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Abstract

Aims
Recent studies revealed convergent temperature sensitivity of ecosys-
tem respiration (Re) within aquatic ecosystems and between terrestrial 
and aquatic ecosystems. We do not know yet whether various terres-
trial ecosystems have consistent or divergent temperature sensitivity. 
Here, we synthesized 163 eddy covariance flux sites across the world 
and examined the global variation of the apparent activation energy 
(Ea), which characterizes the apparent temperature sensitivity of and 
its interannual variability (IAV) as well as their controlling factors.

Methods
We used carbon fluxes and meteorological data across 
FLUXNET sites to calculate mean annual temperature, tempera-
ture range, precipitation, global radiation, potential radiation, 
gross primary productivity and Re by averaging the daily values 

over the years in each site. Furthermore, we analyzed the sites 
with >8 years data to examine the IAV of Ea and calculated the 
standard deviation of Ea across years at each site to character-
ize IAV.

Important Findings
The results showed a widely global variation of Ea, with significantly 
lower values in the tropical and subtropical areas than in temperate 
and boreal areas, and significantly higher values in grasslands and 
wetlands than that in deciduous broadleaf forests and evergreen for-
ests. Globally, spatial variations of Ea were explained by changes 
in temperature and an index of water availability with differing 
contribution of each explaining variable among climate zones and 
biomes. IAV and the corresponding coefficient of variation of Ea 
decreased with increasing latitude, but increased with radiation and 
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corresponding mean annual temperature. The revealed patterns in 
the spatial and temporal variations of Ea and its controlling factors 
indicate divergent temperature sensitivity of Re, which could help to 
improve our predictive understanding of Re in response to climate 
change.

Keywords: activation energy, ecosystem respiration, index of water 
availability, interannual variability, gross primary productivity
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INTRoDUcTIoN
Ecosystem respiration (Re, including aboveground plant res-
piration and soil respiration) is a major component of terres-
trial carbon cycle, which returns a large proportion of gross 
primary productivity (GPP) as carbon dioxide (CO2) to the 
atmosphere (King et al. 2006; Piao et al. 2010). Re is widely doc-
umented to strongly depend on temperature (Mahecha et al. 
2010). The temperature sensitivity of Re is therefore a major 
determinant that can influence the carbon loss of ecosystem 
and further affect the capacity of the biosphere in sequester-
ing CO2 under climate change. Nonetheless, there are huge 
differences in the magnitudes of carbon sequestration under 
climate change as predicted by several widely known global 
models (Cox et al. 2000; Friedlingstein et al. 2006), primarily 
due to the considerable uncertainties in constraining param-
eters of the temperature response of Re (Friedlingstein et al. 
2006; Kirschbaum 2006).

Most models use a common structure in which the effect of 
temperature on respiration is reflected by a Q10 function (the 
increase in respiration with a 10°C temperature increase) or a 
modified Arrhenius equation: Re = be−Ea/kT (Lloyd and Taylor 
1994), where b is a constant; k is the Boltzmann constant and 
T is the temperature in Kelvin. The key parameter Ea is the 
activation energy, which is the fundamental parameter deter-
mining the temperature sensitivity of respiration and largely 
determines Re (Arrhenius 1915; Davidson and Janssens 
2006). Based on this equation, some modified functions were 
used to extract temperature sensitivity parameters, such as 
the linearized Boltzmann–Arrhenius equation:

ln R(T) = Ea × (1/kTref – 1/kT) + ln R(Tref)

In this expression, k is the Boltzmann constant (8.62 × 10−5 eV 
K−1), and Tref is a standard temperature (e.g. 15°C). The appar-
ent activation energy (Ea) is the slope of the linear relation-
ship between standardized temperature (1/kTref − 1/kT) and 
standardized respiration (ln(R/R(Tref)). By using this method, 
recent studies revealed a consistent temperature sensitivity 
of Re across streams with different thermal history (Perkins 
et al. 2012) and even among lakes, rivers, estuaries, the open 
ocean and terrestrial ecosystems (Yvon-Durocher et al. 2012). 
Nevertheless, it is unclear whether the temperature sensitivity 
of Re differs in various terrestrial ecosystems. Most terrestrial 
biogeochemical models use a fixed temperature sensitivity for 
respiration estimation and projection, largely because there is 
not much information on the spatial and temporal patterns of 

temperature sensitivity of terrestrial Re and their controlling 
factors (Friedlingstein et  al. 2006; Lenton and Huntingford 
2003; Luo 2007). Since the temperature sensitivity of plant 
respiration (Tjoelker et  al. 2001), soil respiration (Xu et  al. 
2011) and microbial respiration (Suseela et al. 2011) all vary 
with environmental factors and biomes, as an integration of 
all the organisms, Re should also be variable and sensitive to 
environmental factors.

A recent study demonstrated that the inherent kinetic 
properties of decomposition of Re was globally convergent to 
1.4, and the factors affecting the apparent temperature sen-
sitivity of Re are variable in space and time (Mahecha et al. 
2010). So, it was assumed that the apparent temperature sen-
sitivity of Re is variable. However, it has yet to be studied what 
are the spatial and temporal variations in the apparent tem-
perature sensitivity of Re and what are the controlling factors 
for these variations. A comprehensive understanding of the 
factors which control the spatial and temporal variations in 
apparent temperature sensitivity on a global scale or in differ-
ent climate areas and biomes is critical to better understand 
the temperature sensitivity of Re.

The eddy covariance measurements of ecosystem CO2 fluxes 
made at tower sites in the world offer a means by which the 
global pattern of temperature sensitivity can be studied and 
integrated on large spatial scales (Baldocchi 2008; Baldocchi 
et al. 2001). Previous analysis of the eddy covariance network, 
known as FLUXNET, showed a strong potential for revealing 
the spatial and temporal variability and controlling factors of 
ecosystem carbon fluxes (Baldocchi 2003, 2008; Law et  al. 
2002; Reichstein et al. 2007; Valentini et al. 2000). Therefore, 
we synthesized data from 163 eddy covariance sites (734 site-
years) across the world and assessed the global pattern of 
the temperature dependence of Re across climate areas and 
biomes. We quantified the key response variable, apparent Ea, 
and its interannual variability (IAV), as well as the related con-
trolling factors. The specific questions addressed in this study 
were: (i) does Ea vary among terrestrial ecosystems? If it does, 
(ii) what are the magnitude, spatial variation and IAV of Ea of 
terrestrial Re? (iii) what are the major controlling factors or 
processes causing the spatial and IAV of Ea of Re?

mATERIALs AND mETHoDs
Site information and data processing

Carbon fluxes and meteorological data used in this analysis 
were taken from standardized files in the FLUXNET-LaThuile 
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database which includes 253 research sites of the FLUXNET 
network (Baldocchi 2008; Baldocchi et al. 2001). The data has 
been quality controlled and gap-filled by consistent methods 
(Moffat et al. 2007; Papale et al. 2006). We analyzed only those 
sites that provided at least 1 year of complete net ecosystem 
exchange (NEE) and meteorological data (gaps <5%). Some 
sites in subtropical–Mediterranean areas (including five sites 
in Europe and six in the western USA) were excluded because 
respiration in these sites was severely reduced by drought, 
particularly during warm seasons, resulting in an inverse 
relationship between respiration and temperature that could 
not be fitted using the Arrhenius equation. These sites are: 
ES-Lma, IT-Pia, IL-Yat, PT-mi1, PT-Mi2, US-Blo, US-SO3, 
US-SO2, US-SO4, US-Ton and US-Var. Hence, the results and 
conclusions in this study are only applicable to the ecosys-
tems beyond subtropical–Mediterranean areas. Finally, a total 
of 163 sites with 734 site-years were used in this study to 
investigate the Q10 of Re (see online supplementary material). 
The latitude ranges from 69.14°N at the Finland Kaamanen 
site (FI-Kaa) to −37.43°S at the Wallaby Creek (AU-Wac, see 
online supplementary material). The main plant functional 
types as defined by the International Geosphere-Biosphere 
Programme included in this study are: deciduous broadleaf 
forests (DBF), mixed forests (MF), evergreen forests (EF, 
including evergreen broadleaf forests (EBF) and evergreen 
needle leaf forests), grasslands (GR), wetlands (WET), open 
shrub (OSH), woody savanna (WSA) and croplands (CR) 
(see online supplementary material). The climatic zones of 
the sites include the boreal, continental temperate, subtropi-
cal and tropical areas (classified on fluxdata.org, see online 
supplementary material). Daily data of global radiation (Rg), 
air temperature and precipitation (PPT) were used together 
with eddy covariance fluxes of CO2, i.e. NEE, Re and GPP in 
this study.

Air temperature does not accurately reflect the tempera-
ture environment where Re is occurring when temperature is 
<0°C, especially during periods of snow cover (Monson et al. 
2006). Therefore, we excluded respiration measurements 
taken at daily mean air temperature <0°C (Graf et al. 2011). 
We used daily Re rather than half-hourly values, because daily 
values, which integrate over diurnal cycles of photosynthe-
sis and respiration, are more robust than half-hourly values 
in reflecting responses of ecosystem to temperature over the 
season. To determine the temperature dependence of Re, we 
fitted the daily mean air temperature and Re data to the lin-
earized Boltzmann–Arrhenius equation mentioned above as 
used in recent studies (Perkins et  al. 2012; Yvon-Durocher 
et al. 2012).We used Tref = 15°C as a standardized temperature, 
which centers the inverse temperature data (1/kTref − 1/kT) 
nearly zero to make the intercept of the model ln(R(Tref)) 
equal to the rate of respiration at standardized temperature. 
This greatly reduces the correlation between the slope and the 
intercept. In this way, we minimized the confounding impacts 
of basal respiration on temperature sensitivity of respiration 
(Yvon-Durocher et  al. 2012). The temperature chosen for 

standardization does not substantially affect our result on Ea 
calculation and comparison.

We calculated site mean annual temperature (T), tempera-
ture range (Trange), annual PPT, annual Rg, potential radiation 
(Rpot), annual GPP and Re by averaging the daily values over 
the years in each site.

IAV of Ea

We analyzed the sites with >8 years data to examine the IAV 
of Ea. In total, 23 sites (186 site-years, see online supplemen-
tary material) were included for the IAV study. For each year, 
we calculated annual values of T, PPT, Rg, Rpot, GPP, Re and 
net ecosystem productivity. If missing daily data was >10% 
of the entire year data, the value of this year was indicated 
as missing. On average, for the 23 sites, data in 15% of the 
years was rejected due to insufficient daily data. The amounts 
of rejected years varied among sites, ranging from 12.5% 
(US-Hav) to 45% (IT-Col). We calculated the standard devia-
tion of Ea across years at each site to characterize the absolute 
IAV. Since the values of Ea changed largely at different sites, 
we normalized the IAV of Ea by calculating coefficient of vari-
ation (CV, the ratio of standard deviation and mean value of 
Ea) to characterize the relative IAV (RIAV).

Statistical analysis

The differences of Ea among climate areas and biomes were 
statistically compared using a one-way analysis of variance. 
Mean annual air temperature (T), Trange (maximum − mini-
mum daily temperature), annual PPT, annual Rpot and an 
IWA, as well as annual GPP and Re were related to Ea with 
simple regressions. We defined the IWA as the ratio of 
annual actual evapotranspiration to potential evapotranspi-
ration (AET/PET), where AET was directly measured by the 
eddy covariance towers and PET was estimated based on the 
Penman–Monteith equation with a zero canopy resistance 
(Reichstein et al. 2007). Multiple (stepwise) regressions were 
used to examine the main factors mentioned above in con-
trolling the spatial variations of Ea and to quantify the degree 
to which the variations of Ea could be explained by these fac-
tors in different climate zones (boreal, temperate and tropical) 
and biomes (DBF, EF, and GR). WET, WSA, OSH and CR were 
excluded from the examination of the controlling factors of 
Ea, due to the insufficient number of sites (n = 11, 3, 2 and 
17, respectively). A simple regression analysis was conducted 
to examine the relationship of IAV or RIAV with abiotic and 
biotic factors. The relationship was considered to be signifi-
cant if P < 0.05. All statistical analyses were performed using 
SPSS 13.0 for Windows (SPSS Inc., Chicago, IL, USA).

REsULTs
Spatial variation of Ea

The fitted site-level Ea showed large variation (Fig. 1a), rang-
ing from the lowest value of 0.13 (corresponding to Q10 = 0.51 
at 15°C) at site CN-Bed (39°53′N, 116°25′E, the vegetation 
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type is EBF) to the highest value of 1.36 (corresponding to 
Q10  =  5.47 at 15°C) at site CN-Du1(42°05′N, 116°67′E, the 
vegetation type is CR), and with a global mean value of 0.69 
(corresponding to Q10 = 2.8 ± 0.9 (SD) at 15°C). In general, 
Ea in cold areas was higher than that in warm areas. Tropical 
and subtropical climate areas had significantly lower Ea than 
boreal and temperate areas (Fig. 1b). GR and WET had signifi-
cantly higher Ea than DBF and EF (Fig. 1c).

The standardized temperature (1/kT15 – 1/kT)-) and the 
standardized respiration (ln(R/R15)) had consistently positive 
relationships with each other (Fig. 2). The slope of the rela-
tionship reflects the overall average of Ea within individual 
climate area or vegetation type. Tropical and subtropical areas 
had significantly lower slopes than boreal and temperate 
areas, while WET had the highest slopes and EF had the low-
est slopes among the six biomes (Fig. 2).

Controlling factors of spatial variations in Ea

Globally, Ea had a positive relationship with increasing lati-
tude, Trange and IWA, but negatively correlated with mean 

annual air temperature (T) and potential global radiation 
(Rpot) (Fig. 3). However, the controlling factors for Ea varied 
with climate zones or vegetation types. In the boreal region, 
Ea was positively dependent on latitude and IWA, but nega-
tively correlated with Rpot (Table 1). In the temperate areas, 
Ea also positively correlated with latitude and IWA, but nega-
tively with T and Rpot (Table 1). In contrast, PPT, Trange and 
IWA appeared to be the major factors controlling Ea changes 
in tropical areas, which all showed a positive relationship with 
Ea (Table 1). For different biomes, Rpot was negatively corre-
lated with Ea in the DBF, EF and GR, while latitude, Trange and 
IWA all showed positive correlations and T showed negative 
correlations with Ea in the EF and GR (Table 1).

IAV of Ea

IAV of Ea (measured by standard deviation) varied from 0.05 
to 0.19 across the 23 sites with >8 years of data. IAV of Ea 
declined with increasing latitude but increased with mean 
annual Rg (Fig. 4a and b). The IAV of Rg, GPP and Re all had sig-
nificantly positive relationships with the IAV of Ea (Fig. 4c–f). 
The RIAV of Ea (measured by CV) also declined with latitude 
but increased with mean annual Rg, Rpot and air temperature 
(Fig. 5a–d). IAV and RIAV of radiation all had significant cor-
relations with RIAV of Ea (Fig. 5e–f).

DIscUssIoN
Global variation in Ea and its IAV

Apparent temperature sensitivity effectively reflects the over-
all seasonal temperature dependence of respiration at the eco-
system level, although it includes other confounding factors 
(e.g. seasonal dynamics) in addition to temperature (Yvon-
Durocher et al. 2012). Actually, in recent years, the apparent 
temperature dependence of respiration has been widely used 
to estimate Re and its temperature sensitivity (Curtis et  al. 
2005; Desai et  al. 2005; Larsen et  al. 2007; Piao et  al. 2010; 
Reichstein et al. 2007; Yvon-Durocher et al. 2012; Zheng et al. 
2009). Based on the metabolic theory (Brown et al. 2004), Re 
is largely determined by the overall ecosystem biomass and 
the metabolic rate of that biomass (Allen et  al. 2005). This 
suggests that the temperature sensitivity of Re reflects both 
ecosystem’s structures and its biotic and abiotic factors that 
interact with each other. Therefore, Ea calculated in this 
study represents the overall temperature sensitivity of eco-
system, including all of the ecological processes affecting CO2 
production.

Our analysis of a global CO2 flux database suggests that 
there exists great spatial variation in temperature depend-
ence of Re (Fig. 1). The large differences in Ea among climate 
areas and biomes (Figs 1 and 2) indicate divergent apparent 
temperature sensitivity of Re at the global scale. Our results 
were contrary to the previous findings on the consistent 
intrinsic temperature sensitivity of Re across terrestrial ecosys-
tems (Mahecha et al. 2010), stream ecosystems (Perkins et al. 
2012) or aquatic ecosystems (Yvon-Durocher et al. 2012). As 
indicated in Mahecha et al. (2010), the intrinsic temperature 
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Figure 1: frequency distribution of apparent temperature sensitiv-
ity (Ea, a) and its variation among different climate areas (b) and 
ecosystem types (c). MF: mixed forests. The different letters indicate 
significant differences among the climate areas or ecosystem types.
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sensitivity is consistent but the factors affecting the apparent 
temperature sensitivity may vary in space. Our study revealed 
the primary factors impacting the variations of apparent tem-
perature sensitivity among sites. In Perkins et  al. (2012)’s 
study, the stream systems had a higher heat capacity than 
terrestrial ecosystems, which may cause little changes in the 
temperature response of respiration with various thermal his-
tory (Perkins et al. 2012).

The higher Ea in GR and CR than in forests may be due to 
larger seasonal variations or dynamics in phenological phe-
nomena and plant growth in GR and CR. Ecosystems with 
low mean annual temperature but large annual amplitude of 
temperature variation often have higher temperature sensi-
tivity than warmer ecosystems with lower annual amplitude 
of temperature variation because of the difference in season-
ality (Davidson et al. 2006). Migliavacca et al. (2011) reported 
that part of the variability in Re was due to management in  

CR and GR. For example, some management, such as fertili-
zation and harvest, largely contributes to such abrupt changes 
in land cover properties, leading to large seasonal variability 
in Re (Bavin et al. 2009). The lower Ea in tropical and subtrop-
ical areas than in temperate and boreal areas is in accordance 
with the variations in Q10 of soil respiration among the cli-
mate areas in a regional study (Zheng et al. 2009), which may 
be due to the higher temperature in tropical and subtropical 
areas with lower seasonal difference in temperature (and thus 
in plant and microbial activity).

The highly divergent Ea and its IAV revealed in this study 
have never been revealed before. The findings suggest that 
any failure of describing the spatial and temporal variability 
of ecosystem carbon sequestration in models may in part be 
due to the fact that these spatial and temporal variations of 
temperature sensitivity of respiration are currently not well 
incorporated into the global models. For example, if models 

Figure 2: relationships between standardized respiration rate and standardized inverse temperature for the sites encompassing different climate 
areas and ecosystem types. The slope of the relationship reflects the overall average of Ea within each climate area or vegetation type.
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use a constant parameter (global mean values) for tempera-
ture sensitivity of respiration, they may overestimate Re in 
tropical area but underestimate Re in boreal area. Therefore, 
the global patterns of Ea and its IAV revealed in this study, 
based on the observed eddy flux tower data, can be helpful 
for improving the accuracy of model in estimating the global 
Re and its response to changing climate.

Controlling factors of spatial and temporal 
variations in Ea

This study revealed the controlling factors of Ea, which could 
have potential use in biogeochemical models. Although differ-
ent climate areas vary in main controlling factors of Ea, over-
all, water availability can largely explain the spatial variation 

in Ea at the global scale (Table  1). One of the strengths of 
this study is to quantify the predictors for temperature sen-
sitivity of Re at the global scale and in different ecosystem 
types. Particularly interesting is the high sensitivity of Ea to 
water availability globally (Table  1). Previous studies paid 
more attention to temperature rather than to the impacts of 
drought on temperature sensitivity. Our findings suggest that 
the impacts of water on temperature sensitivity should also 
be considered, particularly because global warming will be 
accompanied by a decrease or increase in water availability 
(Jung et  al. 2010). A  vast majority of terrestrial ecosystems 
are considered to be partially water-limited, suggesting that 
temperature-driven decreases of temperature sensitivity may 
be exacerbated by limited water availability. The globally 
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Figure 3: the relationship of apparent Ea with latitude (a), temperature range (b), mean annual temperature (c), potential radiation (d) and 
index of water availability (e) across the LaThuile dataset.
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occurring dependence of temperature sensitivity on water 
availability has implications for future climate change sce-
narios. Changes in soil moisture affect the response of Re to 
changes in air temperature in two ways: one is the direct bio-
chemical impact on respiration, and the other is the indirect 
moisture effect on the temperature dependence, which will 
reduce the respiration-enhancing effect of higher air temper-
ature (Reichstein et al. 2002).

Numerous studies have shown that Q10 of soil and plant res-
piration declines with increasing temperature (Chen and Tian 
2005; Janssens and Pilegaard 2003; Piao et al. 2010; Tjoelker 
et al. 2001; Xu et al. 2011; Zheng et al. 2009), which is often 
described as thermal acclimation of respiration (King et  al. 
2006; Luo et al. 2001). It also reflects the principles of physi-
cal chemistry that Q10 is intrinsically temperature dependent 

Table 1: relationship (r) of apparent Ea with latitude (Lat,  
decimal degree), temperature (T, °C), PPT (mm), Trange (°C), GPP 
(gC m−2 year−1), Rpot (TJ m−2 year−1) and IWA for different climate 
areas and biomes

Boreal Temperate Tropical DBF EF GR

Lat 0.512** 0.274** −0.246 0.231 0.425*** 0.425***

T 0.305 −0.208* −0.127 −0.029 −0.488*** −0.488***

PPT 0.079 −0.155 0.511** −0.278 −0.065 −0.065

Trange −0.220 0.035 0.662*** 0.051 0.286* 0.286*

GPP −0.229 −0.028 −0.128 0.187 −0.213 −0.213

Rpot −0.512** −0.199* 0.257 −0.391* −0.489*** −0.489***

IWA 0.629*** 0.303** 0.480** 0.224 0.291* 0.291*

*, **, ***Means the relation was significant at p < 0.05, 0.01, 0.001, 
respectively.
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Figure 4: spatial patterns of IAV (standard deviation) of apparent Ea and their controlling factors: latitude (a), mean annual Rg (b), standard 
deviation of Rg (c), CV of Rg (d), standard deviation of GPP (e) and standard deviation of Re (f).
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Figure 5: spatial patterns of CV of apparent Ea and their controlling factors: latitude (a), mean annual Rg (b), mean annual temperature (c), 
mean annual potential radiation (Rpot) (d), standard deviation of Rg (e) and CV of Rg (f).

when respiration follows Arrhenius kinetics (Davidson et  al. 
2006; Knorr et al. 2005; Perkins et al. 2012). Another explana-
tion for the decreasing Ea of respiration with increasing tem-
perature is that higher temperature may occur simultaneously 
with drier soil, which may decrease the temperature sensitivity 
of respiration, as reflected by the positive relationship between 
index of water availability and Ea (Fig. 5c). This is along with 
the declining temperature sensitivity of soil respiration with 
the decreasing water availability (Gaumont-Guay et al. 2006; 
Janssens and Pilegaard 2003; Peng et al. 2009; Reichstein et al. 
2003), which is probably due to the decrease in substrate 
availability and microbial starvation under dry conditions. 

The finding suggests that the limitation for decomposition rate 
switches from temperature to water and carbon availability 
under drier conditions (Davidson et al. 2006).

In comparing with the spatial variability, temporal varia-
tions of Ea of respiration are less addressed in previous studies 
(Mahecha et al. 2010; Perkins et al. 2012; Yvon-Durocher et al. 
2012). This study revealed the large IAV of Ea and its control-
ling factors, which is helpful to better understand the tempo-
ral changes in the temperature sensitivity of Re. The decreases 
of both IAV and the RIAV of Ea with increasing latitude (Figs 
4 and 5) suggest that Ea is more sensitive to interannual envi-
ronmental changes in low latitude. Considering the larger 
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values and lower IAV of Ea in high latitude or cold areas, 
northern ecosystems are most sensitive to seasonal than to 
interannual temperature changes. Significant correlation of 
IAV or RIAV between radiation and Ea indicates that interan-
nual variations in Ea are largely due to the interannual vari-
ations in radiation. In general, radiation showed the larger 
RIAV at the lower latitude, which results in larger changes in 
IAV and RIAV of Ea. The close relationship between the vari-
ations in Ea and GPP suggests that plant carbon gain plays an 
important role in regulating the temporal changes of Ea. GPP 
directly impact Re by providing substrate for respiration and 
thus is the first order factor controlling Re (Lasslop et al. 2010). 
Autotrophic respiration, which is the major part of Re, respires 
carbohydrates and photosynthate as substrates (Chiariello 
et al. 2000; Piao et al. 2010), while heterotrophic respiration 
is largely dependent on litter mass and soil organic carbon 
density, which are related to the magnitude of GPP (Raich and 
Tufekcioglu 2000; Yu et al. 2010).

coNcLUsIoNs
We demonstrated that the apparent temperature sensitivity 
of terrestrial Re changed with climate zones and vegetation 
types. The spatial and IAV of Ea largely varied with latitude 
and climate factors. This study highlights that besides tem-
perature, soil water availability is also an important factor 
in influencing the temperature sensitivity of Re. The global 
analysis of temperature sensitivity and its IAV improves our 
understanding of temperature sensitivity of Re and helps pre-
dicting future changes in carbon cycle processes.
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