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Abstract

Although wildfires are an important ecological process in forested regions worldwide, they

can cause significant economic damage and frequently create widespread health impacts.

We propose a network optimization approach to plan wildfire fuel treatments that minimize

the risk of fire spread in forested landscapes under an upper bound for total treated area.

We used simulation modeling to estimate the probability of fire spread between pairs of for-

est sites and formulated a modified Critical Node Detection (CND) model that uses these

estimated probabilities to find a pattern of fuel reduction treatments that minimizes the likely

spread of fires across a landscape. We also present a problem formulation that includes

control of the size and spatial contiguity of fuel treatments. We demonstrate the approach

with a case study in Kootenay National Park, British Columbia, Canada, where we investi-

gated prescribed burn options for reducing the risk of wildfire spread in the park area. Our

results provide new insights into cost-effective planning to mitigate wildfire risk in forest land-

scapes. The approach should be applicable to other ecosystems with frequent wildfires.

Introduction

Wildfires, while being a natural ecosystem process in many biomes, can pose significant eco-

nomic and social threat to human communities in forested regions [1–3]. Land management

agencies invest significant resources into the prevention and suppression of wildfires in forest

landscapes and yet the economic costs associated with fires continue to increase rapidly [4],

amounting to as much as $348B annually in the United States alone [3]. In part, the escalating

costs are driven by the extreme challenges of managing wildfires in rugged landscapes, such as

in western North America, where drought and complex terrain combine to trigger cata-

strophic fires. In these landscapes, where wildfires may endanger human lives, deploying fire

response resources can be prohibitively expensive or sometimes logistically impossible.

Preventive fuel treatments, such as prescribed burns or strategic thinning of forest stands,

are intended to decrease the probability of fire spread and reduce fire severity and,
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consequently, the damage to human infrastructure. While there is a consensus that a substan-

tial reduction of flammable biomass will reduce fire spread and severity, factors such as the

location, size, maintenance, and use in fire operations may undermine fuel-treatment effec-

tiveness [5,6]. If effective, fuel treatments can reduce the costs of fire suppression activities,

and potentially save human lives [7–9]. Effective implementation of fuel treatments can result

in smaller average fire sizes, as well as reduced occurrence of large fires, which, in turn, can

lead to suppression cost savings [10]. Yet, fuel treatments can be difficult to plan effectively in

complex (e.g., mountainous) landscapes [11–14]. In fact, the overall effectiveness of fuel reduc-

tion programs has met with some skepticism, largely due to the suboptimal placement of fuel

treatments [15,16]. Limited resources and personnel, as well as imperfect understanding of fire

behaviour, necessitate careful planning of fuel treatments to maximize their effectiveness.

Optimization has been widely used to support decisions about fire prevention and suppres-

sion [17–20]. Several linear programming models have been proposed to assist with the plan-

ning of wildfire prevention and fuel treatments aimed to reduce the severity of future fires in

the landscape and their potential spread [20–27]. The proposed models featured an objective

of fragmenting the landscape to minimize fire hazard (i.e., the combination of fire spread and

intensity) [22] and were formulated as single- or multi-period site treatment problems with

variable fuel accumulation rates [19,23]. Kabli et al. [28] proposed a two-stage stochastic inte-

ger programming method to allocate fuel treatment to minimize the total treatment cost and

expected future losses. The optimal fuel treatment models of Minas et al. [19] and Rachmawati

et al. [27] considered a landscape with multiple land-cover types and estimated fuel loads as a

function of vegetation age. Acuna et al. [29] and Alonso-Ayuso et al. [30] proposed a harvest

planning model incorporating the creation of fire breaks to minimize wildfire risk while also

achieving a desired harvesting objective. Optimal design of prescribed burns was proposed in

Alcasena et al. [31] and Matsypura et al. [24]. Rytwinski and Crowe [32] applied a stochastic

simulation-optimization approach to evaluate the performance of fire-breaks allocations gen-

erated by a metaheuristic. Konoshima et al. [33,34] integrated a fire simulation model into a

two-period stochastic dynamic model to find spatial allocations of timber harvest and fuel

management in the face of spatially endogenous fire risk. Their approach used a fire simulation

model to enumerate all possible fire occurrence patterns in all plausible treatment decisions

and considered the trade-offs between fire risk, timber harvest value and fuel treatment cost.

Similarly, the optimal fuel treatment model of Wei [21] minimized the total expected loss from

fires using fire spread predictions made with a fire simulation model. The loss from fire was

calculated as the sum of losses in all locations within the fire perimeter weighted by the proba-

bility of fire ignition and by the probability of a fire lasting for a given period after ignition.

Several of the proposed models minimized connectivity between forest patches with high

wildfire risk as a way to reduce fire spread potential in a landscape [27]. Minas and Hearne

[35] outlined a fuel treatment model that clustered sites where prescribed burns were sched-

uled. León et al. [25] described a model that tracked connectivity between adjacent sites repre-

senting candidates for prescribed burn actions. Pais et al. [14] proposed a maximum-weight

connected subgraph problem to allocate harvesting to reduce the spread of fires. Matsypura

et al. [24] applied a network optimization approach for the planning of prescribed burns.

Their model depicted a flammable landscape as a network of connected patches (nodes),

where each node was characterized by a fuel load value. They adopted a critical node detection

problem (CND) [36–39] that, similar to other models, set an objective to minimize connectiv-

ity between nodes with high fuel loads. However, the potential spread of fires was considered

only between adjacent nodes with fuel loads above a chosen threshold. This assumption

enabled a simplified formulation of the fuel treatment problem by activating/deactivating

nodes with high fuel loads in a particular planning period, but it also made the solutions
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sensitive to the chosen fuel load threshold value. Notably, a node-based fuel accumulation or

fire hazard metric does not fully characterize the potential of fires to spread across a landscape

(i.e., from node to node). Ideally, a risk metric should quantify directional spread of fires from

one location to another. Such a metric provides a better ecological foundation for composing a

landscape-level fire spread network because it depicts relevant factors, such as prevailing

winds during periods of elevated fire spread potential, that are known to influence landscape-

level fire spread patterns.

In this paper, we employ a directional metric that quantifies the probability of fires spread-

ing between a pair of locations in a landscape to solve a fuel treatment problem: allocating a set

of prescribed burns to minimize the chance that wildfires will spread through the landscape,

subject to an upper bound on the total treated area of prescribed burning or similar fuel reduc-

tion treatments (henceforth referred to as “prescribed burning”). For each pair of forest

patches, we estimate the probability that a fire ignited in one patch will spread to another. We

incorporate this metric into a modified Critical Node Detection (CND) problem [36–39],

which we apply to solve a prescribed burn planning problem. We demonstrate the approach

with a case study in Kootenay National Park, British Columbia, Canada, where we examine

prescribed burn options aimed at reducing the risk of fires in the park.

Materials and methods

Detecting critical nodes in a network of flammable forest sites

A forest landscape can be thought of as a connected network of flammable patches (nodes),

where the connecting arcs (edges) depict possible vectors of fire spread between adjacent

patches. To minimize the possibility of fires spreading widely across the area, the manager allo-

cates a set of treatments (prescribed burns) among the nodes. Treating a node helps reduce

fire intensity [40] to the point of more effective suppression [41]. For simplicity, we assume

that the treatment of a node is equivalent to removing a node and all arcs connected to that

node from the forest landscape network, although we acknowledge that fuel treatments are not

always completely effective [42]. The manager’s problem is determining the best way to parti-

tion the network so that the probability of fires spreading through the area is minimized.

A popular strategy for solving this problem is to reduce the connectivity between nodes

with flammable fuels in the landscape network. This strategy can be implemented by solving a

CND problem, which finds the key nodes in a network whose removal maximally degrades the

connectivity of the network according to a chosen metric [36–38,43–45]. The concept of criti-

cal nodes characterizes the vulnerability of a network after a portion of nodes are removed,

which, depending on the type of network, could be the result of natural disasters or technical

failures. The CND problem has been applied in many disciplines [46] including security appli-

cations [47,48], transportation [49], social network analysis [50] and epidemiology [51–54].

Let G = (N,E) be a graph with a set of N nodes (vertices) and a set of edges E, E� N×N
(Fig 1a). We assume that two nodes i and j are connected if the graph G contains a path

between them. We define a connected component of graph G as a subgraph in which each

node has a path to every other node in the component but not to any node outside that compo-

nent. A graph G is fully connected and represents a single connected component if all its

nodes are pairwise connected. If there is a pair of nodes that are not connected, then graph G
contains at least two connected components (Fig 1b).

We define a binary variable xi 2 {0,1}, i 2 N, where xi = 1 if node i is not deleted from graph

G and xi = 0 otherwise. A binary variable, uij 2 {0,1}, is defined for every pair of nodes i,j 2 N
and assumes that uij = 1 if both nodes i and j are not deleted (i.e., xi = xj = 1) and there is a path

connecting i and j, i.e., when nodes i and j are in the same connected component (Fig 1c). In
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our fire prevention context, the existence of a path between nodes i and jmeans a fire could

spread between i and j. The area of a node i is ci. The subset of nodes that can be removed

from a graph G is limited by an upper bound treatment area limit B (which also defines the

total node removal cost). The graph obtained after a removal of R critical nodes is a subgraph

(s) of G composed of the set of remaining nodes, N \ R (Fig 1b and 1c).

A common and, in our case, highly relevant objective for the CND problem is to minimize

the total number of connected node pairs in the remaining components (subgraphs) after

removal of R critical nodes [36,37]. Below, we provide the CND problem formulation based

on [37], i.e.:

min
Xi;j2N

i<j

uij ð1Þ

s.t.:

Xi2N

ci 1 � xið Þ � B ð2Þ

uij � xi þ xj � 1 8 ði; jÞ 2 E ð3Þ

uij �
1

M

Xk2NGðiÞ

k6¼j

ukj � 1 � xið Þ 8 i; j 2 N; i 6¼ j; ði; jÞ=2E; ð4Þ

xi, uij 2{0,1} 8 i, j 2 N, i 6¼ j.
The formulation (1–4) yields O(|N|2) constraints and is more efficient than the original

CND problem formulation with triangular inequalities [36], which yields O(|N|3) constraints.

In our fire prevention context, objective function (1) minimizes the total number of node pairs

ij with possible spread of fires between i and j in area N. Constraint (2) sets an upper bound on

the total treatment area. Constraint (3) ensures, for adjacent nodes i and j, that uij = 1 if neither

Fig 1. a) A landscape network of connected patches (graph) G as a single connected component before interdiction; b)

An interdicted graph with two connected components. Large dots denote the removed nodes; c) Pairwise connections

uij between nodes in the connected components after interdiction (lines in dark blue).

https://doi.org/10.1371/journal.pone.0258060.g001
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node is deleted. Constraint (4) ensures that nodes i and j are connected if there is a non-deleted

node k, k 6¼ j, in the connected component ℵG(i) that includes i (i.e., the neighbourhood of i),
as well as nodes with non-interdicted path connections to i, such that k and j are connected.

A modified CND problem for fire prevention planning

For each node i, the CND problem (1–4) evaluates the presence of path connections to all

other nodes j in network N, i 6¼ j [37,39] (Fig 2a). In our case, the presence of a path connec-

tion between nodes i and j allows a fire ignited in i to spread to j. In real landscapes, a fire

ignited in a particular location could potentially spread over some area around the ignition

point but is unlikely to spread across the entire landscape (Fig 2b). The fire extent can be lim-

ited by natural barriers, unavailability of fuel, fire suppression or the number of days with

weather conditions conducive to fire spread prior to heavy rain or snowfall [55–61]. Thus, for

a given node i, one only must evaluate the path connections to those j nodes to which a fire

ignited in i realistically could spread (Fig 2b, shaded area). This greatly reduces the number of

node pairs ij, decision variables uij and constraint inequalities (3) and (4) in the CND problem.

Our approach of building a fire spread network G differs from the previous CND problem

application in Matsypura et al. [24], where a fire spread network included all nodes with fuel

loads above a chosen threshold. Reliable estimation of that threshold is difficult because a for-

est landscape is characterized by a continuum of flammable fuel loads [55,62], and fire igni-

tions and spread can be driven by factors other than local fuel amounts, such as topography

and variable weather [63,64]. Furthermore, a node-based fuel load value does not represent the

factors controlling the directional spread of fires, such as synoptic weather patterns [65] that

influence topographic wind funnelling [66].

We build network G from the probabilities of fire spread between pairs of locations (nodes)

in landscape N. For each node i, we define a subset, Oi, of nodes j that are potential spread des-

tinations of fires ignited in i. Collectively, the destination nodes j in subsetOi delineate the pos-

sible spread extent for a fire ignited at i (Fig 2b and 2c). The idea is analogous to a fireshed
concept [67] (Fig 2d), which defines the locations j around a location of interest i that could be

the source of a fire that spreads to i. In our case, however, we define the fireshed from the

opposite direction, i.e., as the area around node i to which fires ignited in i could potentially

spread (Fig 2b).

Defining the subsets Oi helps incorporate available spatial information on potential fire

spread into the CND problem. For each node i, we restrict the set of decision variables uij and

constraints (3) and (4) to the nodes j that are in subset Oi. We also weight the values of the

binary decision variable uij in objective function (1) by the probabilities of fire spread from

node i to node j, pij. Weighting uij by these probabilities prioritizes interdiction of the likeliest

fire spread paths. We then formulate a modified CND model (problem 1 hereafter) as follows:

min
Xi2N Xj2Oi

j6¼i

uijpij ð5Þ

s.t.: constraint (2) and

uij �
1

M

Xk2NGðiÞ

k6¼j

ukj � 1 � xið Þ 8 i 2 N; j 2 Oi; i 6¼ j; ði; jÞ=2E ð6Þ

uij � xi þ xj � 1 8 ði; jÞ 2 E; j 2 Oi; ð7Þ
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Fig 2. a) Node pairs ij with the origin in node i that are evaluated in the basic CND problem; b) potential spread area

of fires ignited in location i. Nodes with the positive probabilities of a fire spread from the ignition node i are shaded; c)

probabilities of a fire spread from node i with the ignition points to nodes j, pij. Fire spread examples in Fig 2a and 2b

are based on 100 iterations; d) a fireshed around the node of interest j; e) using auxiliary node 0 to inject the flow into

the landscape network. Dashed arrows show the arcs connecting adjacent nodesN. Arrows in bold red show the flow

from node 0 through the connected nodes scheduled for removal (outlined in red).

https://doi.org/10.1371/journal.pone.0258060.g002
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xi, uij 2{0,1} 8 i 2 N, i 2 Oi, i 6¼ j.

Objective function (5) minimizes the expected number of node pairs between which fire

spread is possible after the removal of some nodes in network G. When nodes have equal area,

the upper bound B limits the total number of removed nodes. As already noted, the subset Oi

includes those j nodes that are potential destinations of fires ignited in node i, with fire spread

probabilities pij> 0. Constraints (6) and (7) are comparable to (3) and (4) but consider only

node pairs with non-zero fire spread probabilities. For each pair of nodes i and j, objective (5)

tracks the path connections uij and uji and fire spread probabilities pij and pji in both direc-

tions, which helps account for differences in the directional spread of fires. For example, the

probability values pij> pji could characterize the spread of fires between nodes i and j with pre-

vailing winds blowing from i to j.
Objective (5) can be applied to evaluate two distinct scenarios. A probabilistic fireshed sce-

nario uses the unaltered spread probability values pij to scale the decision variables uij in objec-

tive (5). In this scenario, the node pairs ij exhibiting the highest fire spread frequencies have

the greatest impact on the objective value. These frequencies depend on the size distribution of

fires ignited in node i and spreading to j because fires ignited in imust have the size at least as

large as the distance between i and j. In a forest landscape, the fire size distribution follows a

general power law function [58,59,68–73]. Consequently, this scenario tends to interdict by

means of geographically distinct hotspots with small but frequent fires across the landscape.

In a second binary fireshed scenario, the pij values in objective function (5) are replaced

with binary fire spread indicators, pij bin, that are equal to one for pij> 0 and zero for pij = 0.

Thus, the scenario assumes equal unary weights for all node pair connections with pij> 0. For

each node i, the sum of the pij bin values defines the possible spread extent of fires ignited in i, a

fireshed area that the scenario minimizes. For a typical gridded network of forest sites, the

number of possible connections between node pairs grows in quadratic proportion to the lin-

ear size of a connected component (and so the distance between a pair of nodes i and j).
Accordingly, the binary fireshed scenario minimizes the number of long paths between node

pairs and therefore minimizes the spread of large fires.

The probabilistic and binary fireshed scenarios can be viewed as alternative strategies for

minimizing potential fire spread. The trade-off between these strategies can be examined by

replacing the pij (or pij bin) values in objective Eq (5) with their weighted average, i.e.: pij(1 − φ)

+ pij binφ, where φ is the scaling factor. The trade-off frontier can be found by solving the prob-

lem for a range of φ values between 0 and 1.

Controlling the spatial contiguity of the prescribed burns

By itself, the CND problem does not control for connectivity between the removed nodes. The

removal of multiple nodes may occur in clusters that cover a substantial area. In our fire pre-

vention context, removal of a node indicates implementation of prescribed burning in the

node area. Often, the maximum size of a prescribed burn must be constrained for safety rea-

sons. Prescribed burns require careful planning and costly logistical support to ensure safe exe-

cution [74]. High costs and logistical challenges limit the total number of prescribed burns

that can be executed in an area over a season [75]. For the sake of efficiency, individual burns

must be spatially contiguous, but their size cannot exceed the safety limit. We address these

requirements by adding a network flow sub-problem for controlling the number and spatial

contiguity of the subsets of removed nodes (burns) in the CND model. We add an auxiliary

node 0 to the set of landscape nodes N. Node 0 is connected to all nodes i in N by arcs 0i and

serves as the source of a flow that can only be passed to nodes i scheduled for removal (i.e.,
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with xi = 0) (Fig 2e). A node scheduled for removal can receive the flow from node 0 (or

another node with xi = 0). It retains one unit of flow and passes the flow to an adjacent node

scheduled for removal, and so on until all nodes scheduled for removal receive flow. The total

number of connected nodes that can be removed is limited by the burn size limit A. For each

planned burn (planning step hereafter), only one connection between node 0 and nodes i is

allowed, thus creating one connected subset of removed nodes (a single burn).

We introduce a set T to define the total number of contiguous subsets of removed nodes

(i.e., planned burns) in landscape N. Each planning step t, t 2 T, allocates one subset of

removed nodes with the maximum size limit A. For each arc ij connecting adjacent nodes i
and j, i,j 2 {0}, E, a binary variable zijt selects the flow through arc ij in step t (so that zijt = 1

when arc ij is selected and zijt otherwise). A non-negative decision variable yijt defines the

amount of flow via arc ij between nodes i and j in step t. The updated CND formulation for

planning of T contiguous burns (problem 2 hereafter) is formulated as follows:

Objective (5)

s.t.: constraints (2,6,7) and

Amin �
XN

i¼1

y0it � A 8 t 2 T ð8Þ

XYi

j¼0

yjit �
XYi
þ

k¼1

yikt ¼
XYi

j¼0

zjit 8 i 2 0f g;N; t 2 T; ðj; iÞ 2 0f g;E; ði; kÞ 2 E ð9Þ

yijt � zijtM 8 i 2 0f g;N; j 2 N; ði; jÞ 2 0f g;E ð10Þ

zijt � yijt 8 i 2 0f g;N; j 2 N; ði; jÞ 2 0f g; E ð11Þ

XT

t¼1

XYi

j¼0

zjit � 1 8 i 2 N ð12Þ

XN

i¼1

z0it ¼ 1 8 t 2 T ð13Þ

xi ¼ 1 �
XT

t¼1

XYi

j¼0

zjit 8 i 2 N: ð14Þ

Constraint (8) ensures that the number of nodes that can receive flow, and the correspond-

ing size of the removed node set t, stays within the range [Amin; A]. Constraints (9–12) ensure

that the nodes removed in step t are connected in one segment. Constraint (9) ensures that the

amount of incoming flow to node i is equal to the amount of outgoing flow from i to adjacent

nodes plus the retained capacity of i (one unit of flow). Set Θi denotes adjacent nodes j (includ-

ing node 0) that can pass flow to node i, while set Θi
+ denotes adjacent nodes k that can receive

flow from i. Constraint (10) ensures no flow if arc ij is not selected and constraint (11) specifies

no selection of arc ij if no flow occurs between nodes i and j in step t. Constraint (12) ensures

that the flow to node i from other nodes (including node 0) over T steps comes through no

more than one arc. This guarantees no overlap between the node selections in different steps t.
Constraint (13) specifies a single connection from node 0 to nodes i in step t, which yields one
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contiguous subset of nodes. Constraint (14) ensures agreement between the node removal var-

iable xi in the CND sub-problem and the selection of flow between adjacent nodes scheduled

for removal. The term
XYi

j¼0

zjit defines the number of arcs with positive flow to node i, i 2 N,

and is equal to one if node i receives flow from one of its adjacent nodes j (or node 0) and zero

otherwise. Table 1 lists the model parameters and variables.

Problem 2 assumes a single-period planning cycle where the CND sub-problem is solved

once for T planned burns. The time to find a feasible solution can be reduced by replacing

objective (5) and constraint (13) with a penalty formulation, i.e.:

min
Xi2N Xi2Oi

j6¼i

uijpij þ
XT

t¼1

Vtf ð15Þ

Table 1. Summary of the model variables and parameters.

Symbol Parameter/variable name Description

Sets:
N Nodes (forest patches) i,j in a landscape network (graph) G i,j 2 N
E Edges connecting adjacent nodes in a landscape network G E � N×N
ℵG(i) Connected component which includes node i ℵG(i)2 N
Oi Nodes j–potential spread destinations of fires ignited in node i Oi 2 N
Θi

+ Adjacent nodes k which can receive flow from node i Θi
+ 2 N

Θi Adjacent nodes j (or node 0) which can pass flow to node i Θi 2 N
T Planning steps t in problem 2 t 2 T
T’ Planning time periods t’ in problem 3 t’ 2 T’
Decision variables:
xi Node deletion binary variable (xi = 0 if node is removed and xi = 1 otherwise) xi 2{0,1}

uij Binary variable defining that nodes i and j are not removed and there is a path connecting i
and j

uij 2{0,1}

zijt Binary flow indicator between nodes i and j which are scheduled for removal in step t zijt 2{0,1}

yijt Flow through an arc ij between adjacent nodes i and j scheduled for removal in step t yijt� 0

uijt” Binary variable defining that nodes i and j are not removed and there is a path connecting i
and j in period t’

uijt” 2{0,1}

xit” Node removal binary variable (xit‘ = 0 if node is removed in planning period t’ and xit’ = 1

otherwise)

xit” 2{0,1}

Vt Penalty for the number of connections from an auxiliary node 0 to the nodes scheduled for

removal in step t above one (creates a single contiguous set of removed nodes in step t)
Vt� 0

Parameters
pij Fire spread probability from node i to node j pij 2 [0;1]

pij bin Fire spread probability binary indicator: pij bin = 1 for pij > 0 and pij bin = 0 otherwise pij bin 2

{0,1}

wij Fie spread probability between adjacent nodes i and j, ij 2 E wij 2 [0;1]

ci Removal cost for node i ci = 1

B Node removal (treatment) area limit B > 0

Amin Minimum size of a contiguous set of the removed nodes in step t Amin = 2

A Maximum size of a contiguous set of the removed nodes in step t A = 6

M Large positive value M> 0

f Scaling factor for penalty Vt f � 0

φ Scaling factor between the pij values and their binary indicators pij bin φ 2 [0;1]

https://doi.org/10.1371/journal.pone.0258060.t001
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s.t.: constraints (2,6–12,14) and

Vt �
XN

i¼1

z0it � 1 8 t 2 T: ð16Þ

Objective (15) is similar to (5) except it includes a penalty, Vt, for each step t, adjusted by

the scaling factor f. Constraint (16) defines the Vt value as the number of connections from

node 0 to nodes i in area N in step t exceeding one. Setting a large scaling factor f for Vt
instructs the model to schedule one contiguous set of nodes for removal for each step t.

Problem 2 solves a time-invariant CND problem for T planned burns. Site treatments are

typically implemented in a stepwise fashion over a defined time period. Our problem 3

accounts for the cumulative nature of multi-step planning; namely, the actions taken in the

first step have the most impact on the system and may thus affect the actions taken in the sub-

sequent steps. Problem 3 extends problem 2 to a multi-period case where the CND problem is

solved for each period t’ and the cumulative impact of gradual node removals is tracked over

the full timespan T’. The treatments with the greatest impact on fire spread are allocated first,

followed by less impactful treatments. For each period t’, we define binary decision variables

u’ijt and x’ij similarly to the binary variables uij and xi in the time-invariant problems 1 and 2,

and formulate the multi-period node removal problem as follows:

min
1

T 0
XT0

t0¼1

Xi2N Xj2Oi

j6¼i

u0ijt0pij þ
XT0

t0¼1

Vt0 f ð17Þ

subject to constraints (8–12,16) and

x0it0 ¼ 1 �
Xt0

v¼1

XYi

j¼0

zjiv 8 i 2 N; t
0 2 T 0 ð18Þ

u0ijt0 �
1

M

Xk2NGðiÞ

k6¼j

u0kjt0 � 1 � x0it0
� �

8i 2 N; j 2 Oi; i 6¼ j; ði; jÞ=2E; t
0 2 T 0 ð19Þ

u0ijt0 � x
0

it0 þ x
0

jt0 � 1 8 ði; jÞ 2 E; j 2 Oi; t
0 2 T 0: ð20Þ

Objective (17) is similar to (15) but minimizes the expected number of node pairs with pos-

sible fire spread after the removal of some nodes in each period t’, over T’ periods. Given an

anticipated short planning horizon in our study, we used a single set of fire spread probabilities

pij over timespan T’ but acknowledge that longer-duration periods t’may require defining

time-dependent sets of pijt’ values for each period t’.
As specified by constraint (18), tracking the connections between node pairs in the CND

sub-problem (17,19,20) in period t’ includes all nodes removed over a timespan of 1,. . .,t’ peri-

ods, representing a portion of the full timespan T’. Subscript v in (18) is an alias to subscript t’,
v 2 T’. The summation of flow variables zijv over periods 1,. . .,t’ in (18) estimates whether

node i has received flow during time span [1; t’]. Recall that a node i scheduled for removal in

period t’must receive flow, so
XYi

j¼0

zjit0 ¼ 1. Given that constraint (12) limits the flow to node i

over T’ periods to one instance only, the right side of Eq (18) can be either zero, when i has

received flow over time span [1;t’], or one otherwise. Thus, for each period t’, the CND sub-
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problem tracks the impact of cumulative disruption of the landscape network G over timespan

[1; t’]. Constraints (19) and (20) are analogous to (6) and (7) but applied at each period t’.
The key difference between problems 2 and 3 is that problem 3 solves the CND sub-prob-

lem for each period t’ to account for a cumulative reduction of fire spread potential after each

period. This makes problem 3 combinatorically harder than problem 2. To reduce the solving

time, we used the problem 2 solutions to initialize problem 3. We first solved problem 3 with

constraint (21) that forces the node removal pattern to conform to the problem 2 solution

(assuming the same scenario assumptions and the treatment area limit B), i.e.:

x0it0 � wi 8 i 2 N; t0 2 T 0; ð21Þ

where χi denotes the values of decision variable xi in problem 2 solution. Under constraint

(21), the problem 3 model finds an optimal timing for T burns scheduled in the problem 2

solution. This solution was then used to warm start the original problem 3 model (8–12,16–

20).

Calculating the fire spread probabilities pij
For all node pairs i,j in the landscape, the CND model requires knowledge of the probability

that a fire ignited in i will spread to j, pij. It is unnecessary to approximate the particular spread

path(s) from i to j because the spread probability value pij only defines the likelihood that a fire

which is ignited in location i will spread to location j and does not require specification of how

the fire might spread from i to j. Evaluating the presence of a path (i.e., any path) connecting

nodes i and j is handled by the CND model constraints (3) and (4).

We used a spatial fire simulation model to estimate the fire spread probabilities pij between

node pairs ij in landscape N. Fire simulation models generate stochastic ignition events and

plausible perimeters of fires spreading from the ignition locations [60–62,76,77]. Perimeters of

individual fires are generated by combining ignitions and weather with a spatial fire growth

model. Fire simulation models are popular tools for mapping potential wildfire spread and, as

such, estimate the likelihood of wildfires [55,60,62,78–87]. Recent computational advances

permit simulation of ignitions, fuel distribution, impacts of terrain and weather, and generate

many plausible fire spread patterns [86]. Fire simulation models have been used to evaluate

fuel treatment projects [55,88] and evaluate fire suppression strategies [77,88]. Examples of

popular fire models include the Canadian Burn-P3 model [78], the FSim model in the USA

[80], and the Australian Phoenix model [89].

We used the Burn-P3 model [78] to generate stochastic fire ignitions and spread scenarios

in our study area (see Supplement S1). Burn-P3 implements the crown fire scheme of the

Canadian Fire Behaviour Prediction System (FBP) [90], modelling surface fires as well as the

transition to crown fires (and the rate of crown fire spread itself). For each iteration, Burn-P3

generates the ignition locations and perimeters of individual fires. We calculated the fire

spread probabilities pij from these outputs as follows. First, we generated a hexagonal network

of interconnected forest patches containing flammable fuels (nodes N in a fire spread network

G in the CND problem). For a hexagon (node) i, we selected all fires ignited in i and overlaid

their perimeters on network G (see Supplement S2 Fig 1a in S2 File). For each fire ignited in i,
we selected all nodes j to which that fire was able to spread (S2 Fig 1b in S2 File). Each selected

node pair ij was assigned a value of 1 (S2 Fig 1c and 1d in S2 File), which denoted a fire spread

event from i to j. This procedure was sufficient to count the number of fire spread events from

i to j; approximation of the actual spread paths for the events was unnecessary. We repeated

this calculation for all fires generated by Burn-P3. For every node pair ij, we summed the num-

ber of times a fire ignited in i spread to j and divided this sum by the number of Burn-P3
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iterations (S2 Fig 1d in S2 File). This yielded the probability of a fire ignited in node i spreading

to node j, pij, which we used in the probabilistic fireshed scenarios. Converting all pij> 0 to

one gave us the binary fire spread indicators pij bin, which we used in the binary fireshed

scenarios.

Case study

We applied the CND model in the Kootenay National Park, British Columbia, Canada. The

park is part of a UNESCO World Heritage Site in the Canadian Rocky Mountains (Fig 3) and

covers a subalpine and alpine region with elevations between 1200 and 3400 m above sea level

(Fig 4a) [88]. Forests at lower elevations in the area are dominated by Engelmann spruce

(Picea engelmannii), subalpine fir (Abies lasiocarpa), white spruce (Picea glauca), and lodge-

pole pine (Pinus contorta) and are replaced by alpine tundra at upper elevations [91]. Light-

ning ignitions are a common cause of large stand-replacing fires [92]. Small, lower-intensity

Fig 3. Study area.

https://doi.org/10.1371/journal.pone.0258060.g003
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surface fires are frequent but do not burn large areas [91]. Fire management in the park aims

to balance the historical fire regime in fire-maintained ecosystems with the protection of the

park’s human infrastructure [93].

We applied the Burn-P3 model to simulate potential fire ignitions and spread in the Ver-

milion Valley area (approximately 834 km2) under the current management regime (see Sup-

plement S1). We used the fire regime scenario from Reimer et al. [88] that assumed fire

management crews attack all detected fires in the area but, on average, 13% of ignited fires

would escape initial attack. Fire suppression has the greatest impact on fires that are small at

the time of discovery and is substantially less effective when fires are already large. For exam-

ple, Alberta reported 83% success at containing fires smaller than 3 ha [94] and British Colum-

bia reported 92% success containing fires smaller than 4 ha [95].

A 5-km buffer was added to allow fires to spread in and out of the study area. We calibrated

the model to align generally with the historical fire size distribution in the Vermilion Valley

area from the Canadian National Fire Database [96] (Fig 5).

In Canada, complex terrain and poor access often necessitate the use of helicopters for wild-

fire management operations [41]. Compared to the use of ground vehicle-based engine crews,

the use of helicopters increases the total cost for a burn treatment, but also keeps the average

per-unit-area costs fairly consistent no matter where the prescribed burns are executed in the

study area, thereby making implementation less dependent on the cost of ground access to a

particular location. Hence, we assumed the total cost to be proportional to the prescribed burn

area. Note that the budget constraint [2] would require a variable cost component if the treat-

ments were managed by ground crews, in which case their cost would depend on the time

needed to access the treatment sites (which, in turn, could be a function of the complexity of

terrain and the proximity to roads).

Our landscape network G included 834 1-km2 hexagonal nodes interconnected in a trian-

gular pattern (Fig 4c). We chose this node size to balance the numeric complexity of the prob-

lem with its practical utility for planning. It was also an appropriate size for capturing the

patterns of natural fire barriers in the area, such as individual mountain ridges or rocky

Fig 4. a) Elevation; b) Fuel types; c) Landscape network G. Dark blue lines depict edges E between nodesN in landscape network G. Dark green area

denotes the hotspot with high burn probabilities based on Burn-P3 simulations.

https://doi.org/10.1371/journal.pone.0258060.g004
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outcroppings that have been shown to be effective barriers to fire spread at a 250-m and greater

scale in the park [97]. Based on this fixed node size, the treatment area limit B defined the

number of nodes to be removed from the network.

We found optimal solutions for problem 1 without spatial contiguity constraints as well as

problems 2 (single-period) and 3 (multi-period) with spatial contiguity constraints for a range

of treated areas between 10 and 50 nodes. The minimum and maximum sizes of prescribed

burn t, Amin and A, were set to 2 and 6 nodes in problems 2 and 3 and the treatment area limit

B was set to 5 × T nodes. To determine what fire spread information adds to the optimal solu-

tion, we solved the original CND problem (1–4) using the current land cover composition and

no pij values (Fig 4c). This scenario was based solely on a binary map of flammable/non-flam-

mable land cover types (e.g., vegetation and natural fire barriers). Alternatively, the scenarios

that included fire behaviour information utilized the fire spread probabilities pij calculated

with the fire simulation model.

We also evaluated a scenario that preferentially treated the sites with the highest ignition

probabilities. In this simple scenario, nodes were removed in descending order of fire ignition

probability, subject to a treatment area constraint (2). For each node, we estimated the ignition

probabilities from Burn-P3 fire model outputs.

Hard combinatorial complexity makes it difficult to find feasible solutions for problems 2

and 3 with the number of planning steps T> 2. For problem 2, we used the solutions with

T = 2 to initialize a three-step problem (T = 3). In this three-step problem, we fixed the deci-

sion variables x’it, and u’ijt in steps 1 and 2 to the solutions with T = 2 as a warm start. After sav-

ing the optimal solution with T = 3, we increased the T value to four steps and solved the

model again using x’it, and u’ijt for t = [1;3] from the solution with T = 3 as a warm start, and

so on until we solved the model for a desired number of steps. We then used the set of decision

variables from the last solution to warm start the full problem. Problem 3 was initialized from

problem 2 solutions in similar fashion. The model was run for 72 hours or until reaching an

optimality gap of 0.5%, whichever came first. The model was composed in the General Alge-

braic Modeling System [98] and solved with the GUROBI linear programming solver [99].

Fig 5. Fire size distribution generated by Burn-P3 vs. the historical fire size distribution from the National Forest

Fire Database.

https://doi.org/10.1371/journal.pone.0258060.g005
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Results

We determined the minimum number of Burn-P3 model iterations to stabilize the fire spread

probabilities pij and optimal solutions in the CND problem (Supplement S3). The node

removal patterns in the CND model solutions stabilized after 30,000 iterations (S3 Fig 1 and 2

S3 File), so we report the optimal solutions for problems 1–3 using pij values calculated from

30,000 Burn-P3 iterations (Table 2).

Mapping the fire spread probabilities

The study area included a large concentrated area of high burn probabilities in the southern

portion and a few smaller areas with elevated burn probabilities along the major highway

crossing the study area (Fig 6a). The map of fire spread probabilities pij between node pairs

(Fig 6b) generally agreed with the burn probability map, but the large number of overlapping

fire spread arcs ij between node pairs has made it too complex for practical use. We devised an

alternative mapping approach where we plotted the fire spread potential recalculated as the

spread between adjacent nodes i,j, wij, along network edges E. We calculated the wij values

from the same set of Burn-P3 outputs we used to calculate the pij values for the CND model

(see Supplement S4). For each simulated fire, we calculated the fire spread vectors between

adjacent nodes, starting from the fire ignition node, to all nodes within the fire perimeter via a

shortest path algorithm (S4 Fig 1a in S4 File). Each vector ij connecting adjacent nodes i and j
was assigned one. For each arc, ij, ij 2 E, we then summed the spread vectors calculated for all

individual fires and divided this value by the number of Burn-P3 iterations. This gave us the

fire spread probability between adjacent nodes i and j. The wij values were used only to map

the fire spread patterns and were not utilized in the CND model.

The map of wij values shows the fire spread probabilities along edges E in landscape net-

work G (Fig 6c) and reveals some critical elements of fire spread in the area [100]: prevailing

fire spread directions, when darker edges align in parallel streaks (Fig 6c callout I); areas with

omnidirectional spread of fires, when a set of neighboring edges of similar color exhibits a tri-

angular pattern (Fig 6c callout II); or potential fire spread corridors (Fig 6c callout III). We

also plotted similar maps for node removal solutions (Fig 6d–6l), where we calculated the wij
values only for the fire spread paths between node pairs with non-zero products of decision

variables uij and fire spread probabilities pij, pijuij> 0 (S4 Fig 1b in S4 File). These maps help

assess the impact of node removal on fire spread risk. Note that the wij values were only used

to visualize the fire spread patterns. The optimization model used the actual fire spread proba-

bilities pij.

Optimal network interdiction solutions

The panels of Fig 6d through Fig 6l show problem 1 solutions, which ignored spatial contiguity

constraints for site treatments, for treatment area (i.e., node removal) limits B = 10, 20 and 30

nodes. The solutions without fire spread information split the central Vermilion Valley almost

in half (Fig 6d–6f), while the rest of the budget was spent on isolating small valleys connected

to the central valley by narrow corridors. As the treatment area limit B increased, a larger

share of the budget was spent on isolating these small valleys (Table 2).

Incorporating information about fire spread changed the optimal node removal patterns.

In the binary fireshed problem 1 solutions (Fig 6g–6i), the central Vermilion Valley was not

cut in half as in the solutions without fire spread information. Instead, the immediate focus at

lower budget levels was on isolating the smaller valleys. As the treatment area increased, the

model fragmented the area with high risk of ignitions in the southern part of the Vermilion

Valley (Fig 6i, Table 2).
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The probabilistic fireshed solutions differed from the binary fireshed solutions (Fig 6j–6l).

Most of the budget was spent on partitioning the area with high risk of ignitions in the south-

ern region. At larger treatment area levels, a small portion of the budget was allocated to creat-

ing one or two large partitions in the north. Compared to the binary fireshed scenarios, none

Table 2. Node removal summaries in problem 1–3 optimal solutions.

Problem/

scenario

Treatment area B,

nodes

Planning steps, T in problem 2 (or periods, T’ in

problem 3)

Expected

number of

path

connections

between

node pairs

based on:

Budget portion, %, spent on:

pij bin
� pij�� 1-node

segments

2-3-node

segments

>3-node

segments

Problem 1—using land cover composition only

10 60494 22.4 30% 20% 50%

20 49793 20.2 35% 35% 30%

30 42578 19.3 33% 47% 20%

Minimizing the probability of ignitions

10 63440 20.7 10% 90% -

20 58368 18.1 10% - 90%

30 55696 16.4 - 10% 90%

Problem 1 binary fireshed scenario

10 51982 20.6 50% 50% -

20 41310 17.0 20% 60% 20%

30 34400 15.4 20% 67% 13%

Problem 1 probabilistic fireshed scenario

10 55935 18.6 10% - 90%

20 48077 15.4 - 30% 70%

30 43076 13.1 - 33% 67%

Problem 2 binary fireshed scenario

10 2 56485 20.0 - - 100%

20 4 46624 17.4 - - 100%

30 6 40049 15.1 - - 100%

Problem 2 probabilistic fireshed scenario

10 2 58452 18.8 - - 100%

20 4 49444 15.7 - 10% 90%

30 6 41731 13.2 - 7% 93%

Problem 3 binary fireshed scenario

10 2 56489 20.1 - - 100%

20 4 46624 17.4 - - 100%

30 6 40049 15.1 - - 100%

Problem 3 probabilistic fireshed scenario

10 2 58452 18.8 - - 100%

20 4 49444 15.7 - 10% 90%

30 6 41731 13.2 - 7% 93%

� Used in binary fireshed scenarios; Y-axis in Fig 10a; X-axis in Fig 11.

��Used in probabilistic fireshed scenarios; Y-axis in Fig 10b; Y-axis in Fig 11.

https://doi.org/10.1371/journal.pone.0258060.t002
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Fig 6. Maps of optimal node removal solutions. Key fire regime metrics: a) burn probabilities; b) fire spread

probabilities between node pairs, pij (spread probabilities along network edges E between adjacent nodes are not

shown); c) fire spread probabilities between adjacent nodes, wij. Node removal solutions based on land cover

configuration only: d) treatment area B = 10 nodes; e) B = 20 nodes; f) B = 30 nodes. Binary fireshed scenario 1

solutions (using pij bin values): g) B = 10 nodes: h) B = 20 nodes; i) B = 30 nodes. Probabilistic fireshed scenario (using

pij values): j) B = 10 nodes: k) B = 20 nodes; l) B = 30 nodes. Maps c-l use the same color scheme for plotting wij values.

https://doi.org/10.1371/journal.pone.0258060.g006
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of the budget was spent on disrupting the narrow corridors connecting smaller valleys. Overall,

the probabilistic fireshed scenarios more effectively reduced the local spread of fires between

adjacent nodes than the binary fireshed scenarios (Fig 6j–6l). This is unsurprising because the

probabilistic scenarios minimize the spread of the most frequent, small fires, which tend to

spread between adjacent nodes only. The relationship between fire spread distance and the

probability of spread pij is described by a power law function (Fig 7). When the unaltered pij
values were used in objective (5), hotspots with frequent small fires were prioritized for inter-

diction. By comparison, in the binary fireshed scenarios, all positive pij values were converted

to one, so there was no direct feedback from the spread probabilities to the objective value (as

long as pij> 0). The number of node pairs with possible path connections grows in quadratic

proportion to the linear distance between nodes; consequently, minimizing objective (5) in the

binary fireshed scenarios minimizes long-distance fire spread.

We also compared the problem 1 solutions (Fig 6g–6l) with a scenario that minimized the

risk of fire ignitions (Fig 8b–8d). Regardless of the treatment area limit, this strategy consis-

tently removed nodes from the hotspot of high ignition probabilities in the southern part of

Vermilion Valley but did not effectively fragment the landscape (Table 2).

Controlling the spatial contiguity (problems 2 and 3) and timing (problem 3) of prescribed

burns moderately changed the node removal patterns but the spatial allocation generally fol-

lowed the patterns in the problem 1 solutions (Fig 9). Because the node removal patterns in

the problem 2 and 3 solutions were similar, the patterns of removed nodes are shown for prob-

lem 3 solutions only. A key difference between problems 2 and 3 is that problem 3 tracks the

cumulative impact of node removal over time by solving the CND sub-problem for each

period t’, whereas problem 2 solves only one CND sub-problem for the entire planning hori-

zon. Adding a temporal dimension aligns node removal with a first-best strategy when the pre-

scribed burn that causes greatest reduction in fire spread potential is scheduled first, then the

second most impactful burn is planned and so on. The impact of nodes removed in period 1

lasts for T’ periods, T’-1 periods for nodes removed in period 2 and so on. The solutions for

problems 2 and 3 diverge slightly in large-budget scenarios as the number of planning steps

Fig 7. Fire spread probability, pij, between a pair of nodes vs. distance between node centers. Bold line is a power

law approximation, pij = 2.835�distance-1.174. Y-axis is shown in log2 scale.

https://doi.org/10.1371/journal.pone.0258060.g007
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Fig 8. Optimal solutions minimizing the probability of ignitions: a) node-based ignition probabilities; b)

solutions at treatment area level B = 10 nodes: c) solutions at B = 20 nodes; d) solutions at B = 30 nodes.

https://doi.org/10.1371/journal.pone.0258060.g008
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increases (Fig 10). Problem 3 is more realistic because it provides guidance to forest managers

about a stepwise implementation of the fuel reduction strategy.

In binary fireshed solutions, nodes were removed to isolate parts of the study area north of

the highway and, as the treatment area increased, partition the hotspot of high burn probabili-

ties in the southern portion of the area (Fig 9a–9c). In probabilistic fireshed solutions, the bulk

of the budget was spent on fragmenting this hotspot (Fig 9d–9f). Given that the probabilistic

fireshed solutions for problem 1 also prescribed the removal of large node segments in the hot-

spot area (Fig 6j–6l), adding the contiguity constraints in problems 2 and 3 caused relatively

minor changes in the node removal patterns.

Fig 10 depicts the objective value as a function of the total treatment area. All optimal solu-

tions had zero penalties Vt, so the objective values for both problem 1 and 2 solutions are

shown as
Xi2N

i¼1

Xj2Oi

j6¼i

uijpij and for problem 3 solutions as
Xi2N

i¼1

Xj2Oi

j6¼i

u0ijT0pij, which depicts the node

connections at the end of horizon T’. Note that the actual objective values for problem 3 are

worse than they appear in Fig 10 because the objective function (17) track the gradual reduc-

tion of fire spread potential over timespan T’.
The probabilistic and binary fireshed scenarios performed as expected for their specific

objectives. However, they performed poorly with respect to the alternate objectives. For

Fig 9. Optimal problem 3 solutions. Binary fireshed scenario using pij bin values: a) treatment area B = 10 nodes, two

periods; b) B = 20 nodes, four periods; c) B = 30 nodes, six periods. Probabilistic fireshed scenario using pij values: d) B = 10

nodes, two periods; e) B = 20 nodes, four periods; f) B = 30 nodes, six periods.

https://doi.org/10.1371/journal.pone.0258060.g009
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Fig 10. Objective value vs. total treatment area, nodes: a) binary fireshed objective with pij bin values; b)

probabilistic fireshed objective with pij values. Lower objective values show better outcomes. Objective values for

problem 3 solution are shown as
Xi2N

i¼1

Xj2Oi

j6¼i

u0ijT0pij which denotes the fire spread potential at the end of timespan T’.

https://doi.org/10.1371/journal.pone.0258060.g010
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example, the probabilistic fireshed scenario performed poorly in terms of the binary fireshed

scenario objective,
Xi2N

i¼1

Xj2Oi

j6¼i

uijpijmin (Fig 10a) and vice versa, the binary fireshed scenario demon-

strated poor performance in term of the probabilistic fireshed scenario objective,

Xi2N

i¼1

Xj2Oi

j6¼i

u0ij pij (Fig 10b). The performance gap increased as the total treatment area increased.

Thus, the choice of the objective (i.e., either minimize the spread of large fires or frequent

small fires) greatly impacts the optimal solutions.

The curves in Fig 10 generally follow the rule of diminishing returns: the largest marginal

reduction of fire spread potential is achieved at small budget levels. In binary fireshed solu-

tions, the impact of adding contiguity constraints (and temporal dimension in problem 3) was

noticeable across the whole budget range (Fig 10a). Notably, the scenario that minimized the

probability of ignitions was ineffective at reducing the spread of large fires (Fig 10a, Table 2).

The impact of adding the spatial contiguity constraints and temporal dimension was less

noticeable in the probabilistic fireshed solutions (Fig 10b). This is because all scenarios tended

to remove nodes in large segments from the hotspot region with the highest burn probabilities

(Figs 6j–6l and 9d–9f). In short, the probabilistic fireshed scenarios focused on the area with the

most frequent fires (which, as noted, are typically the smallest). The solutions minimizing the

probability of ignitions were not as effective as the problems 1–3 fireshed solutions (Fig 10).

Preventing the spread of frequent small fires vs. large rare fires

We depicted the trade-off between the binary and probabilistic fireshed scenarios in dimen-

sions of their objective values (Fig 11). Single-period problem 1 solutions demonstrated the

best performance with respect to both objectives (Fig 11 callout 1). Adding the burn contiguity

constraints and temporal dimension in problems 2 and 3 worsened the objective values (Fig 11

callouts II, III). The spatial contiguity requirement worsens the objective value because it pre-

vents the allocation of single-node treatments. These burns are most cost-effective in small-

budget solutions, but multiple small burns are difficult to implement in practice. Problem 1–3

solutions performed better across than the solutions minimizing the probability of ignitions or

based on land cover composition only (Figs 10 and 11).

Combining the node removal strategies of the binary and probabilistic fireshed scenarios

would achieve a balance between minimizing the spread of small and large fires (Fig 11, Sup-

plement S5 Fig 1 in S5 File). The end points of the trade-off curves in Fig 11 depict the strate-

gies preventing the spread of either the largest fires (binary fireshed solutions) or the smallest,

most frequent fires (probabilistic fireshed solutions). However, the maps in S5 Fig 1 in S5 File

depict examples of solutions on the trade-off curves that fall between these end points. For

practical selection of suitable trade-off solutions, decision-makers would need to set the prior-

ity for a particular range of fire sizes that they would like to target. To accomplish this, the fire

spread probabilities pij for each pair of locations i and j potentially could be adjusted in the

objective equation by a user-defined scaling coefficient based on the distance between i and j.
This would make the approach adaptable to other fire regime conditions and management

objectives. The scaling coefficients could also be location specific. For example, protection

against frequent small fires could be prioritized close to human settlements while simulta-

neously minimizing the spread of large fires in remote areas.
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Fig 11. Trade-off between problem 1–3 solutions in dimensions of binary and probabilistic fireshed scenario

objectives: a) treatment area, B = 10 nodes; b) B = 30. Trade-off frontiers between binary and probabilistic fireshed

scenario objectives: I—problem 1 solutions; II, III—problem 2 and 3 solutions (appear close, so only problem 3

solutions are shown). Objective values for problem 3 solution are shown as
Xi2N

i¼1

Xj2Oi

j6¼i

u0ijT0pij which denotes the fire spread

potential at the end of timespan T’.

https://doi.org/10.1371/journal.pone.0258060.g011
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Discussion

The proposed approach builds on previous work on optimizing wildfire fuel treatments in the

following ways. First, we have addressed the chief limitation of using a node-based fuel load

(or other fire hazard) metric, which is its inability to account for factors controlling directional

spread of fires, such as prevailing winds and local weather, that may promote the spread of

fires over long distances. The use of directional fire spread probabilities pij helps us deal with

this shortcoming. Our approach is an improved adaptation of the classical CND problem for

lattice-type networks (which is a common way of depicting forest landscapes) because it

enables application of the CND model in landscapes with few or no natural fire barriers. In

this situation, node removal is guided by differences in the fireshed spatial configurations

around each node (i.e., subsets Oi) and the corresponding differences in the fire spread proba-

bilities pij. Finally, our approach utilizes the full potential of stochastic fire simulation models

by calculating the fire spread probabilities directly from the simulated perimeters and ignition

locations of individual fires. The use of sophisticated spatial fire simulators (like Burn-P3)

helps account for a multitude of factors influencing the spread of fires in highly heterogeneous

landscapes. In addition to minimizing the probability of fire spread, the objective function

could incorporate other fire behaviour parameters (such as fire intensity) in conjunction with

spread.

Our approach is distinct from previously proposed fuel treatment strategies. One common

strategy is to treat sites with the highest ignition probabilities (as in the simple scenario that we

compared to our solutions in Fig 8). However, this strategy does not optimally reduce the risk

of spread of escaped fires, nor does it address the uncertainty of determining which sites have

the highest fire ignition potential. By comparison, our probabilistic fireshed strategy compart-

mentalizes regions with high ignition potential, thereby providing a hedge against the possibil-

ity of fires escaping to spread elsewhere.

Several other fuel treatment strategies have used site-specific priority weights. Minas et al.

[23] linked site treatment and deployment resources to minimize the number of sites covered

by these activities. Each site was assigned a weight by ignition probability and the value under

risk if a fire originating in that site is not contained by the initial response. Rachmawati et al.

[101] focused on rapid fuel accumulation after treatment and used site-based combinations of

vegetation type and age since fire to find an optimal multi-period sequence of fuel treatments.

Wei [21] applied optimization of fuel treatment at a very small scale (7×7 rows) without

embedding a fire simulation model but examined the geometry of the treated areas. Finney

et al. [102,103] proposed the assessment of fuel treatments by dividing the landscape into rect-

angular strips oriented normal to the predominant wind directions. Then, fire growth was

simulated, starting with the strip farthest upwind, to identify key fire spread routes and their

intersections with potential treatment areas. The process was repeated after moving each strip

in the direction of the wind to impact downwind travel routes and subsequent treatment areas.

This method finds fuel treatment configurations for a set of likely fire spread routes but over-

looks the combinatorial aspects when allocating multiple treatments under a limited budget.

Another network-based approach aimed to minimize the connectivity between sites with high

fuel loads [24]. Pais et al. [14] used a network flow model to control the spatial contiguity of

the treated area and prioritized treatments using a site-based fire risk metric (the Downstream

Protection Value, DPV). The DPV metric assigns treatment priority ranks to sites by modeling

fire propagation through a forest landscape as a tree graph and accounts for the potential of a

fire ignited at a given site to burn other sites. In contrast, our model makes decisions using the

fire spread probabilities between pairs of locations, which enables control based on the pres-

ence of possible fire spread paths between these locations. This makes the CND formulation
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more effective in fragmenting the landscape and thus reducing the risk of substantial fire

expansion than approaches that use site-based fire hazard metrics, but the problem is more

complex numerically.

The CND model can be applied for multi-period planning in two ways. Single-period prob-

lems 1 and 2 could be solved in sequence. For each period, the manager plans a small number

of prescribed burns and before the next period the fuel map is adjusted to account for the effect

of these burns (as well as any changes in forest composition). This strategy does not consider

the optimal timing of site treatment actions, which is addressed in a multi-period problem 3

formulation. However, the model for problem 3 has higher combinatorial complexity because

it solves the CND problem for each planning period and tracks the cumulative impact of node

removals over time, so the model may only be tractable for short planning horizons. Alterna-

tively, problem 3 can be initialized from problem 2 optimal solutions and solved with con-

straint (21) to find an optimal timing of burns prescribed by the problem 2 solutions. While

this approach does not guarantee the multi-period optimum, the solutions are likely to be

close to the problem 3 optimal solutions, especially when the number of planned burns is

small. For a relatively short timespan (like in our study), a time sequence of pij values can be

estimated with a fire simulation model prior to optimization, but this approach will not

account for uncertain changes in fire occurrence that could emerge during the timespan. For

longer planning periods and/or large landscapes, solving a simpler problem 1 or 2 in sequence

with the recalculation of the fuel map and pij values after each planning step may be more

practical.

Future model extensions

The CND problem is known to be NP-hard on general graphs [36,39,43]. One way to reduce

the problem size is to limit the extent of the area where site treatments at an anticipated budget

level could be cost-effective. Potentially, broad-scale regions where node removal could be

cost-effective can be delineated by solving problem 1 for a range of treatment areas that slightly

exceed the anticipated treated area. In turn, these regions can be applied as masks to restrict

the extent of node removal selections in problems 2 and 3.

The proposed problem formulation minimizes the probability of fire spread across the

landscape without specifying a particular direction of spread or locations of concern. As hinted

at earlier, the problem could be reformulated to examine strategies for protecting human infra-

structure from wildfires. In this case, one would only need to consider the fire spread paths

(along with the corresponding pairs of nodes uij and spread probabilities pij) that could poten-

tially reach the area of concern. Instead of tracking the fire spread probabilities pij, the objec-

tive function could track the probabilities of a fire arriving from an ignition point i to point j
within a given duration of time. This may require introducing decision variables that track, for

each pair of locations, whether a fire ignited in location i could arrive at location j within a

specified timespan, e.g., in a similar way to the formulation in Wei [21]. This could be a useful

modification for planning treatments to protect human infrastructure, where tracking the fire

arrival times is critical for evacuation planning.

Our study used a mountainous forest landscape to demonstrate the CND model. The

approach could be applied in other landscapes (e.g., semiarid areas or areas where forest and

agriculture are intermixed), as well as to fuel management strategies different than prescribed

burns [104–106], as long as simulation models capable of producing realistic fire ignition and

spread patterns are available. The problem could also be modified to evaluate alternative fuel

treatment methods (e.g., prescribed burns vs. strategic thinning of forest stands) or different
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management regimes (e.g., treatments of vehicle-accessible sites by ground crews vs. treat-

ments from helicopters).

In our study, we used the ignition points and perimeters of the simulated fires to calculate

the probabilities of fire spread between pairs of locations but did not track specific spread

paths within individual fires. Tracking daily or hourly fire spread within a fire perimeter could

help refine the spread probability values for long spread distances. Applying such model

enhancements could be a focus of future work.
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