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Introduction

The description and analysis of landscape patterns

became a central research issue in landscape ecology

with the emergence of the pattern-process hypothesis

(Turner and Gardner 1991). The earliest references to

landscape pattern metrics or indices in the peer-

reviewed literature were in 1987 and 1988 (Fig. 1a).

Gardner et al. (1987) compared the number, size, and

perimeters of patches across real and simulated

landscapes and established the neutral model concept

for comparing landscape patterns. Krummel et al.

(1987) demonstrated the first multi-scale index—a

fractal dimension describing perimeter-area scaling—

while Milne (1988) demonstrated an entire class of

multi-scale indices based on fractal geometry. O’Neill

et al. (1988) introduced the dominance and contagion

indices, the latter of which extended the Shannon

species diversity index (e.g. Pielou 1975) to describe

the diversity of spatial adjacencies on a map. Those

and other early methods capitalized on concepts or

metrics developed in diverse fields such as informa-

tion theory, percolation theory, classical ecology, and

fractal geometry.

As more aspects of landscape patterns were recog-

nized, the metrics to quantify those aspects prolifer-

ated, so that 10 years later, Gustafson (1998) stated

that hundreds of measures of landscape pattern had

been proposed. Several reviews have examined the

burgeoning array of metrics used in landscape ecol-

ogy, often with a critical eye (Gustafson 1998; Li and

Wu 2004; Kupfer 2012; Lausch et al. 2015; Frazier

and Kedron 2017). Critics have taken issue with the

long list of metrics that have been applied without

knowledge of their ecological meaning or their

interpretation with respect to pattern per se. These

issues have also limited our ability to integrate results

from different studies in two ways. First, the concern

about the ecological meaning of a metric is usually

addressed by increasing the specificity of the metric

according to the objectives and scale of a particular

study (Gustafson 2019, this issue). Integration with

other studies is then complicated by Levins’ (1966)

classical tradeoff between the precision (specificity)
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and generality of the metric. Second, and a more

important concern from a pattern perspective, is that

unless the metric can also be interpreted with respect

to pattern per se, the effects of pattern cannot be

compared to other studies that use different metrics

(Bogaert 2003). Successful integration does not

require every study to use the same metric, but it does

require knowing what the metric measures and how

that underlying aspect of pattern is ecologically

relevant.

We suggest the array of landscape metrics has co-

evolved with improvements to landscape data and

computing capacity. Most early methods and metrics

for quantifying landscape pattern relied on the

conceptual ‘‘patch mosaic’’ landscape model (Forman

and Godron 1981; Urban et al. 1987; but see McIntyre

and Barrett 1992; and McIntyre and Hobbs 1999 for

some notable early exceptions to the patch mosaic

concept). The patch mosaic model emerged when

most landscape maps were polygon (patch) format—

the earliest landscape ecology studies that examined

pattern metrics were based on land use polygon maps

converted to categorical raster format for analysis

(Gardner et al. 1987; Krummel et al. 1987; O’Neill

et al. 1988). The typical map analysis software was

raster-based (e.g. GRASS [https://grass.osgeo.org/

home/history), and the earliest implementations of

landscape pattern metrics relied heavily on the patch

mosaic model and metrics derived from categorical

maps (Baker and Cai 1992; McGarigal and Marks

1995). Over time, supported by advances in remote

sensing, GIS, and computation, it became more fea-

sible to analyze large data sets representing more

aspects of landscape pattern, and other conceptual

approaches such as surface metrics from microscopy

and molecular physics, connectivity metrics from

circuit theory, and pattern recognition from mathe-

matical morphology have emerged recently as

promising frameworks for measuring landscape pat-

terns from those maps (Vogt et al. 2007, 2009; McRae

2008;McGarigal et al. 2009; Cushman and Huettmann

2010; Kedron et al. 2018).

Despite the challenges and critiques of landscape

pattern measurement, the use of landscape pattern

metrics has continued to increase over time (Fig. 1a,

see also Uuemaa et al. 2013). And, not only has the

development of landscape metrics been informed by

other disciplines, but the development and usage of

those metrics also has grown to inform a wide range of

research in ecology, geography, and beyond (Fig. 1b).

For example, in the urban studies literature, patch

metrics have been used to classify cities into different

morphologies and to investigate the relationship

between spatial patterns of green space and urban

heat island effects (Schneider and Woodcock 2008; Li

et al. 2013; Kong et al. 2014). The relatively new

domain of macrosystems ecology attempts to link

patterns and processes from broad scales to fine scales,

and thus the ability to measure landscape pattern

consistently across scales is critical (Fei et al. 2016;

Potter et al. 2016). And, the recent emphasis on

‘‘conserving nature’s stage’’ in conservation planning

requires pattern descriptions of the geodiversity—the

variety of topographic, soil, and other abiotic condi-

tions—in a landscape (Beier and Brost 2010; Hjort

et al. 2015; Lawler et al. 2015; Zarnetske et al. 2019).

These domains of interest in ecology and conser-

vation biology exemplify the universal reliance in

ecology on the measurement of pattern, heterogeneity,

and diversity of conditions across landscapes. The

growing popularity of ‘‘big data’’ in ecology from

remotely-sensed imagery as well as in situ measure-

ments, crowdsourced data, and historical archives

(Elith et al. 2006; Hampton et al. 2013; Pettorelli et al.

2014; Franklin et al. 2017; Morrison et al. 2017) points

to a future in which previously intractable amounts of

information may be leveraged to measure and under-

stand spatial pattern. Landscape ecologists are well-

equipped to think critically about the methods and

techniques that are used and will be developed for

pattern measurement to address these challenges. An

examination of landscape pattern measurement, its

usage, and best practices, can thus provide valuable

insights and leadership to inform that future.

Goals of the special issue

In this special issue, with the history and future of

landscape pattern metrics in mind, we feature a set of

perspectives about the measurement of landscape

pattern, research articles on emerging pattern metrics

and their applications, and a look to new developments

in pattern measurement for landscape ecology. We

aim to bring attention to integrated pattern-oriented

approaches to measuring landscape patterns. In that

vein, we have two distinct but related goals—first, to

achieve a vibrant discussion of the essential elements
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and descriptors of pattern per se, and second, to

provide a venue for ‘‘pattern-oriented’’ ecologists to

present new concepts, methods, and applications for

measuring and interpreting patterns. Fischer and

Lindenmayer (2007) defined a pattern-oriented

approach to habitat fragmentation research as one that

focuses on correlations between human-perceived

landscape patterns and species occurrence. In a

transdisciplinary context that is not limited to species’

responses to human-perceived patterns, a pattern-

oriented approach also considers other pattern-process

outcomes (e.g. water quality, fire regimes), land use

planning (e.g. landscape context, sense of place),

resource management (e.g. conservation, restoration),

assessment science (e.g. ecosystem services, environ-

mental security), along with public perceptions (head-

line indicators) and integration across these

perspectives. The contributions in this issue therefore

Fig. 1 Number of publications on landscape metrics: a over

time, annually; and b by Web of Science subject category. Web

of Science search terms used: ‘‘TS = (‘‘landscape pattern’’ AND

metric) OR TS = (‘‘landscape pattern’’ AND index)’’. Search

included all document types during the period 1900 to present,

and 1987 was the 1st year in which publications were found. The

25 subject categories in Web of Science with the most

publications meeting the search criteria over the period are

shown in (b). Publications can be classified into more than one

subject category
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examine a broad range of topics related to measuring

pattern that will provide essential information for a

wide range of disciplines.

Perspectives on the current state of the field

To help us reach our goal of a discussion of landscape

pattern metrics, this special issue features several

perspectives on the current state of the field. Gustafson

(2019, this issue) reflects on the fate of some of the

approaches that were popular at the time of his now-

classic review (Gustafson 1998) of the state of the art

of pattern metrics. Some approaches, such as the graph

theoretic methods that were being developed at the

time of that paper (Keitt et al. 1997; Urban and Keitt

2001), are still in wide use today (for example, Saura

and Torné 2009), while other approaches such as

lacunarity analysis (Plotnick et al. 1993) and fractal

geometry (Milne 1992) are rarely used. Frazier (2019,

this issue) examines how perspectives from other

disciplines can contribute to emerging trajectories and

move the field of landscape pattern analysis forward.

For example, ideas from the field of regional studies

could help broaden the concept of landscape connec-

tivity to include similarity in land management

initiatives operating on different sites. Riitters (2019,

this issue) suggests that achieving the vision of

landscape ecology as a transdisciplinary science (Wu

2013) would be facilitated by revisiting the funda-

mentals of what to measure and how, if the goal is to

characterize landscape patterns per se. Vogt (2019,

this issue) points out that pattern analysis—attributing

meaning to information—is a fundamental aspect of

science. He leverages his experiences developing

software for morphological spatial pattern analysis

(MSPA) (Soille and Vogt 2009) to note that abstrac-

tion and provision are fundamental to pattern analysis

as well as software development.

New metrics and models

Several papers in this special issue present new

concepts and methods for measurement and analysis

of landscape pattern. Nowosad and Stepinski (2019,

this issue) derive new information-theoretical metrics

that specifically describe landscape complexity. Using

simulated landscapes with four land cover classes

each, the authors conclude that two pattern metrics—

joint entropy, which describes the overall complexity

of the landscape, and mutual information, which

describes the aggregation of classes—are sufficient to

describe landscape patterns. Zhai et al. (2019, this

issue) show that transiograms, which are graphs of

transition probabilities over a range of spatial lags,

offer independent metrics to measure the spatial

variability of categorical variables, such as soil types

and land cover classes. Kedron et al. (2019, this issue)

develop three-dimensional analogues of classical two-

dimensional patch-mosaic metrics, and discuss the

relevance of those metrics to urban studies using a case

study of the built environment in New Orleans. Tarr

(2019, this issue) demonstrates a conceptual model

specifically for multispecies landscape pattern mea-

surement that combines species-specific requirements

to identify hotspots for conservation protection and

inform conservation strategies for those locations.

Brooks and Lee (2019, this issue) introduce the

agglomerative curve (AG-curve) and show that it

can be used to distinguish different forms of forest

disturbance. In the AG-curve method, a hierarchical

clustering algorithm is run on the spatial coordinates

of a disturbance or other phenomenon of interest and a

curve is drawn to describe the rate at which they

agglomerate into successively smaller numbers of

clusters.

Novel approaches and applications of pattern

metrics

Additional studies in this special issue apply landscape

pattern metrics in new ways. Noting that the temporal

aspect of landscape pattern has been under-studied,

Corry (2019, this issue) shows that annual pattern

measurements are necessary to capture pattern

changes attributable to conventional agricultural crop

rotations. Wickham and Riitters (2019, this issue)

study patterns of forest fragmentation using high-

resolution satellite data. While they expect to detect

ever-smaller canopy gaps, thus increasing measured

forest fragmentation, the high-resolution data also

detects smaller forest patches, leading to decreased

forest fragmentation in some circumstances. Tackling

the thorny problem of estimating Boltzmann (thermo-

dynamic) entropy, Gao and Li (2019, this issue)

explore the integration of approaches based on the
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patch-mosaic model (Cushman 2016) and the gradient

model (Gao et al. 2017). While they show that the

approaches do have some parallel elements, a general

method of computing Boltzmann entropy for land-

scape ecology that integrates the two approaches is

still lacking. Peterman et al. (2019, this issue) compare

approaches to constructing genetic resistance maps

and conclude the best match to true resistance maps

was obtained by adaptive optimization incorporating a

genetic algorithm.

Ways forward

The contributions to this special issue demonstrate that

landscape pattern analysis is an active research field

that is producing tools and insights that are critical for

landscape ecology and related disciplines. The history

and current status of landscape pattern measurement

will likely provide hints about its future. Several of the

perspectives in this issue point to the future (Frazier

2019, this issue; Gustafson 2019, this issue; Vogt

2019, this issue), as have other recent reviews of

pattern metrics (Kupfer 2012; Lausch et al. 2015;

Frazier and Kedron 2017). Landscape ecologists have

repeatedly borrowed approaches from other fields and

continue to do so. It is worth exploring whether there

are other methods that could be borrowed, especially

given the need for analyzing patterns across non-

geographic domains such as soundscapes (Pijanowski

et al. 2011).

The future applications of landscape pattern metrics

will almost certainly depend on the software and

analysis tools available. The software FRAGSTATS

(McGarigal and Marks 1995) is often cited as a

catalyst for early developments in the field of

landscape ecology (Gustafson 2019, this issue).

Indeed, Gustafson (2019, this issue) stated that

software not only facilitates the adoption of metrics

and analysis approaches, but also drives or constrains

subsequent conceptual advances. Another example is

GuidosToolbox (Vogt and Riitters 2017), which has

facilitated the use of MSPA metrics (Schulz and

Schröder 2017; Simonson et al. 2018; Vogt 2019, this

issue). Freely-available software, TGRAM, is now

available to estimate transiograms from maps or

imagery (Yu et al. 2019; Zhai et al. 2019, this issue).

Conversely, surface metrics (McGarigal et al. 2009;

Kedron et al. 2018) are notable newmetrics but are not

yet widely used, likely in part because they have not

been integrated into any software package that is used

by ecologists.We note, however, that an R package for

calculating surface metrics has been developed

recently (Smith et al. 2019, available at https://

github.com/bioXgeo/geodiv) and their integration

into FRAGSTATS is imminent (http://www.umass.

edu/landeco/research/fragstats/documents/fragstats.

help.4.pdf). Usability, user-centered design, and

specifically the ability of users to visualize pattern

metrics and the results of pattern analysis are essential

components of software design in landscape ecology

(Vogt 2019, this issue).

The perspective in this issue by Frazier (Frazier

2019, this issue) also mentioned that borrowing tools

and concepts from the medical sciences and eco-

nomics to facilitate reproducibility and replication (R

& R) would enable transdisciplinarity in landscape

pattern analysis. While it may not be possible to fully

reproduce many ecological studies, we think that the

development and usage of a set of well-definedmetrics

to analyze landscape pattern can be a critical part of a

culture of computational reproducibility across the

field of landscape ecology. Computational repro-

ducibility is the ability to produce equivalent out-

comes from the same data set using the same software

and code (Powers and Hampton 2019). Freely avail-

able software, along with pattern metrics that are

useful in a wide range of studies certainly contribute to

R & R in landscape ecology.

In conclusion, the contributions to this special issue

reflect the two parallel developments of landscape

pattern metrics that dominate the history of landscape

ecology. One has been the search for generality and

scaling, including determining the minimum set of

metrics with which to measure pattern in any

landscape for a wide range of purposes. The other

has been developing tailored metrics that could have

widespread use for a specific type of analysis. For the

same reasons that both up-scaling and down-scaling

are complimentary approaches to solving the problem

of cross-scale analysis, we believe that both

approaches to pattern metric development are valid

and useful. By developing and examining the perfor-

mance and limitations of both general and specific

metrics, landscape ecologists have a key role to play in

the integration of landscape pattern measurement

across many fields in ecology and related disciplines.
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