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Considerations regarding species distribution models for
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Abstract 1 Species distribution models, or SDMs, have become important decision support tools
by answering fundamental questions about where species, including invasive species,
are likely to survive and thrive based on environmental conditions.

2 For an inexperienced modeller or model reviewer, the terminology and technical
aspects of SDMs can be overwhelming, and even well-trained modellers can struggle
to understand the implications of various modelling choices.

3 Here, I outline some key considerations with respect to SDMs, focusing on their
application to forest insects. Foremost, I assert that a model should be developed
and evaluated with attention to relationships between an insect and its hosts, as those
relationships determine much about the places the insect may occupy.

4 In my view, the most successful models are constructed carefully and incorporate
honest assessments of their limitations, sources of error and uncertainty, and the degree
of linkage between the model and the real-world circumstances it is meant to portray.

Keywords Forest insects, insect–host relationships, invasive species, species
distribution models.

Introduction

Insects, especially invasive alien insects, figure prominently in
my research, which falls under the umbrella of forest health
monitoring and analysis. During my career, I have worked on
some of the most ecologically and economically significant
forest insects introduced to North America. Most of that work
has involved spatial modelling at a variety of scales: regional,
continental, and sometimes global. Given my background, I will
focus on forest insects in this commentary, although many of
my points should apply similarly to other categories of insects.
I envision the target audience as forest entomologists who have
limited familiarity with spatial models, but who are asked to
review modelling results or are consulted during the development
of a model for an insect of interest.

The term ‘spatial model’ can refer to several types of mod-
els utilized for various purposes. One type that may come to
mind is a model of insect dispersal or spread (e.g., Rudd & Gan-
dour, 1985). Another type of spatial modelling relevant to insects,
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and the main subject here, is species distribution modelling. A
wide variety of modelling techniques are used to explain or (as
has become increasingly common) predict the geographic dis-
tributions of species (Elith & Leathwick, 2009; Guillera-Arroita
et al., 2015). The philosophy behind the techniques is consistent:
the locations where a species may occur can be predicted with a
model of where environmental conditions are suitable for its sur-
vival. The objective of the model may be interpolation, which is
predicting the likelihood of distribution at unsampled locations
within a species’ known range, or extrapolation, which is pre-
diction in unsampled geographic areas outside its known range
(Elith & Leathwick, 2009; Dormann et al., 2012). With respect
to insects and many other taxa, a large share of the literature on
species distribution models (SDMs) has dealt with extrapolation
to new areas, reflecting the models’ popularity for studies of inva-
sive alien species. Indeed, SDMs are key tools in agricultural and
forest biosecurity and in invasive species risk analysis more gen-
erally (Kriticos, 2012; Guillera-Arroita et al., 2015). An essential
task when assessing the ecological or economic risk presented by
an invasive species, whether an insect or some other organism, is
determining where it can establish successful populations.
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SDMs are primarily climate-driven, meaning that the variables
used to develop them typically portray climatic factors. This
makes sense because climate is a chief driver of environmental
suitability (Kriticos, 2012; Venette, 2017). Moreover, SDMs
are at least regional and more likely continental or even global
in scale, and climate data are among the most readily available
geospatial data at larger spatial scales. As a logical extension of
this, many SDM-based analyses in recent years have predicted
species’ geographic distributions during future time periods,
based on climate projections developed under different gen-
eral circulation models (GCMs) and emissions scenarios (e.g.,
Barredo et al., 2015; Srivastava et al., 2020). Nevertheless,
SDMs that rely solely on climatic variables and ignore biotic
factors such as habitat accessibility may not predict reliably
in either current or future conditions (Araújo & Luoto, 2007;
Sax et al., 2007; Hill et al., 2017; Liu et al., 2020; Srivastava
et al., 2021). I will return to this point later, but first I will go over
some central concepts and related technical aspects of SDMs.

Species distribution modelling: competing
paradigms?

There are two main analytical approaches for SDMs: mech-
anistic modelling and correlative modelling. Mechanistic or
process-based models (e.g., CLIMEX) use a priori informa-
tion about the biology and ecology of a species to define
values for model parameters representing the processes that
drive the species’ response to environmental conditions (Yates
et al., 2018). This a priori information can be derived empir-
ically (i.e., from controlled laboratory experiments or field
observations) or, more frequently, through a combination of
available data and input from species experts (Venette, 2017;
Yates et al., 2018). Notably, the parameters of mechanistic mod-
els have straightforward ecological interpretations. For instance,
CLIMEX utilizes three types of parameters: parameters that
characterize seasonal population growth of a species, parame-
ters that define environmental stresses that may limit a species’
distribution, and parameters that define constraints, such as the
length of the growing season, that may exclude a species from
some otherwise suitable locations (Kriticos et al., 2015).

Correlative models relate occurrence or abundance data for a
species at known locations to a set of environmental predictors.
Rather than focusing on the mechanisms that define a species’
response to environmental conditions, a correlative model
attempts to determine the conditions that are suitable for the
species, as represented by a set of abiotic or biotic covariates,
from which it is possible to predict its distribution. The under-
lying processes and mechanisms are thus implicit (Dormann
et al., 2012; Yates et al., 2018). Numerous statistical and machine
learning methods have been applied for correlative modelling,
including random forest models, boosted regression trees, and
generalized linear and additive models (Yates et al., 2018). For
practical explanations of Maxent (short for ‘maximum entropy’),
a widely used machine learning method, it is worth consulting
work by Elith et al. (2011) and Merow et al. (2013).

I cannot say much about mechanistic and correlative mod-
els that have not been said before by others, and in greater
detail. For perspectives on their relative merits and drawbacks,

I would point to articles by Webber et al. (2011), Dormann
et al. (2012) and Venette (2017); in particular, the latter review
focuses on the application of the approaches to invasive forest
insects. Ultimately, both mechanistic and correlative modelling
approaches have demonstrated utility for predicting species dis-
tributions. A positive aspect of correlative models is that most
of the underlying modelling methods are freely accessible via
open-source software, including the R statistical environment
(e.g., Phillips et al., 2017). Furthermore, correlative models do
not have the a priori information requirements of mechanistic
models, which are perhaps best suited to well-studied species
(Castaño-Quintero et al., 2020). Nevertheless, I must offer some
words of warning about correlative models: they can be easy
to misuse or misinterpret. Many correlative methods, particu-
larly Maxent, can be applied to presence-only data, or more
accurately, what is known as presence-background data (Phillips
et al., 2009; Elith et al., 2010; Guillera-Arroita et al., 2015;
Iturbide et al., 2015). The ‘background’ represents the geo-
graphic space being modelled (i.e., the region containing the
presence locations), which is sampled to generate presumed
absence locations, commonly known as pseudo-absences. These
pseudo-absence locations can then be compared with the pres-
ence locations in terms of their climatic and other environ-
mental characteristics (Guillera-Arroita et al., 2015). Although
this may seem fairly routine, the background can be chal-
lenging to define correctly (Phillips & Dudík, 2008; Phillips
et al., 2009; VanDerWal et al., 2009; Rodda et al., 2011; Itur-
bide et al., 2015; Jarnevich et al., 2017). For example, there is
substantial risk that the presence data come from a biased sam-
ple, either because detection methods are imperfect (common
with insects) or because sampling effort is uneven. Nevertheless,
there are various methods to account for such bias when sam-
pling the background (Merow et al., 2013; Venette, 2017; Yates
et al., 2018; Chapman et al., 2019). Any presence-only correla-
tive model that fails to address the background issue in some way
should be viewed sceptically.

Another potential mistake with correlative models is viola-
tion of the assumption of independence among the covariates
(Jarnevich et al., 2015). If two predictors are highly corre-
lated, they should not both be included in a model. The same
is probably true for covariates exhibiting high degrees of spa-
tial dependence (i.e., spatial autocorrelation), although there are
techniques, such as spatial cross-validation, that account for the
influence of spatial autocorrelation on model evaluation met-
rics (Jarnevich et al., 2015). As with the background issue, if
a correlative model is presented without evaluation of possible
dependence between covariates, it should be treated with scepti-
cism. Also problematic with correlative models is misinterpreta-
tion of the model predictions as true probabilities, when in fact
they are only relative likelihoods of occurrence (Guillera-Arroita
et al., 2015). Although this may be a relatively minor concern in
practice, it is still important for modellers to recognize that true
probabilities are only calculable with actual absence data.

A concern with all SDMs, but especially those applied to
invasive species, is transferability (sometimes called spatial
transferability). Briefly, a modeller is attempting to ‘transfer’ a
model based on a species’ known range (i.e., the model’s training
domain) to a novel environmental space. This is challenging with
respect to invasive species because they are rarely at equilibrium
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with this new environment, meaning they usually have not
invaded all locations that are suitable for them. Consequently,
a model trained using data from a species’ invaded range
may underestimate its potential distribution (Elith et al., 2010;
Barbet-Massin et al., 2018;Yates et al., 2018; Liu et al., 2020).
Regardless, species–environment relationships seldom remain
consistent across geographic space. This spatial inconsistency is
known as nonstationarity. Mechanistic models are presumably
more robust to transferability issues than correlative models, but
they are still hindered by nonstationarity (Dormann et al., 2012;
Yates et al., 2018).

Various other factors can affect transferability, including input
data quality and model complexity. Complex SDMs with large
numbers of predictor variables risk being over-fitted to the
training data and generating unreliable predictions as a result
(Liu et al., 2020). Theoretically, this is more of a problem with
correlative models than mechanistic models. In any case, it is
easier to trust a model that is accompanied by some evaluation
of its transferability than one that is not. Regrettably, there is
a lack of standard methods and metrics for performing such
assessments (Yates et al., 2018; Liu et al., 2020).

Setting aside issues of transferability, either a correlative or
mechanistic approach can be appropriate in most situations if
a model is developed thoughtfully. Although not targeted at
insects, the inaugural editorial of Biology of Invasive Plants, a
series in the journal Invasive Plant Science and Management,
laid out detailed technical guidelines that should be instructive
for all species distribution modellers as well as potential review-
ers (Kriticos et al., 2020). To get around issues with specific
modelling techniques, some researchers have explored the utility
of ensemble models or blending of correlative and mechanis-
tic models for deriving robust predictions (Iturbide et al., 2015;
Yates et al., 2018; Hao et al., 2020). Assuredly, these will be
areas of continued investigation, but there is some peril that an
ensemble or blended model conceals errors arising from one (or
more) of its components (Elith et al., 2011; Kriticos et al., 2020).

The importance of insect–host relationships

What is the ultimate objective of an SDM for a forest insect
or any other species? If the model is intended to show where a
species is likely to maintain persistent populations, the assumed
goal is for someone to use that information to formulate a
response, i.e., for making decisions about how to manage the
species or its habitat. I mention habitat purposely to highlight
an aspect that I believe is essential to consider when modelling
forest insects: the relationships with their host species. For
an insect to become established in any setting, it must have
utilizable hosts. Although environmental conditions may predict
a species’ potential geographic distribution broadly, the climatic
factors typically used to represent those conditions are seldom
adequate surrogates for factors like host availability; as suggested
earlier, solely climate-based approaches are poor at predicting
the naturalized distributions of many invasive species, including
insects (Sax et al., 2007; Hill et al., 2017). This limitation is
addressed hierarchically in the formal pest risk analysis process,
where there are areas at risk (i.e., areas that are environmentally
suitable) as well as endangered areas, which are sub-regions

within at-risk areas where there is substantial risk of economic
loss (Baker et al., 2015). In short, this means where hosts are
present.

I am not alone in emphasizing the importance of insect–host
relationships in distribution modelling, particularly for forest
insects (e.g., see Dang et al., 2021). It is worth delving into
some of the nuances of this assertion. For a polyphagous forest
insect (i.e., a true generalist), assuming there are adequate
hosts where climatic conditions are projected to be suitable
may be appropriate (Venette, 2017). But there are examples
that reveal the assumption’s shortcomings. What if the insect
is a specialist? For instance, the emerald ash borer (Agrilus
planipennis Fairmaire) is essentially limited to hosts in the ash
(Fraxinus) genus (but see Cipollini & Peterson, 2018; Olson &
Rieske, 2019). A less specialized insect is the Asian longhorned
beetle (Anaplophora glabripennis (Motschulsky)), for which
the preferred hosts include maples (Acer), willows (Salix), and
elms (Ulmus), while birch (Betula) and sycamore (Platanus)
species are also common hosts (Haack et al., 2010). With both of
these insects, knowing the preferred hosts provides highly useful
information for modelling. Both insects are native to Asia and
have been introduced into North America and Europe; however,
neither has a known host that is common in the Southern
Hemisphere. Effectively, this rules out establishment in many
places that are otherwise environmentally suitable, although such
determinations are uncertain because host range expansion is
always possible, even if emergence of an unforeseen but globally
abundant major host seems unlikely (Haack et al., 2010; Peterson
et al., 2020). Furthermore, where these insects’ known hosts
occur in the Southern Hemisphere, they appear sporadically and
mostly in urban or peri-urban environments. Consequently, there
is probably insufficient functional connectivity between hosts
to permit either insect to establish there beyond a local scale.
Note also that their known hosts are exclusively hardwoods.
Absent significant shifts in the host species’ ranges due to climate
change, neither insect is likely to become widespread in boreal
forests dominated by conifers.

Conspicuously, A. planipennis and A. glabripennis are wood
borers with some degree of specialization. Polyphagous defo-
liators such as the Asian gypsy moth (Lymantria dispar asiatica
Vnukovskij) present a different dilemma for modellers: dis-
tinguishing suitable hosts can sometimes require in-depth
analyses. For instance, parts of Australia and New Zealand are
thought to be suitable climatically for L. dispar asiatica (Paini
et al., 2018). In laboratory trials involving 59 plant species
from seven families, Matsuki et al. (2001) found that larval
performance on several native Australian eucalypt (Eucalyptus)
species was similar to that on known preferred hosts (Quercus
robur and Q. pubescens, both European oaks). By contrast,
larval performance on most tree species native to New Zealand
was poor, suggesting the insect is unlikely to become established
in New Zealand’s indigenous forests. This was echoed by Pitt
et al. (2007), who stated that host availability was likely to be a
major limiting factor in New Zealand despite suitable climatic
conditions, particularly in the country’s North Island.

Another interesting case is the spotted lanternfly (Lycorma
delicatula (White)), a phloem-feeding insect with a long history
as a pest in China that recently has invaded South Korea, Japan,
and the eastern USA (Wakie et al., 2020). Although highly
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polyphagous – L. delicatula has been reported to feed on more
than 100 plant taxa across at least 33 families – it has a strong
host preference for tree of heaven (Ailanthus altissima), which
itself is an aggressive invader found on every continent except
Antarctica (Barringer & Ciafré, 2020). Although L. delicatula
may not require tree of heaven to complete its life cycle, its
affinity for the species means that the insect cannot be easily
categorized as a generalist (Derstine et al., 2020). A global SDM
for L. delicatula suggested that portions of Australia, Africa, and
South America exhibit moderate to high suitability for the insect
(Wakie et al., 2020), but currently tree of heaven is less prevalent
in these regions than in North America and Europe, where it
is pervasive in many urban and peri-urban settings (Sladonja
et al., 2015). Because tree of heaven is recognized globally
as a high-risk invader, there is some hope that management
activities to limit its expansion will also curtail establishment
of L. delicatula outside of its current invaded range. On the
other hand, tree of heaven is naturalized in at least 51 countries
and problematically invasive in at least 23 countries (Walker
et al., 2017), so it is probably unrealistic to expect its distribution
to constrain L. delicatula in the long term.

The preceding examples are meant to illustrate how
insect–host relationships can be highly meaningful when
characterizing the potential distributions of forest insects. These
relationships may be especially relevant when attempting to
project distributions at a global scale and under future climates
(Araújo & Luoto, 2007). Admittedly, incorporating host data
does not always improve predictions over models built from
climatic factors alone (e.g., Silva et al., 2014), and sometimes
species’ host preferences are simply too poorly known to model
effectively. Nonetheless, I would question any distribution model
for a forest insect species that did not feature some appraisal of
its host relationships, including potential relationships.

I acknowledge that I am saying this from a privileged posi-
tion, in a part of the world where detailed forest inventories
and diverse ancillary data enable generation of high-resolution
tree distribution maps at the species or genus level. Unfortu-
nately, disparity persists between data-rich regions (e.g., North
America, Europe, and Australia) and comparatively data-sparse
regions (e.g., central Africa and southeast Asia) with respect
to tree species distributions, despite the expanded reach of
occurrence data aggregators such as the Global Biodiversity
Information Facility (Serra-Diaz et al., 2017). Still, there are
simple options that should work almost anywhere. Although a
remote-sensing-derived map of forest land cover developed at a
continental scale may be insufficient to depict the distributions
of a specific set of hosts, it should be feasible to filter the forested
cells based on general biogeographic characteristics gleaned
from scientific or even popular literature.

Thinking critically about modelling results

As I suggested earlier, the overarching purpose of an SDM is
to inform decision-making with respect to a species of interest.
Naturally, other modellers may be keenly interested in the
methodological choices and underlying assumptions of an SDM,
whether it is developed for a forest insect or any other organism.
These aspects can be highly informative when developing a
new model (or revising an existing one). Yet, a decision-maker

who is using the model result is unlikely to be focused solely
on the species of interest. If the target species is a forest
insect or some other herbivorous insect, the decision-maker is
probably thinking about a critical resource (i.e., the hosts) and
the degree of pressure the insect might place on it. This is on
top of the many other factors that must be accounted for when
managing a resource. Guisan et al. (2013) discussed this issue
eloquently, arguing that SDMs should be developed as part of a
structured decision-making process, where there are open lines
of communication between modellers and decision-makers.

An SDM is essentially a hypothesis, albeit one that is difficult
to test because it cannot be validated with independent occur-
rence data (i.e., external validation) for places where no such
data exist (Dormann et al., 2012; Venette, 2017). Of course,
reliable predictions for these places may be the outcome most
desired by a decision-maker. But if a model cannot be truly vali-
dated, why should a decision-maker embrace it? Venette (2017)
broached the idea of ‘model fatigue’ among journal reviewers of
forest insect SDMs. Commonly, editors identify reviewers who
are either experts in the target species or the modelling approach.
The species experts may not be able to perceive the value in
another model if prior models exist for the target species, while
modelling experts may not see novelty in the work if it uses
established methods. I would extend the notion of model fatigue
to decision-makers, who I perceive as mostly akin to species
experts. In some instances, decision-makers or species expert
reviewers may be able to critique technical details, but this is
probably not the norm.

Ideally, a decision-maker or species expert reviewer could rely
on a modeller’s proficiency and safely assume that appropriate
methods were employed in developing an SDM. However,
I imagine that few people would be comfortable with this
assumption. As a practical matter, most modellers will pro-
vide justification of their choices and present some diagnostic
measures alongside the model results. Alas, a statement like
‘The area under the curve (AUC) value was 0.91’ may not be
especially meaningful to a nonmodeller, and at any rate, this
is merely one diagnostic measure out of many. Ultimately, the
burden is on the modeller to explain and interpret a comprehen-
sive set of diagnostics. Furthermore, if another SDM already
exists for the target species, the modeller must articulate the
comparative advantages of their model.

I appreciate that, even when given such information, a
decision-maker or species expert reviewer may feel unequipped
to evaluate an SDM. I maintain that technical proficiency is
unnecessary to gauge whether a model included earnest efforts
to address the critical modelling aspects noted earlier in this
commentary. In fact, I will mention another modelling mistake
that should be readily observable: when a modelling result fails
to characterize the uncertainty in the predictions. Accounting
for uncertainty in SDMs is a topic I cannot cover adequately
here, although Beale and Lennon (2012) provided a helpful
overview. But more simply, if a model description omits any
discussion of uncertainty, then this likely indicates that the
modeller is overconfident in the outputs (Dormann et al., 2012)
and is definitely a cause for doubt.

Irrespective of our training, one qualification that we share is
an ability to think critically about information put in front of
us. It is reasonable, maybe even advisable, to evaluate a model
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result at a basic level. Setting aside all other considerations,
does the predicted distribution for a forest insect seem plausible?
Often, we can be confident about a large portion of a predicted
distribution because environmental conditions are optimal and
suitable hosts are prevalent. Conversely, issues with model
plausibility tend to emerge where conditions are projected
to be marginal for a species. This is another context where
insect–host relationships can be pertinent. For instance, we tend
to think of insects as being primarily limited by temperature, and
temperature-related variables are among the strongest predictors
of potential distribution (Messenger, 1959; Peacock et al., 2006).
But moisture is still a requirement, and further, is a critical
requirement for hosts. If I was asked to evaluate an SDM that
predicted, for example, the survival of a forest insect in an arid or
semi-arid ecosystem, I would investigate whether the ecosystem
receives enough rainfall on average to sustain populations of its
host trees. Indeed, I might do this even if host availability was
incorporated as a model constraint unless I was satisfied with the
modeller’s description of this constraint.

Focusing on the marginal areas of a predicted distribution
might also reveal plausibility issues in an SDM applied to future
climatic conditions. To illustrate, an SDM might predict that
a forest insect currently restricted to the temperate biome will
encounter suitable environmental conditions in the boreal zone
50 years into the future. Additionally, a complementary model
of the future distributions of its hosts might also predict that
they could survive in some parts of the boreal zone 50 years
from now. Nonetheless, latitudinal range shifts of tree species
are slow, perhaps on the order of 20–40 km per century (Davis
& Shaw, 2001). Will the insect’s hosts migrate far enough in
50 years to allow the insect to exploit many new areas within the
boreal zone?

Although I emphasized the importance of hosts in these latter
examples and several previous ones, I want to be clear that
not every forest insect SDM must address host relationships
explicitly. As alluded to earlier, environmental suitability can be
relevant by itself in some cases (e.g., with a generalist insect or an
insect that has demonstrated frequent host-switching behaviour).
I also want to avoid presenting a straw man argument. An
exclusively climate-driven model can only reveal so much about
the ecological niche, fundamental or realized, of a species
(Jiménez-Valverde et al., 2011), and expecting it to accomplish
more is unfair. Still, there are potential benefits to incorporating
hosts when possible. First, doing so provides something salient
for nonmodellers to evaluate: an insect’s host relationships and
whether they are represented appropriately. More significantly,
it may increase the chance of buy-in from decision-makers, who
have a fuller set of information on which to base the decisions
that probably motivated model development in the first place.
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