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Abstract 
There are twenty experimental forest and range sites (EFRs) across the southeastern United States that are currently maintained by the USDA 
Forest Service (Forest Service) to conduct forest ecosystem research for addressing ecosystem management challenges. The overall objective 
of this study was to use multiple gridded datasets to assess the extent to which the twenty EFRs represent the climate, ecosystem structure, 
and ecosystem functions of southeastern forests. The EFRs represent the large variability of climate conditions across the region relatively well, 
but we identified small representation gaps. The representativeness of ecosystem structure by these EFRs can be improved by establishing 
EFRs in forests with relatively low tree cover, leaf area index, or tree canopy height. The current EFRs also represent the forest ecosystem 
functions of the region relatively well, although areas with intermediate and low aboveground biomass and water yield are not well represented. 
The trends in climate, ecosystem structure, and ecosystem functions were generally consistent between the region and the EFRs. Our study 
indicates that the current EFRs represent the region relatively well, but establishing additional EFRs in specific areas within the region could help 
more completely assess how southeastern forests respond to climate change, disturbance, and management practices.

Study Implications:  This study across the experimental forests and ranges (EFRs) and the southeastern forest region fills the knowledge 
gap regarding climate, ecosystem structure, and ecosystem functions of EFRs in the context of the broader southeastern forest region. 
Understanding ecosystem functions and structures across the EFR network can help the Southern Research Station to address new research 
questions. Our study indicates that the current EFRs represent the climate, ecosystem structure, and ecosystem functions of southeastern 
forests well. However, establishing additional EFRs in certain regions could help more completely assess how southeastern forests respond to 
climate change, disturbance, and management practices.
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Introduction
The southeastern forest region of the United States stretches 
from Texas across to Virginia, from Kentucky down to Florida, 
and from Oklahoma in the West to North Carolina in the 
East. Southeastern forests provide important ecosystem ser-
vices such as timber supply, carbon sequestration, and water 
supplies, and benefit human health and well-being (Aguilos 
et al. 2020; Liu et al. 2020; Sun et al. 2005, 2008; Xiao et 
al. 2011). For example, the southeastern forest region is the 
“wood basket” of the nation; southeastern forests account for 
only 2% of the world’s forest area but produce 63% of the 
US timber harvest by volume (Oswalt et al. 2014) and 18% 
of the world’s pulpwood for paper (World Resources Institute 
2010). Over 50% of people in the eastern US (57 million) 
depend on forests for their drinking water supply (Liu et 
al. 2020). The southeastern forest region also has the most 

biodiversity (e.g., plant families, amphibians, and freshwater 
fish) in the nation by some measures (Stein et al. 2000) due to 
warm temperatures, abundant precipitation, and high ecosys-
tem productivity. Disturbances such as extreme droughts and 
hurricanes have substantial impacts on southeastern forest 
ecosystems (Chambers et al. 2007; McNulty 2002; Williams 
et al. 2017; Xiao et al. 2011), leading to reduced forest pro-
ductivity and a loss of carbon stocks. These same distur-
bances, which are expected to increase in the region during 
the twenty-first century, can also increase insect and disease 
outbreaks and wildfires (Hoffman et al. 2023).

The USDA Forest Service (FS) has a national network of 
eighty long-term experimental areas (also known as experi-
mental forests and ranges [EFRs]) dating back to 1908 (Stine 
2016). The EFRs represent the largest and longest continuous 
ecological research network in the United States (USDA FS 
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2023). The EFRs have been used to support research in study-
ing how land management affects water quality and quantity; 
how to manage and restore forests and watersheds; how car-
bon stocks/fluxes and water regulation changes in the context 
of climate change and management; and how fire, insects, 
invasive species, and other disturbances affect the health of 
forests. Some of these forests provide real-time data on cli-
mate, hydrology, and biology for researchers, managers, and 
educators (USDA FS 2023). The Southern Research Station 
(SRS) EFR Network consists of twenty EFRs, including nine-
teen official EFRs and one cooperating EFR, which are dis-
tributed across the southeastern forest region (figure 1; Table 
1). Each EFR is dominated by a specific forest or ecosystem 
type. For example, the Escambia EFR, located in southern 
Alabama, and the Palustris EFR, located in central Louisiana, 
support longleaf pine (Pinus palustris) restoration, man-
agement, and physiology studies. The Coweeta Hydrologic 
Laboratory EFR, located in Otto, North Carolia, is the 
world’s oldest forest hydrology research laboratory (Nippgen 
et al. 2016). The SRS EFR Network encompasses most major 
forest types of the southeastern region for long-term studies 
of southeastern forests. These EFRs have contributed to foun-
dational research on forest management of plantation and 
natural forests, forestry best management practices (BMPs), 
catchment hydrological processes, and forest structure and 
composition dynamics under climate change (Guldin 2009; 
Loftis 1990; Swank et al. 2001; Swift 1986). The EFRs also 
serve as important facilities (e.g., eddy covariance flux tow-
ers, water chemistry analytic laboratories) for collaborative 
research, partnerships, and platforms that create cutting-edge 
science, develop new tools, models, and technologies (Aguilos 
et al. 2024), and provide research opportunities for a range of 
other advances, including involvement of women and other 
underrepresented groups (Laseter et al. 2018; Rustad et al. 
2023).

A better understanding of how well the twenty EFRs rep-
resent the current southeastern forest conditions will help 

us to assess how well the southeastern forest will respond 
to climate change and management. To date, it is unclear 
how well the SRS EFRs represent southeastern forests in 
terms of climate, ecosystem structure, and ecosystem func-
tions. Ecosystem structure can be measured by metrics such 
as leaf area index (LAI) and vegetation height. Ecosystem 
functions are “the biotic and abiotic processes that occur 
within an ecosystem and may contribute to ecosystem ser-
vices either directly or indirectly” (Garland et al. 2021). The 
southeastern forests are found across variable climate and 
topographic conditions and are extremely diverse, with dif-
fering management regimes (e.g., planted vs natural regener-
ation). Such climate and management complexity make site 
synthesis studies that examine the representativeness within 
the region difficult. Previous studies have assessed how eddy 
covariance flux sites of the AmeriFlux network represent the 
US terrestrial ecosystems (Hargrove et al. 2003) and how 
well sites in the USDA Long-Term Agroecosystems Research 
(LTAR) Network represent agricultural working lands across 
the conterminous US (CONUS) (Kumar et al. 2023). In the 
early 2000s, central continental environments of the CONUS 
were well represented by AmeriFlux, although additional sites 
could be needed for south Texas, the Sonoran Desert, and the 
Pacific Northwest (Hargrove et al. 2003). The LTAR repre-
sentativeness was good across most of the CONUS (Kumar 
et al. 2023).

Advances in climate data reanalysis, remote sensing tech-
niques, and cloud-based geospatial computing and mapping 
platforms (e.g., Google Earth Engine, GEE) over the last two 
decades now make a variety of data products for measuring 
climate, ecosystem structure, and ecosystem functions readily 
available. Gridded climate reanalysis data for the past few 
decades, such as ERA5-Land (Munoz-Sabater et al. 2021) 
and MERRA-2 (Gelaro et al. 2017), are available for scales 
spanning regions to the entire globe. The moderate resolu-
tion imaging spectroradiometer (MODIS) sensors on NASA’s 
Earth Observing System (EOS)—Terra and Aqua—provide 

Figure 1 Distribution of southeastern forests and location of the Southern Research Station (SRS) Experimental Forests and Ranges (EFRs). The base 
map, derived from the National Forest Type dataset (https://data.fs.usda.gov/geodata/rastergateway/forest_type/), shows the distribution of forests 
across the southeastern forest region. The numbers stand for the EFRs, and the centers of the circles indicate the locations of the EFRs. The numbers 
are within the circles except for EFRs 3 and 6, as the circles of these two EFRs overlap each other. The names of the EFRs are provided in Table 1.
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observations of the Earth’s surface, with daily coverage in 
thirty-six spectral bands and a spatial resolution from 250 m 
to 1 km for the period from 2000 to the present. The avail-
ability of MODIS data along with in situ measurements, 
data-driven methods, and modeling approaches have led to 
various data products for quantifying ecosystem structure 
and functions. For example, MODIS data have been used to 
develop the global MODIS gross primary production and net 
primary production (NPP) products in MOD17 (Running 
et al. 2004), the MODIS evapotranspiration (ET) product 
in MOD16 (Mu et al. 2011), the MODIS continuous fields 
(e.g., percentage of tree cover) in MOD44B (DiMiceli et al. 
2021), the MODIS LAI in MOD15 (Myneni et al. 2002), and 
the MODIS aboveground biomass (Blackard et al. 2008). The 
Global Ecosystem Dynamics Investigation (GEDI), a space-
borne LiDAR instrument onboard the International Space 
Station, provides footprint-based measurements of vegetation 
structure including forest canopy height between N 52° and S 
52° globally (Dubayah et al. 2020). The GEDI observations, 
along with Landsat data, have been used to develop a global 
gridded tree-height data product (Potapov et al. 2021).

Here, we used thirteen gridded data products to exam-
ine how well the SRS EFRs represent the climate, ecosystem 
structure, and ecosystem functions of the southeastern forest 
region. The specific objectives of this study are to (1) assess 
how the EFRs represent the southeastern forests in terms of 
the climate using six variables: air temperature, precipitation, 
shortwave solar radiation, vapor pressure deficit (VPD), soil 
water content (SW), and drought condition; (2) assess how 
EFRs represent the southeastern forests in terms of ecosys-
tem functions measured by percentage of tree cover, LAI, 
and tree height (i.e., tree canopy height); (3) assess how the 
EFRs represent the southeastern forests in terms of ecosystem 

functions including NPP, ET, aboveground biomass, and water 
yield (defined as annual precipitation minus annual ET); (4) 
use all thirteen variables together to evaluate the representa-
tiveness of the SRS EFR network. Representativeness here is 
defined as how well conditions at sampling locations (i.e., the 
EFRs) represent conditions across the southeastern region as 
judged by a combination of the thirteen variables. Our study 
is unique because it examines the representativeness of the 
southeastern EFRs in terms of climate, ecosystem structures, 
and ecosystem functions using several different variables. To 
the best of our knowledge, this is the first known attempt to 
evaluate the representativeness of the EFRs using these vari-
ables. Assessing how well the EFRs on land that the USDA 
FS manages represent various forest attributes across the 
Southeast can help the agency provide research results that 
are useful for forest managers across ownerships. Our effort 
can also help researchers and the public understand how well 
the agency is able to provide that research for the Southeast 
as well as for the rest of the country.

Materials and Methods
Study Region and EFRs
In this study, the southeastern forest region refers to forests 
in the thirteen states of the southeastern United States. The 
twenty EFRs of the SRS EFR Network consist of nineteen 
official EFRs and one cooperating experimental forest and are 
distributed across the southeastern region (figure 1; Table 1). 
Although the nineteen official EFRs possess considerable cov-
erage of forest types, geographical range, and management 
activities, in 2020, the SRS added a cooperating experimental 
forest to expand the suite of conditions represented by includ-
ing studies on university lands (Boggs et al. 2016). Altogether, 

Table 1. Description of the twenty experimental forests and ranges (EFRs) across the southeastern forest region.

ID Name Location Latitude Longitude Area (ha) Year established

1 Alum Creek Experimental Forest Central Arkansas 34.79 -93.04 1,885 1959

2 Bent Creek Experimental Forest Western North Carolina 35.49 -82.63 2,550 1927

3 Blue Valley Experimental Forest Western North Carolina 35.00 -83.25 526 1964

4 Calhoun Experimental Forest Northwestern South Carolina 34.62 -81.71 2,078 1947

5 Chipola Experimental Forest Florida Panhandle 30.43 -85.26 259 1934

6 Coweeta Hydrologic Lab Western North Carolina 35.06 -83.44 2,218 1934

7 Crossett Experimental Forest Southeastern Arkansas 33.03 -91.94 680 1934

8 Delta Experimental Forest Western Mississippi 33.47 -90.90 1,044 1961

9 Escambia Experimental Forest Southern Alabama 31.01 -87.06 1,214 1947

10 Harrison Experimental Forest Southern Mississippi 30.63 -89.06 1,662 1934

11 Henry R. Koen Experimental Forest Northwestern Arkansas 36.04 -93.19 291 1951

12 *Hill Demonstration Forest North Central North Carolina 36.21 -78.87 1,089 1947

13 Hitchiti Experimental Forest Central Georgia 33.05 -83.70 1,916 1938

14 Olustee Experimental Forest Northeastern Florida 30.20 -82.44 1,268 1934

15 Palustris Experimental Forest Central Louisiana 31.18 -92.67 3,035 1935

16 Santee Experimental Forest Eastern South Carolina 33.13 -79.81 2,469 1937

17 Scull Shoals Experimental Forest Central Georgia 33.74 -83.28 1,815 1961

18 Stephen F. Austin Experimental. Forest Eastern Texas 31.50 -94.77 1,072 1945

19 Sylamore Experimental Forest Northern Arkansas 36.01 -92.17 1,736 1934

20 Tallahatchie Experimental Forest Northern Mississippi 34.50 -89.44 1,416 1950

*Cooperating Experimental Forest added to the SRS EFR Network in 2020 based on an agreement between the Forest Service and North Carolina State 
University.
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these EFRs occupy 30,223 ha of land and encompass various 
landscapes of the region. There is at least one EFR within 
each of the southeastern states except Kentucky, Oklahoma, 
Tennessee, and Virginia. The SRS EFRs are located across 
topographic ranges and environmental gradients and rep-
resent a wide range of conditions (e.g., rural to mixed-use 
landscapes), forest types, and management regimes. We used 
the National Forest Type dataset from the USDA FS Forest 
Inventory and Analysis (FIA) program and the Geospatial 
Technology and Applications Center (GTAC) to assess how 
the EFRs represented the forest type groups in the region. 
The forest type groups within each EFR were extracted from 
this dataset. The twenty EFRs together represent the forest 
types of the southeastern region well (figure 2). For both the 
region and the EFRs, the two dominant forest type groups 
were loblolly/shortleaf pine and oak/hickory; four other types 
(longleaf/slash pine, oak/pine, oak/gum/cypress, and elm/ash/
cottonwood) accounted for >2% of the area each; each of the 
remaining types accounted for <0.3% of the area.

Climate Data
Climate data were obtained from the widely used ERA5-Land 
climate reanalysis dataset (Munoz-Sabater et al. 2021) (Table 
2). The monthly ERA5-Land data have a spatial resolution 
of 9 km × 9 km and are available from the GEE. We used 
monthly average air temperature (Tair), total precipitation 
(Pre), shortwave solar radiation (SR), dew point temperature, 
and monthly average volumetric soil water content (SW). 

Vapor pressure deficit (VPD) was calculated from Tair and 
dew point temperature at the monthly timescale. VPD was 
included because it reflects the atmospheric water demand 
and regulates photosynthesis and transpiration (Li et al. 
2023). We then calculated annual mean Tair, annual total Pre, 
annual mean SR, annual mean VPD, and annual mean SW 
for 2001 to 2022. Note that these variables (e.g., VPD) were 
calculated at the annual scale, and deciduous forests might be 
more sensitive to them over the growing season. We down-
loaded these gridded data for the southeastern forest region 
and extracted the time series for each variable for each EFR.

In addition to the climate and SW data, we also used the 
Palmer Drought Severity Index (PDSI) (Palmer 1965) to esti-
mate drought conditions. The original form of PDSI was 
used here. Monthly PDSI was derived from the TerraClimate 
product (Abatzoglou et al. 2018). TerraClimate is a dataset of 
monthly climate and climatic water balance for global terres-
trial surfaces (Abatzoglou et al. 2018) and is also available on 
the GEE platform. Mean PDSI was calculated for each year 
from 2001 to 2022 and was downloaded for the southeastern 
forest region and extracted for each EFR.

Ecosystem Structure Data
We used the following remotely sensed variables to measure 
ecosystem structure of the EFRs and southeastern forests: 
percentage of tree cover, LAI, and tree height (Table 2). Other 
measures of forest structure such as canopy geometry, vol-
ume, heterogeneity, and arrangement were not considered as 

Figure 2 Percentage area of each forest type group for (a) the southeastern region and (b) the EFRs.
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gridded data on these measures are not readily available. The 
percentage of tree cover data were derived from the MODIS 
Vegetation Continuous Fields (VCF) product of MOD44B 
(DiMiceli et al. 2021). The VCF product offers a subpixel 
level representation of vegetation cover globally and consists 
of estimates of percentage of tree cover, percentage of non-
tree cover, and percentage of bare land for each 250 m × 250 
m pixel across the global land surface from 2000 to 2020 
(DiMiceli et al. 2021). We used the percentage of tree cover 
data layer to measure tree cover for each EFR and each pixel 
across the southeastern forest region.

LAI data were obtained from the MODIS Terra LAI prod-
uct of MOD15A2 (Myneni et al. 2002). The MOD15A2 
product provides LAI and fraction of photosynthetically 
active radiation (FPAR) estimates at the 8-day time step and 
500 m × 500 m spatial resolution. LAI, defined as one-half 
of the total green leaf area per unit ground surface area in 
broadleaf canopies (Chen and Black 1992) and as the pro-
jected needleleaf area in coniferous canopies (Myneni et al. 
2002), is a key parameter for depicting vegetation canopy 
structure and determining the exchange of mass (e.g., carbon 
dioxide and water) and energy fluxes between the land sur-
face and the atmosphere (Liu et al. 2018). The MOD15A2 
product is also available on the GEE platform. Maximum LAI 
instead of mean (or median) LAI was chosen to measure the 
ecosystem structure over the peak growing season.

Tree height was based on a new 30 × 30 m spatial resolu-
tion global forest canopy height map (Potapov et al. 2021). 
Here tree height indicates tree canopy height and refers to the 
vertical distance from the base of a tree to the top of the can-
opy of the tree. This map was developed for the year 2019 by 
integrating forest structure measurements from NASA’s GEDI 
instrument and surface reflectance data from NASA’s Landsat 
satellites. This global dataset is also available on the GEE 
platform. As no high-quality gridded data were available for 
other years, we were unable to assess the trend in tree height.

Ecosystem Function Data
Besides climate and ecosystem structure data, we also used data 
on NPP, ET, aboveground biomass (AGB), and water yield (Table 
2) to measure ecosystem functions of southeastern forests. Forest 
water yield and NPP are the critical ecosystem functions that 
sustain many ecosystem services, such as stable and high-quality 
water supply, carbon sequestration, climate regulation, and bio-
diversity conservation (Sun et al. 2011). Estimated annual NPP 
was based on the MODIS Terra NPP data product (MOD17A3) 
(Running et al. 2004), which consists of annual NPP estimates 
at 500 m × 500 m spatial resolution from 2000 to the present. 
Estimated annual ET was based on the MODIS Terra ET prod-
uct (MOD16A2) (Mu et al. 2011), an 8-day composite ET prod-
uct generated at 500 m × 500 m resolution from 2000 to the 
present. We calculated annual ET from the 8-day ET estimates 
for 2001 to 2022. Water yield was calculated as the difference 
between annual precipitation based on the ERA5-Land product 
and annual ET based on the MODIS ET product from 2001 to 
2022. The calculation of water yield was conducted on GEE as 
both ERA5-Land and MODIS ET are available on the platform.

The AGB data were obtained from the aboveground live for-
est biomass map with 250 m × 250 m resolution for the con-
terminous United States, Alaska, and Puerto Rico (Blackard 
et al. 2008). This map was developed based on plot-level bio-
mass data from the USDA FS FIA program and a variety of 
spatially continuous data such as MODIS surface reflectance, 
vegetation indices, and percentage of tree cover, topographic 
variables, and climate data, along with tree-based regression 
algorithms (Blackard et al. 2008). This product is also avail-
able on the GEE platform.

Analyses
We examined the magnitude and spatial patterns of annual 
climate variables (i.e., Tair, Pre, SR, VPD, SW, and PDSI) of 
the southeastern forest region. For each variable, we cal-
culated the long-term mean values from 2001 to 2022 for 

Table 2. Summary of the data products used to characterize the climate, ecosystem structure, and ecosystem functions for the southeastern forest 
region and experimental forests and ranges.

Property Variable Data product Resolution Duration Source

Climate Air temperature (Tair) ERA5-Land 9 km 2001–2022 Munoz-Sabater et al. 2021

Precipitation (Pre) ERA5-Land 9 km 2001–2022 Munoz-Sabater et al. 2021

Shortwave solar radiation 
(SR)

ERA5-Land 9 km 2001–2022 Munoz-Sabater et al. 2021

Soil water content (SW) ERA5-Land 9 km 2001–2022 Munoz-Sabater et al. 2021

Vapor pressure deficit (VPD) ERA5-Land 9 km 2001–2022 Munoz-Sabater et al. 2021

Palmer Drought Severity 
Index (PDSI)

TerraClimate ~4 km 2001–2022 Abatzoglou et al. 2018

Ecosystem  
structure

Percent tree cover MODIS VCF (MOD44B) 250 m 2001–2020 DiMiceli et al. 2021

Leaf area index (LAI) MODIS LAI (MOD15A2) 500 m 2001–2022 Myneni et al. 2002

Tree height Global Forest Canopy 
Height Map

30 m 2019 Potapov et al. 2021

Ecosystem  
functions

Net primary production 
(NPP)

MODIS NPP (MOD17A3) 500 m 2001–2022 Running et al. 2004

Evapotranspiration (ET) MODIS ET (MOD16A2) 500 m 2001–2022 Mu et al. 2011

Aboveground biomass (AGB) FS Forest biomass map 250 m Circa 2002 Blackard et al. 2008

Water yield (WY) ERA5-Land, MODIS ET 500 m* 2001–2022 Munoz-Sabater et al. 2021; 
Mu et al. 2011

*The resolution of water yield is between 500 and 9 km as it was calculated from the MODIS ET (500 m) and the ERA5-Land (9 km).
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the region on a per pixel basis and extracted the long-term 
mean values for each EFR. We then generated the probability 
density distribution for each variable across the region and 
assessed to what extent the EFRs represent the region in terms 
of mean annual climate conditions. In addition, we calculated 
the long-term trend in each variable for the region from 2001 
to 2022 on a per pixel basis using the Mann-Kendall trend 
test (Kendall 1938; Mann 1945). The Mann-Kendall method 
is a nonparametric test for monotonic trends, and it does not 
assume a specific distribution for the data and is insensitive 
to outliers (Ficklin et al. 2016; Wang et al. 2019). The slopes 
of the trends were calculated using the Kendall robust line-
fit method (Sokal and Rohlf 1995). The time series for each 
variable was extracted for each EFR, and the long-term trend 
in each variable was also examined using the Mann-Kendall 
method.

We then assessed the magnitude and spatial patterns of eco-
system structure as measured by percent tree cover, LAI, and 
tree height across the region. Percent tree cover and annual 
maximum LAI were averaged between 2001 and 2022 to 
calculate long-term mean values on a per pixel basis. The 
probability density distribution was then generated for each 
variable. For each EFR, the percentage of tree cover, LAI, and 
tree height were spatially averaged and extracted. We assessed 
to what extent EFRs can represent the ecosystem structure of 
the region. The Mann-Kendall method was used to examine 
the long-term trend in each variable for the region on a per 
pixel basis and for each EFR.

Similarly, we assessed the magnitude and spatial patterns of 
ecosystem functions as measured by NPP, ET, AGB, and water 
yield for the region. For each variable, the probability density 
distribution was generated. We calculated the spatially aver-
aged values of long-term means for each variable for each 
EFR and assessed how the EFRs encompass the ecosystem 
functions of southeastern forests. We also assessed the long-
term trends in ecosystem functions for the region on a per 
pixel basis and for each EFR.

Finally, we used the thirteen variables in climate (i.e., mean 
annual Tair, Pre, SR, SW, VPD, PDSI), ecosystem structure 
(i.e., mean annual percentage of tree cover and LAI and tree 
height), and ecosystem functions (i.e., mean annual NPP, ET, 
WY, and AGB) together to assess the representativeness of 
the SRS EFR network, following Kumar et al. (2023). For 
this analysis, all the datasets were resampled to the same spa-
tial resolution, whereas for the analyses described above, the 
native resolution of each dataset was used. Each variable was 
normalized to the range of [0, 1]. For each EFR or pixel, the 
values of the thirteen normalized variables were treated as a 
vector in the multivariate space. To calculate the representa-
tiveness of each EFR, we first calculated the Euclidean dis-
tance between the vector of the EFR and that of each pixel 
across the region, and then calculated the representativeness 
of each EFR as follows:

representativeness = 1−

Ã
13∑
i=1

Ä
V EFR

i − V pixel
i

ä2
(1)

where V EFR
i  and V pixel

i  stand for the multivariate vector for 
the EFR and a given pixel, respectively. For each EFR, we 
generated a representativeness map for the region, in which 
a higher value indicates that the pixel is closer to the EFR in 
the multivariate space and that the EFR is more representa-
tive of that pixel. To assess the representativeness of the SRS 

EFR network, we calculated the maximum representativeness 
value among the values of the 20 EFRs for each pixel.

Results
Climate
We first examined the long-term means of annual mean tem-
perature, annual precipitation, annual mean shortwave solar 
radiation, annual mean VPD, annual mean soil water content, 
and PDSI for the southeastern forest region (figure 3) and the 
EFRs (Figure S1) between 2001 and 2022. We also compared 
the long-term means of these variables for the EFRs against 
the probability density distribution of these variables for the 
entire southeastern forest region (figure 4). Tair generally 
increased with decreasing latitude, except in the Appalachian 
Mountains (figure 3a). Tair ranged from ~9°C to 25°C across 
the region (figure 4a). The twenty EFRs encompassed a large 
portion of the distribution of Tair across the region, whereas 
areas with Tair above 20.6°C or below 12.0°C (mostly in the 
tails of the probability distribution) had no EFR representa-
tion (figure 4a). Unlike Tair, Pre showed intermediate values 
in the states on the East Coast (Virginia, North Carolina, 
South Carolina, Georgia, Florida), low values in the West 
(Oklahoma and Texas), and high values in the central parts of 
the region (figure 3b). The annual Pre across the region ranged 
from ~500 to ~1700 mm yr-1, whereas the Pre of the EFRs was 
between 1074 and 1518 mm yr-1; a significant portion of the 
region (the majority of Oklahoma and Texas and a small part 
of the states on the East Coast) had Pre < 1000 mm yr-1 and 
had no EFR representation (figures 3b and 4b). SR had a sim-
ilar spatial pattern to Tair (figure 3a and c), and areas with SR 
lower than 182 W m-2 or higher than 197 W m-2 contained no 
EFRs (figure 4c). The differences in solar radiation are largely 
caused by the changes in sun elevation angle that varies with 
latitude and changes in cloud over. The spatial pattern of VPD 
was similar to that of Tair or SR (figure 3). The VPD of the 
twenty EFRs centered around the peak value of the probabil-
ity density distribution of the region and ranged from 4.0 to 
8.2 hPa; two EFRs had VPD < 4.0 hPa, whereas no EFR had 
VPD > 8.2 hPa (figure 4d). SW had relatively low values in 
the southeast of the region (e.g., Georgia, Florida) (figure 3e); 
the EFRs altogether encompassed the distribution of SW well 
(figure 4e). The long-term mean PDSI map indicates that the 
northern and central parts of the region were relatively wet 
whereas the western, southern, and eastern parts of the region 
were relatively dry (figure 3f); the PDSI value of the twenty 
EFRs ranged from -0.6 to 0.7, covering a large portion of 
the distribution of PDSI over the southeastern forest region 
(figure 4f).

The trends in Tair, SR, VPD, and SW varied substantially 
across the southeastern forest region (figure 5). The south-
eastern half of the region had increasing trends in Tair, 
whereas the rest of the region except Texas had decreasing 
trends in Tair (figure 5a); the trends in Tair were statistically 
significant for only a small portion of the region (Figure S2). 
Among the twenty EFRs, only one EFR (Harrison, in southern 
Mississippi) had a statistically significant trend in Tair (Figure 
S3). SR exhibited an increasing trend in the Appalachian 
Mountains and areas in Oklahoma and Texas but a declin-
ing trend in the rest of the region (figure 5c). None of the 
EFRs had a statistically significant trend in SR (Figure S3). 
Compared with Tair, SR, and SW, Pre, VPD, and PDSI were 
more spatially consistent in the direction of change across 
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the region. Most of the region had upward trends in VPD, 
and only areas in Louisiana and southern Florida exhibited 
downward trends (figure 5d). The VPD trend was statistically 
insignificant for all the EFRs (Figure S3). The entire region 
except a small area in Texas exhibited an increasing trend 
in Pre and PDSI (figure 5b, f). The trend in Pre was statis-
tically significant for three EFRs (Henry R. Koen in north-
western Arkansas, Palustris in central Louisiana, and Santee 
in eastern South Carolina). None of the EFRs had a signif-
icant trend in VPD. The PDSI trend was significant for five 
EFRs: Alum Creek (central Arkansas), Bent Creek (western 
North Carolina), Chipola (Florida panhandle), Harrison, and 
Olustee (northeastern Florida) (Figure S3).

Ecosystem Structure
We examined the ecosystem structure indicators of the 
southeastern forest region (figure 6) and EFRs (Figure S4) 
based on percentage of tree cover, maximum LAI, and tree 

height. Percentage of tree cover exhibited the highest values 
(>80%) in the Appalachian Mountains, the lowest values 
in Oklahoma, Texas, and sporadic areas in the states of the 
East Coast (figure 6a). The probability density distribution of 
percentage of tree cover across the region showed that per-
centage of tree cover primarily ranged from 0% to 80% and 
peaked around 50%; the percentage of tree cover of the EFRs 
ranged from 46% (Delta in western Mississippi) to 72% 
(Coweeta Hydrologic Laboratory in western North Carolina) 
(figure 7a). Compared with percentage of tree cover, LAI was 
more homogenous across southeastern forests. Most of the 
region had high LAI values, whereas areas within Oklahoma 
and Texas had low values; the remaining areas had interme-
diate values (figure 6b). The distribution of LAI across the 
region peaked at ~6.7; the LAI of the twenty EFRs ranged 
from 5.1 (Escambia in southern Alabama) to 6.8 (Coweeta 
Hydrologic Laboratory); there were no EFRs in areas with 
LAI lower than 5 (figure 7b). Tree height had high values in 

Figure 3 Magnitude and spatial pattern of mean annual (a) temperature (Tair; °C), (b) precipitation (Pre; mm), (c) shortwave solar radiation (SR; W 
m-2), (d) vapor pressure deficit (VPD; hPa), (e) volumetric soil water content (SW; unitless), and (f) PDSI from 2001 to 2022 for the southeastern 
forest region. The numbers in circles stand for experimental forests and ranges (EFRs); the correspondence between the numbers and the EFRs 
is provided in Table 1.
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the Appalachian Mountains, low values in areas in Oklahoma 
and Texas as well as sporadic areas in the states on the East 
Coast, and intermediate values in the rest of the southeastern 
forest region (figure 6c). The probability density distribution 
of tree height peaked at ~20m. The tree height of the majority 
of the EFRs ranged from 17 to 24 m; Alum Creek and Bent 
Creek had an average tree height of 8 and 11 m, respectively, 
whereas Sylamore in northern Arkansas and Tallahatchie in 

northern Mississippi had an average tree height of 27 and 28 
m, respectively (figure 7c).

We then examined the long-term trends in percentage of tree 
cover and maximum LAI (figure 8). The trends were statisti-
cally significant for a large fraction of the pixels (Figure S5). No 
widespread areas exhibited either upward or downward trends 
in percentage of tree cover; instead, pixels with upward trends 
in percentage of tree cover were interspersed with those with 

Figure 4 Probability density distribution of mean annual (a) temperature (Tair; °C), (b) precipitation (Pre; mm yr-1), (c) shortwave solar radiation (SR; W 
m-2), (d) vapor pressure deficit (VPD; hPa), (e) volumetric soil water content (SW; unitless), and (f) PDSI from 2001 to 2022 across the southeastern 
forest region. The vertical lines indicate the mean annual values for the EFRs.
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downward percentage of tree cover (figure 8a). Seven EFRs 
had upward trends in percentage of tree cover, but none of the 
trends were statistically significant; the remaining thirteen EFRs 
had downward trends, and four of them (Bent Creek, Chipola, 
Sylamore, and Tallahatchie) had statistically significant trends 
(p < .05) (Figure S6). Many areas of the region (e.g., western 
North Carolina, South Carolina, Georgia, Alabama, south-
ern Mississippi, and Oklahoma) had increasing trends in LAI, 
whereas the Appalachian Mountains and some other areas of 
the region had nearly no trends in LAI (figure 8b). The spatially 
averaged LAI had an increasing trend for all the EFRs except 
Chipola, Santee, and Tallahatchie, and the increasing trend was 
statistically significant for seven EFRs (Figure S6). We were not 
able to explore the long-term trend in tree height as the tree 
height map is only available for 2019.

Ecosystem Functions
Along with climate and ecosystem structure, we also exam-
ined the ecosystem functions in ecosystem productivity and 

water cycle regulation in the southeastern forests (figure 9) 
and EFRs (Figure S7) using four indicators: mean annual 
NPP, ET, water yield, and AGB. All these metrics exhibited 
relatively large variability across the southeastern forest 
region (figure 9). Annual NPP had the highest values in the 
Appalachian Mountains, western Louisiana/eastern Texas, 
southern Mississippi, Florida, and coastal areas of Georgia 
and the Carolinas, the lowest values in central and south-
ern Arkansas, northern Louisiana, and northern Mississippi, 
and intermediate values in other areas of the region (figure 
9a). The mean annual NPP of the twenty EFRs had a large 
range, varying from 257 g C m-2 yr-1 (Crossett in southeastern 
Arkansas) to 1145 g C m-2 yr-1 (Harrison) (Figure S7) and well 
encompassed the distribution of the NPP of the region (fig-
ure 10a). Mean annual ET generally increased with decreas-
ing latitude across the region, except in the Appalachian 
Mountains and Texas (figure 9b). A large portion of the 
southeastern forest region had annual ET between 500 and 
900 mm yr-1, and the ET of 18 EFRs was within this range 

Figure 5 Long-term trends of annual (a) temperature (Tair; ˚C yr-1), (b) precipitation (Pre; mm yr-1), (c) shortwave solar radiation (SR; W m-2 yr-1), (d) vapor 
pressure deficit (VPD; hPa yr-1), (e) volumetric soil water content (SW; % yr-1), and (f) PDSI from 2001 to 2022 for the southeastern forest region. The 
numbers in circles stand for experimental forests and ranges (EFRs); the correspondence between the numbers and the EFRs is provided in Table 1.
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(figure 10b); Coweeta Hydrologic Laboratory and Olustee 
had the lowest (432 mm yr-1) and highest ET (934 mm yr-

1), respectively (Figure S7). The AGB was highest in North 
Carolina and northern Virginia, intermediate in southern 
Virginia, Kentucky, Tennessee, Arkansas, Mississippi, north-
ern Georgia, and Florida, and the lowest in other areas of 
the region (figure 9c). The probability density distribution 
of AGB across the region peaked at ~100 Mg ha-1. The AGB  
of sixteen EFRs centered around the peak value of the distribu-
tion (i.e., mode) and ranged from 81 to 127 Mg ha-1, whereas 
the remaining four EFRs had much higher AGB: Coweeta 

Hydrologic Laboratory (164 Mg ha-1), Hill Demonstration 
Forest in central North Carolina (171.7 Mg/ha), Bent Creek 
(187 Mg ha-1), and Blue Valley in western North Carolina 
(202 Mg ha-1) (figure 10c; Figure S7). The annual water yield 
had high values in the Appalachian Mountains and Arkansas; 
intermediate values in eastern Virginia, eastern portions of 
North Carolina, northern South Carolina, Louisiana, south-
ern Mississippi, and central Alabama; and low values in 
western Virginia, western North Carolina, Georgia, northern 
Florida, southern Alabama, Oklahoma, and Texas (figure 9d). 
Notably, Olustee Experimental Forest had low water yield 

Figure 6 Magnitude and spatial pattern of (a) long-term mean percentage of tree cover (%) (2001 to 2020), (b) long-term mean of maximum leaf area 
index (LAI) (2001 to 2022), and (c) tree height (2019) for the southeastern forest region. The numbers in circles stand for experimental forests and 
ranges (EFRs); the correspondence between the numbers and the EFRs is provided in Table 1.
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but high NPP (Figure S7a and d). The probability density 
distribution of annual water yield of the southeastern forest 
region peaked at ~250 mm yr-1; only one EFR (Olustee) had 
water yield lower than this value (figure 10d). Among the 
remaining nineteen EFRs, four EFRs (Crossett: 609 mm yr-1; 
Coweeta Hydrologic Laboratory: 675 mm yr-1; Blue Valley: 
707 mm yr-1; Delta: 733 mm yr-1) had water yield greater 
than 600 mm yr-1; the water yield of the other fifteen EFRs 
ranged from 283 to 526 mm yr-1 (Figure S7).

We then assessed the long-term trends in annual NPP, ET, and 
water yield over the period 2001–2022 for the southeastern 

forest region on a per pixel basis (figure 11; Figure S8) and for 
each EFR (Figure S9). The NPP exhibited increasing trends in 
the entire region except in some areas (e.g., areas along the 
East Coast and Gulf Coast, and a part of Texas) (figure 11a); 
eighteen EFRs had increasing trends in NPP but only two of 
them (Hill Demonstration Forest and Tallahatchie) had sta-
tistically significant trends (p < .05); Chipola and Henry R. 
Koen (in northwest Arkansas) had insignificant decreasing 
trends (p > .05) (Figure S9). Increasing trends in annual ET 
were observed for nearly the entire southeastern forest region 
(figure 11b); eighteen EFRs had increasing trends in ET, and 
the trend was significant for eleven of these EFRs; two EFRs 
(Chipola and Coweeta Hydrologic Laboratory) had insignif-
icant decreasing trends in ET (Figure S9). Unlike NPP and 
ET, water yield exhibited large variability in the direction of 
change across the region; an increasing trend in water yield 
was found in the Appalachian Mountains, northern Arkansas, 
northeastern Oklahoma, Louisiana, southern Mississippi, and 
parts of Florida and South Carolina (figure 11c); twelve and 
eight EFRs had upward and downward trends in water yield, 
respectively, whereas none of the trends were statistically 
significant (Figure S9). The long-term trend in AGB was not 
examined because the gridded AGB data were not available 
yearly for a long period of time.

Representativeness Based on all Thirteen Variables
The representativeness of specific EFRs varies substantially 
among the EFRs (figure 12). Some EFRs only represent a very 
small part of the region well but others are well representative 
of a significant portion of the region. For example, two EFRs 
(Calhoun Experimental Forest, #4; Coweeta Hydrologic 
Laboratory, #6) are only representative of the Appalachian 
Mountains area adjoining North Carolina, South Carolina, 
Georgia, and Tennessee, and the Chipola Experimental Forest 
(#5) is only well representative of the Florida Panhandle. By 
contrast, some EFRs such as Alum Creek (#1), Hitchiti (#13), 
Scull Shoals (#17), and Tallahatchie (#20) are representative 
of a sizable portion of the southeastern region. The SRS EFR 
network overall, however, represents a large portion of the 
region relatively well, whereas central Oklahoma and Texas 
are least represented (figure 13).

Discussion
We used a variety of gridded datasets to assess how the twenty 
EFRs represent the southeastern forests. The southeastern 
forest region is dominated by a humid, subtropical climate 
that is influenced by various factors such as latitude, topogra-
phy, and proximity to the Gulf of Mexico and Atlantic Ocean 
(Carter et al. 2018). The southeastern forest region has rela-
tively large gradients in mean annual climate (i.e., Tair, Pre, 
SR, VPD), SW, and PDSI. Temperature generally decreases 
with increasing latitude and elevation (Carter et al. 2018). 
Altogether, the twenty EFRs encompass a large range of the 
distribution of each climate variable, whereas the areas with 
low and high values (often in the tails of the probability dis-
tributions) are typically underrepresented or have no EFRs 
at all. Understanding the tails of the climate distributions is 
important as ecosystems in these areas are likely more sensi-
tive to climate change. For example, dryland ecosystems are 
more sensitive to changes in precipitation, whereas ecosys-
tems in areas with high temperatures are more susceptible to 
warmer temperatures. To improve the representativeness of 

Figure 7 Probability density distribution of (a) long-term mean annual 
tree cover (%) (2001 to 2020), (b) long-term mean of maximum leaf 
area index (LAI) (2001 to 2022), and (c) tree height (m) across the 
southeastern forest region. The vertical lines indicate the average values 
for the twenty experimental forests and ranges.
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the mean climate conditions across the southeastern forest 
region, additional EFRs could be established in areas such 
as the Appalachian Mountains of Virginia, southern Florida, 
Oklahoma, and central/northern Texas. A large portion of 
the forests across the southeastern forest region has inter-
mediate to higher percentage of tree cover and LAI, and a 
sizable portion of the region has relatively low tree height. 
All the EFRs have intermediate and high values in ecosystem 
structure metrics (i.e., percentage of tree cover, LAI, and tree 
height). Establishing EFRs in forests with relatively low per-
centage of tree cover, LAI, or tree height or in young forests 
could improve the representativeness of EFRs in terms of eco-
system structure, as none of the EFRs has a percentage of tree 
cover lower than 45%, maximum LAI lower than 4.5, or tree 
height lower than 7.9 m. The lack of representation for areas 

with low tree cover, LAI, and/or tree height is perhaps not 
surprising because all of the EFRs in the southeastern region 
are experimental forests (not experimental ranges), but addi-
tions to the network could also include experimental ranges 
that focus on grassland and savanna systems, such as the 
Cross Timbers region of eastern Oklahoma and north-central 
Texas (Hallgren et al. 2012). Ecosystem functions as mea-
sured by NPP, ET, AGB, and water yield exhibited large gra-
dients across the southeastern forest region. A large portion 
of the distribution for both NPP and ET is well represented 
by the EFRs. Establishing EFRs in areas with intermediate 
and low AGB and water yield, such as large parts of South 
Carolina, Georgia, Oklahoma, and Texas, could improve the 
representativeness of the EFRs in terms of AGB and water 
yield. These areas have intermediate or low biomass because 

Figure 8 Long-term trends of (a) percentage of tree cover (% yr-1) and (b) maximum leaf area index (LAI) for southeastern forests from 2001 to 2020 
and from 2001 to 2022, respectively. The numbers in circles stand for experimental forests and ranges (EFRs); the correspondence between the 
numbers and the EFRs is provided in Table 1.

Figure 9 Magnitude and spatial pattern of (a) mean annual net primary production (NPP; g C m-2 yr-1) (2001 to 2022), (b) mean annual evapotranspiration 
(ET; mm yr-1) (2001 to 2022), (c) aboveground biomass (AGB; Mg ha-1), and (d) mean annual water yield (WY; mm yr-1) (2001 to 2022) for the 
southeastern forest region. The numbers in circles stand for experimental forests and ranges (EFRs); and the correspondence between the numbers 
and the EFRs is provided in Table 1.
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of intermediate or low annual precipitation, tree height, and 
LAI and have intermediate or low water yield because of 
intermediate or low precipitation but intermediate or high 
temperature and/or VPD.

The long-term trends in the climate-related variables 
(i.e., Tair, Pre, SR, VPD, SW, and PDSI) were generally 
consistent between the EFRs and the southeastern for-
est region. For example, Tair had an increasing trend for 
nearly every location across the region, and all the EFRs 
had increasing trends in Tair; SR exhibited negative trends 
for nearly the entire southeastern forest region, and the 
majority of the EFRs (sixteen of twenty) also had negative 
trends in SR. This indicates that these EFRs are generally 
representative of the region in terms of climate trends. The 
trends in percentage of tree cover and LAI were also gen-
erally consistent between the region and the EFRs. On a 
per pixel basis, increases and decreases in percentage tree 
cover were interspersed with each other, and seven and 
thirteen EFRs had increasing and decreasing percentage of 
tree cover, respectively; increasing LAI was observed for 
most of the pixels in the region and seventeen of the twenty 
EFRs. The trends in ecosystem functions (i.e., NPP, ET, and 
water yield) of the EFRs were also generally representative 
of those of the region.

Ecosystem structure and functions could exhibit spatial 
variability within a given EFR. For example, although on 
average, none of the EFRs have low percentage of tree cover 
or tree height or young forests, short or young trees could 
exist in any given EFR. Assessing the variability within each 
EFR is limited by the spatial resolution of the data used. The 
smallest EFR has an area of 259 ha (~2.6 km2), whereas the 
spatial resolution (or grid cell size) of most of the datasets 
ranges from 500 m to 4 km. The only dataset that is suitable 
for assessing within-EFR variability is the tree height data-
set that is at 30 m resolution. We used this dataset to assess 
whether the distribution of tree height for these 30 m grid 
cells could better represent that of the southeastern forests 
(Figure S10). With all the 30 m grid cells within each EFR 
considered, the tree height of the EFRs mainly ranges from 
18 to 24 m, and still underrepresents medium and relatively 
short trees.

It should be noted that there are other research forests across 
the southeastern region other than the EFRs. Notably, there 
are other research forests on federal or state lands. Moreover, 
some universities have their own research forests. For example, 
the Duke Forest in North Carolina, which is owned and man-
aged by Duke University, consists of more than 2,800 ha of 
forested land and has been managed for research experiments 

Figure 10 Probability density distribution of (a) mean annual net primary production (NPP; g C m-2 yr-1) (2001 to 2022), (b) mean annual 
evapotranspiration (ET; mm yr-1) (2001 to 2022), (c) aboveground biomass (AGB; Mg ha-1), and (d) mean annual water yield (WY; mm yr-1) (2001 to 2022) 
across the southeastern forest region. The vertical lines indicate the average values for the experimental forests and ranges.
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(e.g., free-air carbon dioxide enrichment or FACE). Although 
these forests are not part of the EFR network, tremendous 
research has been done to examine ecosystem functions and 
services amidst climate change based on these sites. These 
research forests, in combination with the EFRs, are likely able 
to better represent the southeastern forests in terms of climate, 
ecosystem functions, and ecosystem structure than the EFR 
network alone and to better answer science questions related 
to climate change, disturbance, and management practices.

Future representativeness studies of the EFRs could bene-
fit in the following ways. First, using climate and PDSI data 
with finer spatial resolution can better characterize climate 

and drought conditions of the EFRs, particularly the small 
ones. Second, besides the magnitude and trends in annual cli-
mate variables, the seasonality of climate could be considered. 
Third, the future availability of time series data for AGB and 
tree height will allow for the characterization of the temporal 
dynamics of these two variables. Finally, besides climate, eco-
system functions, and ecosystem services, other aspects, such 
as soil properties, elevation, stand age, and structural diver-
sity (Crockett et al. 2023) could be incorporated into future 
representativeness assessments.

This study across the EFRs and the southeastern forest 
region fills the knowledge gap regarding the climate, ecosystem 

Figure 11 Trends of annual (a) net primary production (NPP; g C m-2 yr-1), (b) evapotranspiration (ET; mm yr-1), and (c) water yield (WY; mm yr-1) for the 
southeastern forest region from 2001 to 2022. The numbers in circles stand for experimental forests and ranges (EFRs); the correspondence between 
the numbers and the EFRs is provided in Table 1.
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structure, and ecosystem functions of EFRs in the context of 
the broader southeastern forest region. Understanding ecosys-
tem functions and structures across the EFR network can help 
the SRS to address new research questions, including those 

associated with expected climate change across the south-
eastern forest region during the remainder of the twenty-first 
century (Carter et al. 2018). Although projected increases in 
temperature for some parts of the region are smaller than 

Figure 12 Representativeness of each EFR based on the thirteen variables in climate, ecosystem structure, and ecosystem functions together. The 
representativeness was calculated based on Equation 1. The numbers in circles stand for EFRs; the names of the EFRs are provided in Table 1.
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for other regions of the United States, projected increases are 
larger for interior areas of the Southeast than for coastal areas 
of the region (Carter et al. 2018). Projections for future pre-
cipitation are less certain than those for temperature increases 
(Kunkel et al. 2013). Many model projections show only 

small changes in precipitation with drier conditions in the 
far southwest of the region and wetter conditions in the far 
northeast of the region (Kunkel et al. 2013).

The EFRs have some unique advantages that include 
dedicated research facilities, core budgets, maintenance 

Figure 12 Continued
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of long-term research and data, involvement of land and 
resource managers from the FS National Forest System, and 
support for research across disciplines (Adams et al. 2008). 
The wealth of long-term datasets spanning up to a century 
distinguishes EFRs and underscores their value in studying 
ecological systems. Our societal perspective on the value of 
forest ecosystems has changed since these EFRs were estab-
lished. The management of national forests, for example, has 
shifted from a focus primarily on timber and water to a focus 
on the management of forest ecosystems, which includes rec-
reation and biodiversity as well as timber and water (Williams 
2005). However, to continue to function as an effective EFR 
network and to address contemporary environmental chal-
lenges, it will be vital to define existing conditions across the 
EFRs and refine and maintain the most important attributes 
of the network that include data continuity, scientific consis-
tency, baseline data, comparative research, and adaptation to 
change (e.g., effective methods of data sharing). Future sites in 
underrepresented regions and continued operation of existing 
EFRs should consider several factors, including geographic 
and climate representation and the potential for collaborative 
cross-site research. In the establishment of new EFRs, other 
factors that could be important to consider are whether the 
disturbance and management scenarios are well represented, 
whether relevant long-term monitoring data already exists 
for the location to allow for comparison with existing EFRs, 
and whether funding and personnel are available to main-
tain the infrastructure needed. Results from this study can 
provide useful information to offer guidance on the direc-
tion of future site selections, on research actions, needs, and 
programs including new sampling designs, and on scientific 
infrastructure, tools, and models. The biggest challenges lie in 
the availability of funding and land. Sufficient and sustained 
funding will be essential for the successful establishment of 
a new EFR. Southeastern forests are mostly privately owned 
and thereby partnerships are likely to be important for the 
expansion of the network. One practical solution is to iden-
tify and incorporate existing university, state, and nonprofit 

research forests into a larger network of research forests with 
the EFR network as its backbone.

Conclusions
We assessed how the EFRs represent the variation in cli-
mate, ecosystem structure, and ecosystem functions across 
the southeastern forest region using a variety of gridded data 
products. The southeastern forest region exhibits large gradi-
ents in climate, ecosystem structure, and ecosystem functions. 
Overall, the existing twenty EFRs managed by the SRS largely 
represent the distribution of climate (i.e., air temperature, 
precipitation, shortwave solar radiation, vapor pressure defi-
cit, soil water content, and PDSI), ecosystem structure (i.e., 
percent tree cover, LAI, tree height), and ecosystem functions 
(i.e., NPP, ET, AGB, water yield) of the region. The long-term 
trends in climate, ecosystem structure, and ecosystem func-
tions of the EFRs were generally consistent with those of the 
southeastern forest region. The representativeness of the mean 
climate conditions of the region could be improved by estab-
lishing EFRs in some parts of the region (e.g., the Appalachian 
Mountains of Virginia, southern Florida, Oklahoma, and 
central/northern Texas). Moreover, areas with a percentage 
of tree cover lower than 45%, LAI lower than 4.5, or tree 
height lower than 8 m have no EFR representation, indicating 
that establishing new EFRs in forests with relatively low per-
centage of tree cover, LAI, or tree height or in young forests 
could improve the representativeness of the SRS EFR network 
in terms of ecosystem structure. Establishing EFRs in areas 
with intermediate and low AGB and WY, such as large parts 
of South Carolina, Georgia, Oklahoma, and Texas, could 
improve the representativeness of the EFRs in terms of AGB 
and water yield. Better understanding and improving the rep-
resentativeness of the EFRs can help understanding of the 
past, present, and future changes in southeastern forests in 
the context of climate change and management. A potential 
next step would be to identify specific locations for additions 
to the EFR network to improve its representativeness. One 

Figure 13 Representativeness of the SRS EFR network assessed with the thirteen variables together. For each pixel, the value indicates the maximum 
representativeness among the twenty EFRs.
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line of work could assess the most efficient way to achieve a 
certain degree of representativeness—for example, how many 
more sites are needed to be 95% representative?

This study could provide a framework for how other FS 
research stations could assess the representativeness of their 
EFRs. More generally, it could provide a helpful blueprint for 
assessing the representativeness of any research network (or 
collection of associated research sites). The findings of this 
work could help researchers who do work in the SRS EFRs 
to better understand the geographic context of their work, 
and to encourage them to think about the limitations of their 
work and how it could be improved by expanding the EFRs 
into new locations. For researchers who do not work in these 
EFRs, the results of this study could encourage them to use 
the data collected from the network and to apply the resulting 
research findings to their own work.
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