decrease of 3% associated with an LAI increase of 
20%. Bridging between the use of fully-coupled, complex TBMs/DGVMs 
and relatively simple hydrological models with prescribed vegetation – 
to enable investigations of the impacts of future climate and vegetation 
change on water yield at fine spatial resolution over a large spatial 
domain as CONUS – is yet to be explored. 

In this paper, we present results from coupling vegetation projections 
from the MC2 DGVM (Bachelet et al., 2001; Conklin et al., 2016) with 
the WaSSI hydrological model (Caldwell et al., 2012; Sun et al., 2011) to 
project water yield for the CONUS at the USGS 8-digit Hydrologic Unit 
Code watershed scale (HUC8), comparable in size to counties. Our 
approach represents a one-way coupling technique, i.e., coupling 
available future projections of LAI and vegetation type from a DGVM 
with a hydrological model. WaSSI has been extensively validated for 
CONUS at multiple scales (USGS 2-digit HUC, HUC2, and overall 
CONUS: Duan et al., 2017; HUC8: Caldwell et al., 2012; USGS 12-digit 
HUC, HUC12: Li et al., 2020; Sun et al., 2015b) and MC2 has been 
tested regionally and globally for climate change studies (Golub et al., 
2022; Kim et al., 2018, 2017; Zhou et al., 2019). We drove WaSSI with 
statistically downscaled future climate projections depicting RCP 4.5 
and 8.5 scenarios by 16 CMIP5 GCMs (Localized Constructed Analogs, 
LOCA; Pierce et al., 2015, 2014). We adopted available vegetation 
projections made with the MC2 DGVM (EPA, 2017) using the same 
climate driver (LOCA) for integration with WaSSI. While there has been 
previous work that present future projections of water yield for CONUS, 
this study is, to our knowledge, the first to employ an ensemble of future 
vegetation projections and provide water yield projections at a relatively 
fine scale (i.e., HUC8 watersheds). Our goal was to investigate potential 
future changes in climate and vegetation and their impact on water 
balances (e.g., water yield, ET, soil moisture) in CONUS for the mid- 
century (ca. 2050) and end-century (ca. 2090) under contrasting 
warming scenarios (RCP 4.5 and 8.5), taking into consideration the 
uncertainty arising from GCMs. Our central hypothesis was that climate 
change significantly alters water balances both directly via changes in 
air temperature and precipitation and indirectly via climate/CO2- 
induced changes in leaf area. 
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2. Methods 

2.1. Study area 

We carried out our simulations for the conterminous United States 
(CONUS) at the HUC8 scale, covering a total of 2099 watersheds with an 
average area of 3752 km2 (Fig. 1). In Section 3, our results are presented 
at the HUC8 scale and summarized at the HUC2 scale, i.e., for each one 
of the 18 USGS water resources regions in CONUS (Fig. 1). 

2.2. WaSSI model description 

The Water Supply Stress Index (WaSSI) model uses a simplified water 
balance approach to simulate the monthly water yield, ET, and soil 
moisture of each HUC8 watershed in a specified domain (Caldwell et al., 
2012; Sun et al., 2011). The model has been well tested in the US (Duan 
et al., 2019; Li et al., 2020) and globally in Germany (Al-Qubati et al., 
2023), China (Liu et al., 2013), Rwanda (Bagstad et al., 2018), and Nepal 
(Sun et al., 2023a) on water yield and ecosystem productivity. 

Soil hydrological processes including infiltration, storage, and 
drainage are simulated with an algorithm based on the Sacramento Soil 
Moisture Accounting Model (SAC-SMA, Burnash, 1995; Burnash et al., 
1973). Monthly ET is initially estimated with an empirical function of 
potential evapotranspiration (PET), LAI, and P, derived from eddy- 
covariance flux measurements at multiple sites (Sun et al., 2011). PET 
is calculated based on air temperature and the daytime length defined by 
latitude and day of the year (Hamon, 1963). The final ET estimate is 
constrained by the available soil moisture. Each watershed is composed 
by up to 10 land cover types: 1) deciduous forest, 2) evergreen forest, 3) 
mixed forest, 4) shrubland, 5) grassland, 6) barren land, 7) wetland, 8) 
water, 9) cropland, and 10) urban. Coverage area fraction, impervious 
cover fraction, and mean monthly LAI values are assigned to each land 
cover type, while all land cover types share the same watershed soil 
properties. WaSSI calculates all water balance components for each land 
cover type independently, and then integrates the results at the water
shed level via area-weighted averaging. The model runs on a monthly 
time step, and is driven with uniform precipitation and air temperature 
data for each HUC8 watershed. 

For CONUS, surface input data, including soil properties based on the 

Digital General Soil Map of the US (STATSGO2, NRCS, 2024), land and 
impervious cover based on the 2006 National Land Cover Database 
(NLCD; USGS, 2011), and LAI based on 2000–2006 mean monthly 
MODIS LAI (Zhao et al., 2005), is available at the HUC8 scale. Note that 
we combine the land cover and LAI datasets with MC2 simulations to 
project values for 2007–2099 (Sect. 2.4), and that we define 2008–2027 
as a “present-day” baseline for comparison with mid- and late-century 
projections of vegetation and hydrology (Sect. 2.5). 

The WaSSI model originally assumes no changes in land cover over 
the years. Therefore, we adapted the model structure to allow for a 
dynamic land cover. We also applied a small modification in the code 
regarding the ET calculation. By default, WaSSI calculates a potential 
actual evapotranspiration value (ET*, i.e., unconstrained by available 
soil moisture) as: 

ET* = 0.0222PET LAI+0.174P+ 0.502PET+5.31LAI (1)  

For watersheds located in regions 1, 2, 4, and 5 in the northeastern U.S. 
(Fig. 1) with more than 20% forest cover, WaSSI calculates ET* as: 

ET* = 0.00169PET P+ 0.4PET+7.83LAI (2)  

The alternate formulation (Eq. (2)) is used in WaSSI as it was found to 
improve ET simulations in those cases, when compared to annual ob
servations of P − water yield. With our implementation of dynamic land 
cover, WaSSI could potentially switch back and forth over time between 
the two ET* formulations for a given watershed in those regions. To 
avoid inconsistencies, we opted to remove the forest cover conditional 
from the code, but kept the alternate ET* formulation for regions 1, 2, 4, 
and 5. 

2.3. Future climate projections 

Statistically downscaled climate projections from 16 CMIP5 general 
circulation/Earth system models under scenarios RCP 4.5 and 8.5 were 
used with WaSSI (Localized Constructed Analogs, LOCA: Pierce et al., 
2015, 2014; see Table 1). The model/scenario selection was based on the 
availability of corresponding MC2 simulations (Section 2.4). The near- 
surface air temperature and precipitation data from the LOCA down
scaled climate dataset were aggregated from the original 1/16◦, daily 

Fig. 1. USGS HUC8 watersheds (blue lines) and HUC2 water resources regions (black lines) in CONUS. Regions include 1) New England, 2) Mid-Atlantic, 3) South 
Atlantic-Gulf, 4) Great Lakes, 5) Ohio, 6) Tennessee, 7) Upper Mississippi, 8) Lower Mississippi, 9) Souris-Red-Rainy, 10) Missouri, 11) Arkansas-White-Red, 12) 
Texas-Gulf, 13) Rio Grande, 14) Upper Colorado, 15) Lower Colorado, 16) Great Basin, 17) Pacific Northwest, and 18) California. Corresponding short labels (A to R) 
are used in the figures in Section 3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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spatial–temporal scale to the HUC8, monthly scale. 

2.4. Future projections of potential vegetation with the MC2 DGVM and 
integration with WaSSI 

The MC2 DGVM can project future changes in vegetation type and 
state (e.g., LAI, biomass) in response to climate change and increasing 
atmospheric CO2. The MC2 DGVM is a refactored version of the MC1 
DGVM (Bachelet et al., 2001; Conklin et al., 2016), with no change in 
science but with improvements in computational performance (Kim 
et al., 2018). MC2 consists of 3 submodels that address biogeochemistry 
(CENTURY Soil Organic Matter Model; Parton et al., 1993), fire distur
bance (MC-Fire fire simulation model; Conklin et al., 2016), and 
biogeography (MAPSS vegetation biogeography model; Neilson, 1995). 
A full technical description of MC2 is available in Bachelet et al. (2001) 
and Conklin et al. (2016). 

For integration with WaSSI (Fig. 2), we obtained future projections 
of potential natural vegetation from MC2 simulations under the same 
scenarios and climate forcing described in Section 2.3 (EPA, 2017). 
Annual outputs of vegetation type and LAI at the 1/16◦ spatial scale 
were adapted as input into WaSSI. First, we translated the ~50 vege
tation types output by MC2 into one of the six natural vegetation types 
defined by WaSSI (i.e., deciduous, evergreen, and mixed forests; 
shrubland, grassland, and barren land), and then applied a natural 
vegetation mask based on the 2006 NLCD product (USGS, 2011) to all 

MC2 grid cells, masking out the areas characterized by other land cover 
types (e.g., urban areas, croplands, and artificial pasture). Second, we 
aggregated the MC2 results per ecoregion (level-2 ecoregions of North 
America; EPA, 2010; Fig. 3), obtaining the area fraction for each vege
tation type, related to the total natural vegetation area, and the 
respective LAI. HUC8 polygons have fine spatial resolution in relation to 
the 1/16◦ grid resolution used by MC2, with some HUC8 polygons 
coinciding with as few as a single 1/16◦ grid cell. We extracted a 
regional signal from MC2 output to increase our confidence in its 
vegetation projections. Third, from the ecoregion-level results, we 
calculated the anomalies in vegetation area fraction and LAI for years 
2007–2099 relative to a 2000–2006 mean baseline. Finally, we com
bined the default vegetation boundary conditions in WaSSI, based on 
2006 NLCD and 2000–2006 mean monthly MODIS LAI, with the 
anomalies derived from the MC2 simulations to create, for each natural 
vegetation type, a time series of annual area fraction and monthly LAI 
for 2007–2099 at the HUC8 scale. We only let the natural vegetation 
fraction of each HUC8 to be dynamic. The remaining land cover types 
considered in WaSSI (urban, cropland, wetland, and water) were kept 
constant over time. A more detailed description of our procedure to 
create the dynamic vegetation boundary conditions within WaSSI is 
given in Appendix A. 

2.5. Simulation experiments and data analysis 

To assess the combined impact of climate and vegetation change on 
water yield, we carried out an ensemble of 16 simulations with the 
revised WaSSI model (Section 2.2) for each RCP scenario (4.5 and 8.5, 
totaling 32 simulations), using LOCA-downscaled climate projections 
from 16 GCMs (Section 2.3) and the corresponding MC2-based vegeta
tion projections (Section 2.4), covering years 2007 to 2099. To assess the 
individual impacts of direct climate change (i.e., changes in air tem
perature and precipitation) and climate-induced vegetation change on 
water yield, we ran two additional WaSSI simulation ensembles: the first 
with dynamic climate and fixed vegetation (i.e., annual area fraction and 
monthly LAI of each vegetation type fixed at their year 2007 values, 
looped throughout the simulation), and the second with fixed climate (i. 
e., monthly temperature and precipitation values for year 2007, looped 
throughout the simulation) and dynamic vegetation, all else was the 
same as in main simulation ensemble. 

We calculated future changes in water yield and in other relevant 
model outputs (e.g., ET, soil moisture) and inputs (e.g., air temperature, 
precipitation, vegetation cover fraction, LAI) for mid-century 
(2040–2059) and end-century (2080–2099) relative to a “present-day” 
(2008–2027) baseline. We disregarded the first simulation year (2007) 
as it was used for WaSSI spin-up. We calculated mean ensemble differ
ences between climatological periods (i.e., mid-century – present, end- 
century – present) for RCP 4.5 and 8.5, and determined their statisti
cal significance via Student’s t test (dependent t test for paired samples). 
The calculations were done at the HUC8 and HUC2 scales (Fig. 1). 

We also investigated hydrological changes at the regional level by 
using the Budyko framework (Budyko, 1958). We averaged ET, PET, and 
precipitation at the HUC2 scale for each climatological period, and then 
calculated an evaporative index (ET/P) and an aridity index (PET/P). 
We then ensemble averaged the indices for each climatological period 
under RCP 4.5 and 8.5. The statistical significance of the differences 
between climatological periods was determined via Student’s t test 
(dependent t test for paired samples). For each period and RCP scenario, 
we adjusted an overall Budyko curve in ET/P × PET/P space for CONUS 
based on results for all 18 HUC2s (Fig. 1). We chose the Fu (1981) 
model: 

ET
P

= 1+

(
PET

P

)

−

(

1 +

(
PET

P

)ω )1
ω

(3)  

where ω is an empirical parameter (adjustable) representing overall 

Table 1 
LOCA climate datasets used as input to WaSSI (LOCA statistically downscales 
CMIP5 model outputs to 1/16◦ resolution for the conterminous United States; 
Pierce et al., 2015, 2014).  

Model Institution Original spatial 
resolution (lon 
× lat) 

Reference 

ACCESS1-0 Commonwealth Scientific and 
Industrial Research 
Organisation, and Bureau of 
Meteorology, Australia 

1.875◦ × 1.25◦ (Bi et al., 
2013) 

CanESM2 Canadian Centre for Climate 
Modelling and Analysis 

2.8◦ × 2.8◦ (Chylek 
et al., 2011) 

CCSM4 National Center for 
Atmospheric Research, USA 

1.25◦ × 0.94◦ (Gent et al., 
2011) 

CNRM-CM5 Centre National de Recherches 
Météorologiques and Centre 
Européen de Recherche et de 
Formation Avancées en Calcul 
Scientifique, France 

1.4◦ × 1.4◦ (Voldoire 
et al., 2013) 

GFDL-CM3 NOAA Geophysical Fluid 
Dynamics Laboratory, USA 

2.5◦ × 2.0◦ (Donner 
et al., 2011) 

GFDL- 
ESM2G 

2.5◦ × 2.0◦ (Dunne et al., 
2012) 

GFDL- 
ESM2M 

2.5◦ × 2.0◦ (Dunne et al., 
2012) 

HadGEM2- 
ES 

Met Office Hadley Centre, UK 1.875◦ × 1.25◦ (Bellouin 
et al., 2011) 

INM-CM4 Institute for Numerical 
Mathematics, Russia 

2.0◦ × 1.5◦ (Volodin 
et al., 2010) 

IPSL-CM5A- 
LR 

Institut Pierre-Simon Laplace, 
France 

3.75◦ × 1.875◦ (Dufresne 
et al., 2013) 

IPSL-CM5A- 
MR 

2.5◦ × 1.25◦ (Dufresne 
et al., 2013) 

MIROC5 Atmosphere and Ocean 
Research Institute (The 
University of Tokyo), National 
Institute for Environmental 
Studies, and Japan Agency for 
Marine-Earth Science and 
Technology 

1.4◦ × 1.4◦ (Watanabe 
et al., 2010) 

MIROC- 
ESM- 
CHEM 

2.8◦ × 2.8◦ (Watanabe 
et al., 2011) 

MIROC-ESM 2.8◦ × 2.8◦ (Watanabe 
et al., 2011) 

MRI-CGCM3 Meteorological Research 
Institute/ Japan 
Meteorological Agency 

1.1◦ × 1.1◦ (Yukimoto 
et al., 2012) 

NorESM1-M Norwegian Climate Centre 2.5◦ × 1.875◦ (Bentsen 
et al., 2013)  
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catchment properties. 

2.6. Validation of the 2008–2027 “Present-Day” baseline 

For validation purposes, we compared mean annual LOCA- 
downscaled projections of surface air temperature and precipitation 
for the 2008–2027 “present-day” baseline at the HUC8 level in CONUS 
against 2008–2023 mean annual observations from PRISM (PRISM 
Climate Group, 2024). We also compared 2008–2027 mean annual ET 
simulated with WaSSI against 2008–2023 mean annual MODIS ET 
(Running et al., 2021). Monthly PRISM and annual MODIS ET data were 
aggregated at the HUC8 level from original spatial resolutions of 4 km 
and 500 m, respectively. 

3. Results 

3.1. Accuracy of the 2008–2027 “Present-Day” baseline 

Mean annual air temperature and precipitation projected for 
2008–2027 under RCP 8.5 for the HUC8s in CONUS (LOCA dataset) are 
tightly correlated (r = 0.99) with mean annual PRISM observations for 
2008–2023 (Fig. 4a,b), with small mean bias errors (MBE) of 0.48 ◦C 

and − 37 mm yr− 1 and root mean square errors (RMSE) of 0.82 ◦C and 
83 mm yr− 1. Mean annual ET projected for 2008–2027 under RCP 8.5 
based on WaSSI is highly correlated (r = 0.86) with mean annual MODIS 
ET for 2008–2023 (Fig. 4c), with a reasonably small MBE of 25 mm yr− 1 

and RMSE of 118 mm yr− 1. In each comparison (T, P, ET), the linear 
regression exhibits a slope close to 1 and an intercept close to 0 (see 
Fig. 4). Results under RCP 4.5 are virtually identical to those presented 
here (not shown). This demonstrates that our “present-day” simulations 
can be used as the baseline for the calculation of the relative changes for 
mid-century and end-century. 

3.2. Change in climate and land cover 

Air temperature is projected to significantly increase across CONUS 
at mid-century and end-century under scenarios RCP 4.5 and RCP 8.5, 
based on the LOCA climate projections (Fig. 5a,b, S1a,b). Under RCP 
4.5, the changes at the HUC2 scale relative to “present day” vary from 
0.98 to 1.43 ◦C (mid-century) and 1.62 to 2.41 ◦C (end-century), while 
under RCP 8.5, the changes are roughly twice as high: 1.47 to 2.09 ◦C 
(mid-century) and 3.72 to 5.28 ◦C (end-century). 

The projected precipitation changes across CONUS based on LOCA 
are less clear compared to the projected air temperature changes, 

Fig. 2. WaSSI-MC2 integration overview. High resolution (daily, 1/16◦) future climate projections with multiple GCMs and scenarios (LOCA; Pierce et al., 2015, 
2014) are used to drive the MC2 DGVM. The projected potential natural vegetation types and LAI (MC2 DGVM annual outputs) are first translated to WaSSI natural 
vegetation classes and integrated at the ecoregion level (Fig. 3). Then, anomalies are calculated relative to a 2000–2006 baseline. The natural vegetation type and LAI 
anomalies at the ecoregion level are combined with land cover “observations” for year ~2006 at the monthly, HUC8 scale (based on 2006 NLCD and 2000–2006 
MODIS data products, as originally defined in WaSSI) to project future land cover (2007–2099), which is then used as input in WaSSI. Note that only changes in 
natural vegetation are projected, while the other land cover classes in WaSSI are kept fixed on year ~2006 values. The climatic driver for WaSSI is created by 
integrating precipitation and air temperature from the LOCA downscaled climate projections at the monthly, HUC8 scale. With the dynamic climate and land cover 
inputs, WaSSI is run to project future hydrology. In the flow chart, “Proc.” (gray diamonds) indicates data processing steps. See Section 2.4 for further details. 
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especially due to the high variability across GCMs (Fig. 5c,d, S1c,d). For 
most regions, the projected precipitation changes at mid- and end- 
century under scenarios RCP 4.5 and 8.5 are statistically insignificant. 
The projected precipitation changes at end-century under scenario RCP 
8.5 exhibit a relatively clearer pattern, with statistically significant in
creases (decreases) in the order of 10% at many northern (southern) 
HUC8s (Fig. 5d). 

Based on MC2 simulations of potential natural vegetation and 
“present-day” observations, our projected changes in vegetation type 
and LAI show similar spatial patterns under RCP 4.5 and 8.5, with more 
pronounced changes under the latter scenario (Figs. 6 and 7; see also 
Figs. S2 and S3). At end-century and under RCP 8.5, notable vegetation 
type shifts include: 1) mixed forest to deciduous forest in the northern 
Appalachians and upper Midwest; 2) deciduous forest to mixed/ever
green forest in the southern Appalachians; 3) evergreen forest to mixed 
forest in the Pacific Northwest; 4) grassland to shrubland in the Inter
mountain West; and 5) shrubland to grassland in the Great Plains, with 
changes of up to ≈ 0.28, 0.11, 0.46, 0.10, and 0.06 in HUC8 coverage 
area fraction, respectively (Fig. 7). Also notable is the projected increase 
in evergreen forest coverage in the southeastern coastal plains and 
western mountain ranges (i.e., up to ≈ 0.08 in HUC8 coverage area 
fraction), associated with a combined coverage reduction of other 
vegetation types. For the same period and scenario, total LAI is projected 
to increase in the western mountain ranges, southern Great Plains, and 
southeastern coastal plains, and decrease in parts of the Intermountain 
West and Appalachians, with relative changes reaching up to ≈ +33%, 
+10%, +14%, − 10%, and − 5% at the HUC8 scale, respectively 
(Fig. 7g). Under RCP 4.5, the projected shift in vegetation type in the 
northern Appalachians and Pacific Northwest at end-century also stands 
out, but is less pronounced than under RCP 8.5 (changes in HUC8 
coverage area fraction of up to ≈ 0.22 (mixed forest to deciduous forest) 
and ≈ 0.20 (evergreen forest to mixed forest), respectively; see Fig. 6). 
In other regions, the projected shift in vegetation type is generally 
similar as under RCP 8.5, but displaying lower magnitudes and often
times a lack of statistical significance. The same applies to the projected 
changes in LAI. In the western mountains and southeastern coastal 
plains, the projections indicate an increase of up to about 15% and 8% at 
the HUC8 scale, respectively, and a decrease of up to about 9% in the 

Intermountain West (Fig. 6g). 
At mid-century, under both RCP 4.5 and 8.5 scenarios, the projected 

changes in vegetation type and LAI across CONUS are generally statis
tically insignificant (Figs. S2 and S3). Notable exceptions are the 
northern Appalachians and the Pacific Northwest, which present sta
tistically significant changes in vegetation type in the same direction as 
described above. 

3.3. Change in evapotranspiration 

Based on our WaSSI simulations, ET is projected to significantly in
crease across CONUS under RCP 4.5 and 8.5 at mid-century (Fig. S4a,b) 
and end-century (Fig. 8a,b), except generally for portions of the 
Southwest and Great Plains, in which the projected changes are statis
tically insignificant. The projected increase in ET is notably stronger in 
the North, Northeast, and Rocky Mountains. ET is projected to signifi
cantly increase in 12 HUC2s at mid-century and end-century under both 
RCP 4.5 and 8.5, ranging from 2% to 6% (3% to 7%) at mid-century and 
4% to 9% (8% to 20%) at end-century under RCP 4.5(8.5) (Fig. 9). 
Conversely, the projected changes for HUCs 12-Texas-Gulf, 13-Rio 
Grande, 15-Lower Colorado, and 18-California for both periods and 
scenarios are statistically insignificant. In HUCs 11-Arkansas-White-Red 
and 16-Great Basin, ET is projected to significantly increase at end- 
century under both scenarios. 

3.4. Change in water yield 

Water yield is projected to significantly decrease across vast areas of 
CONUS, especially at end-century under RCP 8.5 (Fig. 8c,d and S4c,d). 
Virtually no significant increase is projected. Under RCP 8.5, a sub
stantial decrease in water yield is projected for HUC8s in the central and 
southeastern U.S. (up to − 47( − 75)% and − 102 ( − 207) mm year− 1 at 
mid-century (end-century)), while statistically insignificant changes are 
projected for the western and northeastern U.S. Under RCP 4.5, the 
projected changes in water yield are substantially smaller, lacking sta
tistical significance for most of CONUS, except generally for areas in the 
central and southeastern U.S., with HUC8 changes of up to − 38( − 40) % 
and − 74( − 71) mm year− 1 at mid-century (end-century). Water yield is 

Fig. 3. Level-2 ecoregions in CONUS (EPA, 2010): 5.2 Mixed wood shield, 5.3 Atlantic highlands, 6.2 Western cordillera, 7.1 Marine west coast forest, 8.1 Mixed 
wood plains, 8.2 Central USA plains, 8.3 Southeastern USA plains, 8.4 Ozark/Ouachita-Appalachian forests, 8.5 Mississippi alluvial and southeast USA coastal plains, 
9.2 Temperate prairies, 9.3 West-central semiarid prairies, 9.4 South central semiarid prairies, 9.5 Texas-Louisiana coastal plain, 9.6 Tamaulipas-Texas semiarid 
plain, 10.1 Cold deserts, 10.2 Warm deserts, 11.1 Mediterranean California, 12.1 Western Sierra Madre piedmont, 13.1 Upper Gila mountains, 15.4 Everglades. 
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projected to significantly decrease in four HUC2s at mid-century and 
end-century under both RCP 4.5 and 8.5 (8-Lower Mississippi, 10-Mis
souri, 11-Arkansas-White-Red, and 13-Rio Grande), ranging from − 14 
( − 18) % to − 8( − 10) % and − 41( − 55) mm year− 1 to − 3(− 4) 
mm year− 1 at mid-century and − 14( − 30) % to − 7( − 22) % and − 41 
( − 122) mm year− 1 to − 3(− 7) mm year− 1 at end-century under RCP 4.5 
(8.5) (Fig. 10). Conversely, the projected changes for HUCs 1-New En
gland, 16-Great Basin, 17-Pacific Northwest, and 18-California for both 
periods and scenarios are statistically insignificant. In HUCs 7-Upper 
Mississippi and 9-Souris-Red-Rainy, water yield is projected to signifi
cantly decrease at end-century under both scenarios. 

3.5. Change in soil moisture 

Soil moisture is projected to significantly decrease across most of 
CONUS at mid-century (Fig. S4e,f) and end-century (Fig. 8e,f) under 
both RCP 4.5 and 8.5 (in our paper, unless otherwise specified, “soil 
moisture” refers to total column soil moisture). Virtually no significant 
increase is projected. At end-century under RCP 8.5, soil moisture is 
projected to significantly decrease across virtually all HUC8s. The pro
jected changes are substantial in the central and western US, reaching up 
to − 28( − 49) % and − 0.14(− 0.27) at the HUC8 scale at mid-century 
(end-century) under RCP 8.5, and − 24( − 30) % and − 0.10(− 0.13) 
under RCP 4.5. Soil moisture is projected to significantly decrease in 14 

HUC2s at mid-century and end-century under both RCP 4.5 and 8.5 (all 
HUC2s but 1-New England, 2-Mid-Atlantic, 4-Great Lakes, and 15-Lower 
Colorado), ranging from − 12( − 16) % to − 1(− 2) % and − 0.05(− 0.06) 
to − 0.01(− 0.02) at mid-century and − 13( − 31) % to − 2(− 5) % and 
− 0.06(− 0.13) to − 0.01(− 0.04) at end-century under RCP 4.5(8.5) 
(Fig. 11). In HUCs 4-Great Lakes and 15-Lower Colorado, soil moisture is 
projected to significantly decrease at end-century under both scenarios. 

3.6. Change in aridity and evaporative indices 

Our projections indicate a significant change in the Budyko space 
towards higher aridity and evaporative indices for virtually all HUC2s at 
mid- and end-century under RCP 4.5 and 8.5 (Fig. 12). Changes are more 
substantial at end-century and under RCP 8.5 (Fig. 12d). Overall, the 
“present-day” and projected future values (origin and tip of the vectors 
in Fig. 12, respectively) follow a Budyko curve. The adjusted ω param
eter in Fu’s equation (3) slightly drops from 2.59(2.58) to 2.55(2.52) at 
mid-century and to 2.52(2.43) at end-century under RCP 4.5(8.5). 
Interestingly, the HUC 18-California notably deviates from the Budyko 
curve for all periods and scenarios, with relatively small ET/P for the 
given PET/P value. In HUC 18-California, the projected changes in 
aridity index are statistically significant at mid- and end-century under 
both scenarios, but the changes in evaporative index are not (except for a 
small change at mid-century under RCP 4.5, Fig. 12a). The projected 

Fig. 4. Comparison of mean annual “present-day” (2008–2027) projections under RCP 8.5 against mean annual observations (2008–2023) for each HUC8 in CONUS 
(n = 2099): a) surface air temperature (LOCA projection vs. PRISM data), b) precipitation (LOCA projection vs. PRISM data), and c) evapotranspiration (WaSSI 
projection vs. MODIS data). Projections correspond to ensemble averages (16 GCMs; see Table 1). 
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changes in evaporative index for HUCs 16-Great Basin and 15-Lower 
Colorado at mid/end-century under RCP 4.5 are also insignificant, 
while the projected changes in aridity index are significant (except for 
HUC 15-Lower Colorado at mid-century; in this case the projected 
changes in both indices are insignificant; Fig. 12a,c). 

3.7. Drivers of water yield change 

Our “fixed-vegetation” and “fixed-climate” sensitivity simulations 
indicate a much stronger impact (i.e., 1 order of magnitude higher) of 
direct climate change (i.e., changes in precipitation and air temperature) 
on future water yield, compared to the impact of vegetation change 
(Figs. 13 and S5). The projected end-century changes in water yield 
under RCP 8.5 with the “fixed-vegetation” simulation (Fig. 13c,d), 
highlighting the impact of climate change on water yield, differs little 
from our standard simulation with dynamic climate and dynamic 
vegetation (Fig. 13a,b; see also Fig. 13g,h). In the former case, signifi
cant changes vary from − 75 to 47% and − 207 to 153 mm year− 1 at the 
HUC8 scale, while in the latter, changes vary from − 75 to 47% and 
− 207 to 139 mm year− 1. The projected changes with the “fixed-climate” 
simulation (Fig. 13e,f), highlighting the impact of vegetation change on 
water yield, are generally significant in forest areas of the Northeast, 
Southeast, and western mountains. The significant changes vary from 
− 7 to 8% and − 23 to 14 mm year− 1 at the HUC8 scale, with typically 
positive values in the Northeast, negative values in the Southeast, and 
mixed values in the western mountains. Note that the projected changes 
in water yield (Fig. 13e,f) are inversely correlated with the projected 
changes in LAI (Fig. 7g). The magnitude of the ratio between significant 
“fixed-climate” and “fixed-vegetation” absolute changes in water yield 
(vegetation and climate change impacts on water yield, respectively) 
varies from 0.02 to 47% at the HUC8 scale, with first, second, and third 
quartiles of 1, 3, and 9%, respectively. Under RCP 4.5, the impact of 

climate change on water yield is smaller than under RCP 8.5 (Fig. S5c,d), 
but so is the impact of vegetation change (Fig. S5e,f), resulting in similar 
vegetation/climate change impact ratios. 

4. Discussion 

4.1. Overall Spatial-Temporal patterns of change 

4.1.1. Land cover 
Our projected changes in land cover (Figs. 6 and 7), based on 

available MC2 simulations, reflect projected changes in climate and 
wildfire occurrence and effects. Overall, our projected changes in 
vegetation type are consistent with latitudinal and elevational shifts in 
vegetation distribution under a warmer climate, as shown in previous 
studies (e.g., Gonzalez et al., 2010; Grimm et al., 2013). Our projected 
changes in LAI are generally comparable with other simulations, but 
more shifted towards negative values (i.e., decreases). Mahowald et al. 
(2016) assessed global LAI projections from 18 CMIP5 GCMs, 11 of 
which has dynamic vegetation simulation capability. Their projections 
generally show larger LAI values across CONUS at end-century under 
RCP 8.5 (2081–2100 vs. 1981–2000), with absolute changes ranging 
from about − 0.15 to 1.05 m2 m− 2 when all 18 GCMs were considered 
and from 0.15 to 0.75 m2 m− 2 when only the top 50% performing GCMs 
were considered (based on historical observations of LAI) (Mahowald 
et al., 2016). For comparison, we found in our study that, under RCP 8.5, 
the end-century absolute changes can reach up to about 0.35 m2 m− 2 in 
the Southeast and Northwest, − 0.10 m2 m− 2 in the Appalachians, 0.10 
m2 m− 2 in the Rockies, and ± 0.04 m2 m− 2 in the central U.S. (percent 
changes shown in Fig. 7). We used a different baseline period (i.e., 
2008–2027), which could partially explain the smaller changes in our 
study. Also, the simulations analyzed by Mahowald et al. (2016) 
correspond to fully-coupled global runs at coarse spatial scales of about 

Fig. 5. Projected changes in air temperature (a, b) and precipitation (c, d) at end-century (2080–2099) under scenarios RCP 4.5 and 8.5, respectively, at the HUC8 
scale, based on the LOCA downscaled climate dataset. Absolute changes in air temperature and percent changes in precipitation relative to “present day” 
(2008–2027) are shown. The hatched pattern indicates insignificant changes at the 95 % confidence level. HUC2s are delineated in black. 
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Fig. 6. Projected changes in vegetation type and LAI at end-century (2080–2099) under scenario RCP 4.5 at the HUC8 scale, based on MC2 projections and “present- 
day” observations. Absolute changes in coverage area fraction are shown for deciduous forest (a), evergreen forest (b), mixed forest (c), shrubland (d), grassland (e), 
and barren land (f), relative to “present day” (2008–2027). Percent changes in total LAI relative to 2008-2027 are shown in panel g. The hatched pattern indicates 
insignificant changes at the 95% confidence level. HUC2s are delineated in black. 
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Fig. 7. Same as Fig. 6, but for scenario RCP 8.5.  
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2◦. We also compared, at the ecoregion level in CONUS, the original 
MC2 LAI projections that we started with against available DGVM LAI 
projections from the Inter-Sectoral Impact Model Intercomparison 
Project (ISIMIP; Reyer et al., 2019). We examined global simulations 
from five different DGVMs at ½◦ spatial resolution, each one driven by 
climate projections from 1 to 4 CMIP5 GCMs under RCP 6.0, assuming 
no land use change in the future (ISIMIP Protocol 2b, Experiment III; 
simulations under RCP 8.5 climate and CO2 were unavailable except for 
one DGVM, so we used the closest scenario, RCP 6.0). We found that the 
future LAI anomalies projected with MC2 under RCP 8.5 were compa
rable with the ISIMIP projections. However, the ISIMIP results generally 
indicate positive LAI trends, while the MC2 results indicate approxi
mately neutral or negative trends for most ecoregions (not shown). 
Different RCP scenarios, selection of GCMs, spatial resolution (1/16◦ in 
MC2 vs. ½◦ in ISIMIP) and GCM climate downscaling could partially 
explain the differences in projected LAI. 

4.1.2. Evapotranspiration 
Our projections indicate a substantial increase in ET across much of 

CONUS, except generally for water-limited areas in the South and 
Southwest (Figs. 8, 9, S4). The spatial patterns of change are generally 
similar to those projected by Mahat et al. (2017) (2071–2090 vs. 
1991–2010, RCP 4.5, 8.5) based on VIC simulations with statistically 
downscaled climate outputs from 7 CMIP5 GCMs (BCCA product). It is 
important to note that our results reflect the modeling approach for PET 
within WaSSI. Here we used the default configuration in WaSSI, in 
which PET is calculated based on near-surface air temperature and the 
daytime length defined by latitude and day of the year (Hamon, 1963). 
Duan et al. (2017) compared PET projections for CONUS with Hamon’s 
formulation and an implementation of Penman-Monteith’s formulation 
for a reference crop surface (Allen et al., 1998), and found substantially 
larger PET values with the former towards the end of the century, noting 
that Hamon’s PET does not account for the attenuation expected with 

Fig. 8. Projected changes in ET (a, b), water yield (c, d), and soil moisture (e, f) at end-century (2080–2099) under scenarios RCP 4.5 and 8.5, respectively, at the 
HUC8 scale, based on WaSSI output. Percent changes relative to “present day” (2008–2027) are shown. The hatched pattern indicates insignificant changes at the 
95% confidence level. HUC2s are delineated in black. 
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the projected increase in specific air humidity. The Penman-Monteith 
reference crop ET takes into consideration air temperature, specific air 
humidity, wind speed, and net radiation, being widely used and regar
ded as a reliable approach to estimate PET. At the same time, the 
downside of Penman-Monteith-based formulations is the dependence on 
additional meteorological variables, which may be unavailable or highly 
uncertain in future climate projections from GCMs. Here we opted for 
the default configuration (Hamon’s PET) in WaSSI given its simplicity. 
Note that we used the LOCA downscaled climate projections to drive 
WaSSI, for consistency with the adopted MC2 vegetation projections, 
and that LOCA does not provide all meteorological variables necessary 
to calculate PET via a Penman-Monteith-based approach. 

4.1.3. Water yield 
Our projected changes in water yield across CONUS generally follow 

a similar spatial pattern to those of recent studies with the WaSSI and 
VIC models (Duan et al., 2017; Heidari et al., 2021a; Mahat et al., 2017). 
Our projections are remarkably similar to those in Duan et al., (2017; cf. 
their Fig. 5 and our Fig. 8). Note that they also used WaSSI and a large 
GCM ensemble (i.e., 20 GCMs, including 14 out of the 16 GCMs that we 
considered in our analysis). They also used scenarios RCP 4.5 and 8.5 
and defined similar baseline, mid-century, and end-century periods for 
calculating the changes in water yield. Their simulations mainly differ 
from ours in terms of the downscaled climate dataset used (MACA vs. 
LOCA) and land cover boundary conditions (fixed vs. dynamic land 

Fig. 9. Projected changes in ET at the HUC2 scale, based on WaSSI output (see corresponding HUC2 map in Fig. 1). Average “present-day” (2008–2027), mid-century 
(2040–2059), and end-century (2080–2099) values under scenarios RCP 4.5 and 8.5 are shown in panels a and b, respectively. The percent differences at mid-century 
and end-century relative to “present day” are shown in panels c and d for scenarios RCP 4.5 and 8.5, respectively. Error bars indicate a 95% confidence interval. 

Fig. 10. Same as Fig. 9, but for water yield.  
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Fig. 11. Same as Fig. 9, but for soil moisture.  

Fig. 12. Budyko diagrams based on projections of aridity and evaporative indices at the HUC2 scale with WaSSI (see corresponding HUC2 map in Fig. 1). Panels a 
and b show the projected mid-century (2040–2059) changes relative to “present day” (2008–2027) under scenarios RCP 4.5 and 8.5, respectively. Panels c and 
d show the projected end-century (2080–2099) changes relative to “present day” (2008–2027) under scenarios RCP 4.5 and 8.5, respectively. Purple vectors indicate 
significant changes at the 95 % confidence level in both x and y dimensions. Red vectors indicate significant changes only in the x dimension (aridity index). Black 
vectors indicate insignificant changes in both dimensions. The curves correspond to Fu’s equation (3) (Fu, 1981), where ω is a fitting parameter. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 13. Projected changes in water yield at end-century (2080–2099) under scenario RCP 8.5 relative to “present day” (2008–2027), based on WaSSI output. Results 
from three distinct simulations are shown, a,b) considering dynamic climate and dynamic vegetation (standard simulation), c,d) dynamic climate and fixed 
vegetation, and e,f) fixed climate and dynamic vegetation. Absolute (a,c,e) and percent (b,d,f) changes are shown at the HUC8 scale. The hatched pattern indicates 
insignificant changes at the 95% confidence level. HUC2s are delineated in black. Panels g and h show the difference between the results in a and c and b and d, 
respectively. 
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cover). Another important difference is that Duan et al. (2017) modified 
WaSSI to calculate PET as Penman-Monteith reference crop ET (Allen 
et al., 1998), while we used the default configuration in WaSSI (PET via 
Hamon, 1963). Compared to Duan et al., (2017; their Figs. 5 and 6), our 
projected decreases in water yield (central and southeastern U.S.) are 
generally more accentuated, while our projected increases (western and 
northeastern U.S.) are generally more attenuated and statistically 
insignificant. Such systematic differences between the two studies are 
consistent with the different approaches to PET. Duan et al. (2017) 
compared overall projected changes in water yield for CONUS with both 
PET methods, and found more negative projections when using the 
Hamon’s method (≈ − 8% vs. ≈− 2% ensemble median for RCP 8.5/ 
2080s – approximated from their Fig. 7). Additional differences between 
our projected water yield changes and those in Duan et al. (2017) could 
be related to the differences in GCM selection, GCM downscaling 
method, and approach to land cover change. 

4.1.4. Soil moisture 
Our projections of total column soil moisture indicate declines across 

much of CONUS (Figs. 8 and 11, S4), which is generally consistent with 
previous studies (e.g., Berg et al., 2017; Joo et al., 2020). For example, 
based on output from 25 CMIP5 GCMs under RCP 8.5, Berg et al. (2017) 
found a decrease in surface (0–10 cm) soil moisture across the entire 
CONUS, reaching about − 14% in the Southwest at end-century 
(2070–2099 vs. 1976–2005; their Fig. 1a, top panel). When consid
ering total column soil moisture, they still found a reduction across most 
of CONUS, especially in the Southwest and southern Great Plains, 
reaching up to about − 12%, but also increases in portions of the Mid
west and Rocky Mountains reaching up to about +6% (their Fig. 1a, mid 
panel). Based on output from ISIMIP (6 global impact models, each of 
which was driven with bias-corrected climate from 5 CMIP5 GCMs at ½◦

spatial resolution), Joo et al. (2020) projected changes in surface (0–50 
cm) soil moisture of about − 3% to − 8% in the Southeast and − 14% to 
− 19% in the South at end-century under RCP 8.5 (2080–2099 vs. 
1986–2005; their Fig. 1b). They also projected approximately neutral 
changes in the Midwest, northern Great Plains, and Northwest. In our 
study, we project changes in total column soil moisture reaching about 
− 12% in the Southeast and − 50% in the Great Plains, and more neutral 
changes in portions of the Northwest and Rocky Mountains (2080–2099 
vs. 2008–2027, RCP 8.5; Fig. 8f). Different from Berg et al. (2017) and 
Joo et al. (2020), our projections indicate substantial declines in soil 
moisture in the northern Great Plains and stronger decreases in soil 
moisture overall. Differences could be partially explained by the dif
ferences in GCM selection and downscaling, model spatial resolution, 
and potential overestimation of ET in our simulations (PET via Hamon’s 
formulation, Section 4.1.2). 

4.1.5. Aridity and evaporative indices 
The Budyko diagrams in Fig. 12 summarize our projected hydro

climatic changes at the regional (HUC2) and CONUS level. With few 
exceptions, our mid- and end-century projections under RCP 4.5 and 8.5 
indicate consistent and significant changes towards higher aridity and 
increased ET (decreased water yield, Q) per unit precipitation (Q/P =

1 − ET/P). 
Equations linking the evaporative and aridity indices, including the 

often-used Fu’s equation (3) (Fu, 1981), have been proposed in previous 
studies. In this equation, ω is an empirical parameter representing 
overall properties of the catchment (e.g., basin slope, basin area, land 
cover, vegetation cover, relative soil water storage, and relative infil
tration capacity; Heidari et al., 2021b; Wang et al., 2021). In Fig. 12, we 
adjusted an overall ω for all HUC2s in CONUS for “present day”, mid- 
century, and end-century under RCP 4.5 and 8.5. Except for HUC 18-Cal
ifornia, the projections of evaporative and aridity indices for each HUC2 
follow the general Budyko curve for each period and scenario (Fu’s 
equation with the overall CONUS ω) reasonably closely. 

California has a unique climate configuration in CONUS, spanning 

from hot desert climate in the South to tundra climate in the upper el
evations of the Sierra Nevada, with most land characterized by a hot/ 
warm-summer Mediterranean climate, with dry summers and wet win
ters (Beck et al., 2023). The negative deviation of HUC 18-California 
from the general Budyko curve (lower than “expected” ET/P) is likely 
associated with PET being off-phase with precipitation and a larger 
fraction of precipitation falling as snow, as discussed in Fang et al. 
(2016). With precipitation shifted away from high-PET summer months 
to low-PET winter months, the amount of precipitation that is parti
tioned to ET is expected to be lower compared to a more typical climate 
in which P and PET are in phase, resulting in lower ET/P for the same 
PET/P. Similarly, with more precipitation falling as snow, the amount of 
precipitation that is partitioned to ET is expected to be lower compared 
to a more typical climate with less snowfall and more rainfall, also 
resulting in lower ET/P for the same PET/P. 

Our adjusted overall ω value for “present day” CONUS (2.58) is 
remarkably close to the overall value reported by Caracciolo et al. 
(2018), 2.63, based on historical (1948–2003) observations from 422 
catchments across CONUS, spreading across five climatic zones. The 
deviation that we found for HUC 18-California is also consistent with 
their results, as they found a lower ω value (1.86) for the Mediterranean 
climate catchments (most of them in California). It is worth noting that ω 
is sensitive to the PET calculation approach; we and Caracciolo et al. 
(2018) used PET equations from the same family, i.e., temperature- 
based formulations (Hamon, 1963; Thornthwaite, 1948, respectively). 

Our projections indicate a future decrease in the overall CONUS ω, 
with a more substantial change at end-century under RCP 8.5 (ω = 2.43 
(− 5.8 %); Fig. 12). This means an overall shift in precipitation parti
tioning from ET to water yield for the same PET/P. The change in ω is 
consistent with the projected reduction in soil moisture across CONUS, 
enhancing water limitation (Fig. 8). While ω is known to be sensitive to 
changes in vegetation, and our simulations project significant changes in 
LAI in many regions (Fig. 7), the overall projected change in LAI 
(CONUS) is insignificant. Our results contrast with Heidari et al., 
(2021b). Based on VIC simulations driven with downscaled (MACA) 
CMIP5 climate projections from three GCMs representing wet, middle, 
and dry scenarios under RCP 8.5, they found little change in overall ω 
(CONUS) at end-century (2070–2099 vs. 1986–2015), with values of 
2.135 (present), 2.162 (+1.3%, wet projection), 2.159 (+1.1%, mid 
projection), and 2.133 (− 0.1%, dry projection). Among the differences 
in modeling approach that could explain the contrasting results, it is 
worth noting that Heidari et al., (2021b) calculated PET as Penman- 
Monteith open water ET (Shuttleworth, 1993, according to the VIC 
model description in Liang et al., 1994), while we used a temperature- 
based formulation (Hamon, 1963). As discussed earlier in this paper, 
Duan et al. (2017) have shown that the Hamon PET formulation in 
WaSSI leads to a stronger drying in response to increasing air temper
ature in comparison with the Penman-Monteith reference crop ET, 
noting that the latter method can account for the attenuation associated 
with increasing specific air humidity. The Penman-Monteith open water 
ET in the VIC model can do the same. An interesting point is that the 
Penman-Monteith open water ET values are typically larger than PET 
values obtained from other methods, as exemplified in Liang et al. 
(1994), who found Penman-Monteith open water ET values to be on 
average 1.64 times larger than Hamon’s PET during an intensive field 
campaign in central Kansas. This offers an explanation for the generally 
lower ω values for CONUS reported by Heidari et al., (2021b), compared 
to our values and those in Caracciolo et al. (2018). In Fu’s equation, 
considering fixed ET and P values, a larger PET value requires a lower ω 
value to compensate. 

4.2. Drivers of water yield change 

Our finding that climate change rather than land surface change 
dominates water yield change in CONUS is consistent with the recent 
results reported by Song et al. (2023) for China. They used a simple 
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hydrological model (Distributed Time-Variant Gain Model − Penman- 
Monteith-Leuning; Song et al., 2022), driven with climate and LAI 
data products from 1982 to 2012, to assess the relative contributions 
from climate change (P, PET) and land surface change (LAI) to water 
yield change. At the national level, Song et al. (2023) found that climate 
change made a substantially larger contribution to annual mean water 
yield (− 7.6 mm) than land surface change (− 0.6 mm). Interestingly, this 
is one order of magnitude lower than the climate change contribution, as 
we generally found in our study. However, unlike our study, they found 
substantial land surface contribution in particular regions, especially 
water-limited areas with substantial change in LAI. It is important to 
note that the assessment by Song et al. (2023) is based on observations 
(data products), reflecting not only “natural” changes in land surface 
cover (i.e., those in response to rising atmospheric CO2 and climate 
change), but also direct anthropogenic land cover/land use changes, 
including the substantial “greening” associated with large-scale affor
estation programs in China (Hu et al., 2021; Liu et al., 2014, 2016). 
Substantial impacts of direct anthropogenic changes in land cover/land 
use on water yield are also demonstrated in the urbanization study by Li 
et al. (2020) for CONUS, for instance. In a different study, Sun et al. 
(2015a) found an 8% increase in water yield in CONUS in response to a 
50% decrease in LAI, in an WaSSI sensitivity test to simulate forest 
thinning. In our study, we only simulate the “natural” changes in land 
cover. It is also worth emphasizing that in our framework, the projected 
future land cover (LAI and vegetation type) at the HUC8 level is derived 
from present-day observations and ecoregion-level changes informed by 
MC2 simulations of potential vegetation. This approach allows us to 
capture larger scale patterns of vegetation change in our HUC8 pro
jections, but not changes due to more localized climate conditions and 
natural disturbances. This contributes to a smoother vegetation change 
signal at the HUC8 scale, and consequently a smoother impact on local 
hydrology. 

Our results contrast with those in Zhou et al. (2023). Based on CMIP6 
output, including fully-coupled simulations with 16 GCMs and CO2 
sensitivity simulations with 7 GCMs, Zhou et al. (2023) found that the 
projected future changes in global water yield are mainly attributed to 
land surface change (73–81%), not climate change (19–27%). They 
found strong contributions from climate change at the regional level, but 
cancellation of positive and negative values led to a relatively small 
overall (global) contribution to water yield change. Even so, the re
ported effect of land surface change on water yield change is substan
tially larger than that in our study. It is important to note that the “land 
effect” in Zhou et al. (2023) encompasses not only the effect of change in 
land cover in response to climate change and rising atmospheric CO2, 
but also the effect of change in stomatal conductance while land use 
change was not simulated. In our study, the “land effect” that we 
investigate is simply the impact of vegetation change (i.e., changes in 
LAI in response to climate change and increasing CO2) on water yield 
change. To reduce the large uncertainty of the positive or negative ef
fects of CO2 and vapor pressure deficit on ET, WaSSI estimates ET with 
an empirical formulation, without an explicit representation of stomatal 
conductance and disregards the regulation of stomatal conductance by 
atmospheric CO2. The absence of representation of the CO2 effect on 
stomatal conductance is commonplace in water-centric model applica
tions (e.g., Duan et al., 2017; Heidari et al., 2021a, 2021b; Song et al., 
2023; Sun et al., 2016). Currently, the prevailing school of thought is 
that CO2 fertilization reduces stomatal conductance (Li et al., 2023; 
Medlyn et al., 2001). In this sense, our projected future ET and water 
yield in CONUS could be potentially over- and underestimated, respec
tively, and our estimate of land contribution to water yield change could 
be underestimated by the lack of representation of the CO2 effect on 
stomatal conductance. However, the impact of CO2 fertilization on 
stomatal conductance is not a settled topic, with recent experimental 
studies challenging the prevailing idea of a widespread reduction in 
stomatal conductance with rising atmospheric CO2 (Guerrieri et al., 
2019; Mathias and Thomas, 2021). The results by Zhou et al. (2023) 

indicate a substantial contribution (54 %) from direct physiological ef
fects (changes in vegetation cover and stomatal conductance in response 
to rising atmospheric CO2) on global water yield change. These results 
reflect the structure of the considered CMIP6 GCMs, which despite 
substantial differences, generally follow the prevailing school of thought 
regarding the effects of CO2 fertilization. As new studies based on long- 
term experiments become available, the modeling community will have 
valuable information to confirm or revisit the representation of CO2 
fertilization within GCMs. 

4.3. Limitations and recommendations for future studies 

Our modeling approach has some limitations. First, WaSSI simulates 
ET with an empirical formulation, without an explicit representation of 
stomatal conductance and disregarding its regulation by atmospheric 
CO2 (common-place in water-centric model applications). Second, 
WaSSI simulates ET based on PET that is estimated with a temperature- 
based formulation (Hamon, 1963), which is unable to account for the 
projected increases in specific air humidity. Our projected increase in ET 
and decrease in water yield in CONUS could be overestimated due to 
these limitations. Also, our estimate of vegetation contribution to water 
yield change could be underestimated by the lack of representation of 
the CO2 effect on stomatal conductance. It is important to point out that, 
while the simplicity of WaSSI and other water-centric models imposes 
some limitations, it also allows for less computationally expensive 
simulations, easier calibration, and implementation at finer spatio- 
temporal resolutions in comparison with mechanistic Terrestrial 
Biosphere Models. These models are much more computationally 
expensive to run and involve many parameters that oftentimes cannot be 
constrained by available observations and therefore can lead to sub
stantial uncertainties in model simulations (Ma et al., 2022). 

In future work, we recommend the use of a Penman-Monteith-based 
formulation for PET (and adapted ET equation for the chosen PET 
reference) within WaSSI if all required climate forcing data are avail
able, as in Duan et al. (2017). Future work could explore ways to 
implement an empirical regulation factor in WaSSI’s ET formulation to 
reflect stomatal response to atmospheric CO2, although this regulation is 
a complex process depending on many biophysical and environmental 
factors that would be challenging to represent within a simple water- 
centric model. Future work could also test alternative projections of 
LAI and vegetation type within our proposed WaSSI-DGVM framework. 
The MC2 projections considered here indicate approximately neutral or 
negative LAI trends for most ecoregions in the twenty-first century, 
which could possibly indicate an overestimation of wildfire frequency 
and intensity by MC2. However, our results suggest that even modest 
adjustments in projected LAI are unlikely to change our finding that 
climate change dominates the projected changes in water yield. It is 
important to mention that here we focus on “natural” land cover change 
in response to changing climate and atmospheric CO2, not anthropo
genic land cover/land use change. The latter can exert a substantial 
impact on water yield. Future studies incorporating projections of 
anthropogenic changes in land cover/land use would be important 
contributions. 

Finally, it is important to note that our study focused on classic future 
climate projections from CMIP5. While there have been some concerns 
that RCP 8.5 scenario may be implausibly too warm (Hausfather and 
Peters, 2020), we believe it still serves a useful role as a very high 
warming scenario. In fact, more recent projections from CMIP6 for 
CONUS indicate an even larger increase in surface air temperature at 
end-century (i.e., 2◦–6◦C and 4◦–8◦C under the Shared Socioeconomic 
Pathways (SSPs) 2-4.5 and 5-8.5, respectively; 2075–2099 relative to 
1970–1999; Fan et al., 2020) compared to CMIP5 (1.3◦–3.7 ◦C and 
3.0◦–6.1 ◦C under RCPs 4.5 and 8.5, respectively; 2070–2099 relative to 
1986–2015; Hayhoe et al., 2018). Projected changes in annual precipi
tation under SSP 2-4.5 (5-8.5) have a similar overall spatial pattern in 
CONUS compared to RCP 4.5 (8.5), but tend to be shifted towards 
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positive values (i.e., larger increases and smaller decreases in precipi
tation; Du et al., 2022). Climate extreme indicators such as the annual 
peak of daily maximum temperature and the number of heavy precipi
tation days are generally more accentuated in SSP 2-4.5 and 5-8.5 than 
in RCP 4.5 and 8.5 at end-century in CONUS (Chen et al., 2020). While 
the warmer conditions predicted by the CMIP6 GCMs would contribute 
to increased ET and decreased water yield, the wetter conditions would 
contribute to increased water yield. While SSP 3-7.0 may serve as an 
alternative high warming scenario, some caution that it represents a 
special aerosol emissions case and should be accompanied by SSP 5-8.5 
(Shiogama et al., 2023). Future work exploring the impact of the new 
CMIP6 climate projections on vegetation dynamics and hydrology with 
the WaSSI-MC2 framework would be an important advance. 

5. Conclusions 

This study integrated an eco-hydrological model (WaSSI) with a 
large ensemble of climate (LOCA) and vegetation (MC2 DGVM) pro
jections under scenarios RCP 4.5 and 8.5 to investigate potential future 
impacts of both climate and vegetation change on water yield. To our 
knowledge, this is the first work to employ an ensemble of future 
vegetation projections and provide water yield projections for CONUS at 
a relatively fine scale (HUC8). 

We project a decrease in water yield across much of CONUS, espe
cially towards the end of the twenty-first century (2080–2099) under 
RCP 8.5. Overall, our projected water yield reduction under RCP 8.5 is 
roughly twice as high as under RCP 4.5. We project substantial changes 
in water yield for watersheds in the central and southeastern U.S. 
already by mid-century (2040–2059). We conclude that climate change 
(air temperature, precipitation), rather than vegetation change (LAI), 
strongly dominates the projected changes in water yield. For some wa
tersheds, the effects of vegetation change can be relevant, mitigating or 
exacerbating the effects of climate change. Our future projections indi
cate widespread increase in aridity (PET/P) and evaporative (ET/P) 
indices and widespread decrease in soil moisture under both RCP sce
narios, but especially under RCP 8.5. 

Our integrated modeling results can inform policy makers and 
resource development planners quantitative information of future water 
availability under contrasting scenarios. We point out regions under 
higher risk of future water shortages that may affect water supply to 
both human and ecosystems. Land managers may need to consider new 
management regimes or approaches in basins identified as having 
declining water supply and soil moisture, as these may be more prone to 
wildfires and insect outbreaks. Conversely, our projections can be used 
to quantify the substantial benefits of climate change mitigation (sce
nario RCP 4.5 vs. 8.5) to the U.S. water supply. 
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Table A1 
Crosswalk between MC2 and WaSSI natural vegetation types.  

v (MC2) Description v (WaSSI) Desc.a 

0 UNKNOWNveg − UN 
1 COLD_BARRENveg 6 BA 
2 TUNDRAveg 6 BA 
3 TAIGA_TUNDRAveg 2 ET 
4 BOREAL_NEEDLELEAF_FORESTveg 2 ET 
5 BOREAL_WOODLANDveg 2 ET 
6 SUBALPINE_FORESTveg 2 ET 
7 MARITIME_EN_FORESTveg 2 ET 
8 MESIC_TEMPERATE_NEEDLELEAF_FORESTveg 2 ET 
9 TEMPERATE_DB_FORESTveg 1 DT 
10 COOL_MIXED_FORESTveg 3 MT 
11 TEMPERATE_WARM_MIXED_FORESTveg 3 MT 
12 TEMPERATE_EN_WOODLANDveg 2 ET 
13 TEMPERATE_DB_WOODLANDveg 1 DT 
14 TEMPERATE_COOL_MIXED_WOODLANDveg 3 MT 
15 TEMPERATE_WARM_MIXED_WOODLANDveg 3 MT 
16 C3SHRUBveg 4 SH 
17 C3GRASSveg 5 GR 
18 TEMPERATE_DESERTveg 6 BA 
19 SUBTROPICAL_EN_FORESTveg 2 ET 
20 SUBTROPICAL_DB_FORESTveg 1 DT 
21 WARM_EB_FORESTveg 2 ET 
22 SUBTROPICAL_MIXED_FORESTveg 3 MT 
23 SUBTROPICAL_EN_WOODLANDveg 2 ET 
24 SUBTROPICAL_DB_WOODLANDveg 1 DT 
25 SUBTROPICAL_EB_WOODLANDveg 2 ET 
26 SUBTROPICAL_MIXED_WOODLANDveg 3 MT 
27 C4SHRUBveg 4 SH 
28 C4GRASSveg 5 GR 
29 SUBTROPICAL_DESERTveg 6 BA 
30 TROPICAL_EB_FORESTveg 2 ET 
31 TROPICAL_DECIDUOUS_WOODLANDveg 1 DT 
32 TROPICAL_SAVANNAveg 5 GR 
35 TROPICAL_DESERTveg 6 BA 
36 MOIST_TEMPERATE_NEEDLELEAF_FORESTveg 2 ET 
38 SUBALPINE_MEADOWveg 5 GR 
39 WATERveg − UN 
40 NATURAL_BARRENveg 6 BA 
49 DRY_TEMPERATE_NEEDLELEAF_FORESTveg 2 ET 
50 XERIC_NEEDLELEAF_WOODLANDveg 2 ET  

a Deciduous forest (DT), evergreen forest (ET), mixed forest (MT), shrubland 
(SH), grassland (GR), barren (BA), undefined (UN). 
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Appendix A. Dynamic vegetation boundary conditions within WaSSI 

We started with MC2 simulations of potential natural vegetation across CONUS, with annual outputs (1950–2005 and 2006–2099 under scenarios 
RCP 4.5 and 8.5) of vegetation type and corresponding LAI at the 1/16◦ spatial scale. We considered an ensemble of MC2 simulations, driven by 
statistically downscaled climate simulations from 16 GCMs (LOCA; Pierce et al., 2015, 2014; see Table 1). 

We calculated LAI as the sum of the MC2 output variables MAX_GRASS_LAI and MAX_TREE_LAI and translated the original vegetation types (up to 
50) to one of the six natural vegetation types in WaSSI (deciduous forest, evergreen forest, mixed forest, shrubland, grassland, and barren), following 
the crosswalk presented in Table A1. 

We used the 2006 NLCD data product (USGS, 2011) to create a mask of natural vegetation areas for the MC2 output, masking out areas char
acterized by other land cover types (e.g., developed areas, croplands, and artificial pasture). To create the mask, we aggregated the original 30-m 
spatial resolution NLCD data at the 1/16◦ spatial scale (MC2 output grid), using the mode as the representative value. 

Next, we aggregated the masked MC2 output at the ecoregion level (level-2 ecoregions of North America, EPA, 2010; Fig. 3). We calculated the area 
fraction (fMC2) of vegetation type v (6 possible natural vegetation types) within ecoregion e (20 possible ecoregions) for year y (1950–2099) as 

fMC2(y,e,v) =
Ay,e,v

∑6
j=1Ay,e,j

(A.1)  

where Ay,e,v is the total area of vegetation type v within the ecoregion e for year y. The denominator of Eq. (A.1) represents the total natural vegetation 
area within the ecoregion, in which j is an auxiliary index. We also calculated the overall LAI (LAIMC2) of vegetation type v for ecoregion e and year y as 

LAIMC2(y,e,v) =

∑n
i=1

(
laiy,e,v,i ay,e,v,i

)

∑n
i=1ay,e,v,i

(A.2)  

where laiy,e,v,i and ay,e,v,i are the LAI and area of individual (i) grid cells of vegetation type v within ecoregion e for year y, respectively, and n is the 
number of grid cells. 

For each vegetation type v and ecoregion e, we defined baselines of area fraction ( f̂ MC2) and LAI (L̂AIMC2) as 

f̂ MC2(e,v) =
1

yfin − yini + 1
∑yfin

y=yini
fMC2(y,e,v) (A.3)  

L̂AIMC2(e,v) =
1

yfin − yini + 1
∑yfin

y=yini
LAIMC2(y,e,v) (A.4)  

where 
[
yini : yfin

]
is the chosen period of reference, here taken as [2000 : 2006]. 

For each vegetation type v, ecoregion e, and year y (2007–2099), we calculated the area fraction and LAI deviations from baseline (ΔfMC2 and 
ΔLAIMC2, respectively) as 

ΔfMC2(y,e,v) = fMC2(y,e,v) − f̂ MC2(e,v) (A.5)  

ΔLAIMC2(y,e,v) =
LAIMC2(y,e,v) − L̂AIMC2(e,v)

L̂AIMC2(e,v)
(A.6)  

These deviations were combined with “present-day observations” (data products) to create projections of land cover type and LAI to drive WaSSI. 
WaSSI considers a total of 10 land cover types, which includes the 6 natural vegetation types discussed earlier (deciduous forest, evergreen forest, 

mixed forest, shrubland, grassland, and barren) in addition to urban, cropland, wetland, and water types. WaSSI provides input datasets for CONUS 
describing the area fraction of each land cover type c within HUC8s (h), ̂f OBS(h,c), and the associated monthly (m) LAI, L̂AIOBS(m,h,c). These default input 

datasets were built based on the 2006 NLCD (USGS, 2011) and 2000–2006 mean monthly MODIS LAI (Zhao et al., 2005). We combined f̂ OBS with 
ΔfMC2 to project the area fraction of vegetation type v within HUC8 h for year y, fWaSSI(y,h,v), as 

fWaSSI(y,h,v) =
Xy,h,v

∑6
k=1Xy,h,k

∑6

j=1
f̂ OBS(h,j) (A.7)  

where X is the unnormalized area fraction of vegetation type v relative to the total natural vegetation area within HUC8 h projected for year y 

Xy,h,v =
f̂ OBS(h,v)

∑6
j=1 f̂ OBS(h,j)

+ΔfMC2(y,e(h),v ) (A.8)  

In Eqs. (A.7) and (A.8), j and k are auxiliary indices, with summations defined across the six natural vegetation types (v[1 : 6], which corresponds to 
c[1 : 6] in our notation). X values are truncated to [0 : 1]. Note that X is normalized in Eq. (A.7) to enforce that 

∑6
j=1fWaSSI(y,h,j) is equal to 

∑6
j=1 f̂ OBS(h,j)

, i.e., the natural vegetation area fraction of the HUC8 h based on “present-day observations”, which remains constant in our projections as we do not 
simulate land use change (urban, cropland, wetland, and water fractions are constant in time). Note also that in Eq. (A.8), the index e(h) denotes the 
ecoregion e associated with the HUC8 h. Finally, we combined L̂AIOBS with ΔLAIMC2 to project the monthly (m) LAI for vegetation type v in HUC8 h for 
year y, LAIWaSSI(y,m,h,v), as 
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LAIWaSSI(y,m,h,v) = L̂AIOBS(m,h,v)
(
1+ΔLAIMC2(y,e(h),v )

)
(A.9) 

For the instances in which ΔLAIMC2 was undefined, we assumed it to be zero. For the instances in which L̂AIOBS was undefined, we used a monthly (m) 
area-weighted averaged observed LAI for vegetation type v within the ecoregion encompassing HUC8 h. If still undefined, we expanded the averaging 
domain to the entire CONUS. 

Appendix B. Supplementary data 

Figures S1 to S5 are included in the Supplement S1 [R1-Supplement-S1.pdf]. Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jhydrol.2024.131472. 
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