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ABSTRACTThe annual national report of the Forest Health 
Monitoring (FHM) program of the U.S. 
Department of Agriculture, Forest Service, 

presents forest health status and trends from a 
national or multistate regional perspective using 
a variety of sources, introduces new techniques 
for analyzing forest health data, and summarizes 
results of recently completed Evaluation 
Monitoring projects funded through the FHM 
national program. In this 22nd edition in a series 
of annual reports, national survey data are used 
to identify recent geographic patterns of insect 
and disease activity. Satellite data are employed 
to detect geographic patterns of forest fire 
occurrence. Fine-scale changes in Normalized 
Difference Vegetation Index (NDVI) are used to 
detect broad patterns of forest disturbance across 
the conterminous United States. Data collected by 
the Forest Inventory and Analysis (FIA) program 
are employed to detect regional differences in 
tree mortality. Twenty years of crown dieback 
trends are presented for the most common tree 
species and genera in the Eastern United States. 
The new National FIA Lichen Database and the 
National Lichen Atlas are described to illustrate 
the breadth of 23 years of lichen indictor data. 
Four recently completed Evaluation Monitoring 
projects are summarized, addressing forest health 
concerns at smaller scales. 
Keywords—Change detection, disturbance, fire, 
forest health, forest insects and disease, lichens, 
tree canopy, tree crown dieback, tree mortality.
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EXECUTIVE 
SUMMARY

Healthy ecosystems are those that are stable 
and sustainable, able to maintain their 
organization and autonomy over time while 

remaining resilient to stress (Costanza 1992). 
Healthy forests are vital to our future (Edmonds 
and others 2011), and consistent, large-scale, and 
long-term monitoring of key indicators of forest 
health status, change, and trends is necessary to 
identify forest resources deteriorating across large 
regions (Riitters and Tkacz 2004). The Forest 
Health Monitoring (FHM) program of the Forest 
Service, U.S. Department of Agriculture, with 
cooperating researchers within and outside the 
Forest Service and with State partners, quantifies 
status and trends in the health of U.S. forests in 
the Forest Health Monitoring: National Status, 
Trends, and Analysis report (ch. 1). The 2022 
FHM national report is the 22nd edition in the 
annual series of reports. The analyses and results 
outlined in sections 1 and 2 of this report offer a 
snapshot of the current condition of U.S. forests 
from a national or multistate regional perspective, 
incorporating baseline investigations of forest 
ecosystem health, examinations of change over 
time in forest health metrics, and assessments 
of developing threats to forest stability and 
sustainability. For datasets collected on an annual 
basis, analyses are presented from 2021 data. For 
datasets collected over several years, analyses are 
presented at a longer temporal scale. Section 3 of 
this report presents four summaries of results from 
recently completed Evaluation Monitoring (EM) 
projects that have been funded through the FHM 
national program to determine the extent, severity, 
and/or causes of specific forest health problems 
(FHM 2022).

Monitoring the occurrence of forest pest and 
pathogen outbreaks is important at regional scales 
because of the potential forest health impacts 
of insects and disease across landscapes (ch. 2). 
In 2021, national Insect and Disease Survey 
data identified 60 mortality-causing agents and 
complexes across the conterminous United States 
(CONUS) on approximately 2.21 million ha. 
Emerald ash borer (Agrilus planipennis) was the 
most widely detected mortality agent, identified 
on about 878 000 ha across the Eastern FHM 
megaregion, causing a hot spot of extremely high 
mortality density in the Midwest. Fir engraver 
(Scolytus ventralis) caused extensive mortality in 
parts of the West, but the area of its impact had 
declined from recent years. As in recent years, 
Alaska experienced extensive mortality from 
spruce beetle (Dendroctonus rufipennis), while 
much mortality in Hawaii may be associated 
with rapid ōhi‘a death. Meanwhile, forest health 
surveyors reported damage from 56 defoliation 
agents and complexes affecting approximately 
1.67 million ha across the CONUS. Most of 
this defoliation was the result of a spongy moth 
(Lymantria dispar) outbreak, primarily in the 
Eastern FHM megaregion but in the Southern 
FHM megaregion as well. Alaska had extensive 
defoliation, caused mostly by western blackheaded 
budworm (Acleris gloverana).

Forest fire occurrence outside the historic range 
of frequency and intensity can result in extensive 
economic and ecological impacts. The detection 
of regional patterns of fire occurrence density can 
allow for the identification of areas at greatest risk 
of significant impact (ch. 3). In 2021, the number 
of satellite-detected forest fire occurrences in the 
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CONUS was the fourth highest in 21 full years 
of data collection but represented a 9-percent 
decrease in fire activity from the 2020 fire season. 
Parts of California and the Pacific Northwest 
in 2021 had extremely high fire occurrence 
densities, while other areas of the West had high 
or very high densities. The extensive fire activity 
in these regions resulted in geographic hot spots 
of extremely active or very high fire occurrence 
density. These areas experienced fire occurrence 
densities that were much higher than normal in 
2021 compared to the previous 20-year mean 
and accounting for variability over time. Alaska 
experienced a large increase in fire occurrences 
from 2020, but this was a decrease from the 
extremely active fire year of 2019 and less than 
the mean for the preceding 2 decades. Hawaiian 
forests in 2021 had fire occurrence densities that 
were low and within expectations. Parts of both 
Puerto Rico and the U.S. Virgin Islands had 
higher than expected fire occurrence densities.

Recent advances in high-spatial-resolution 
imagery and high-speed computation have 
revolutionized forest canopy monitoring. With 
more efficient use of higher resolution imagery, 
the capacity to understand the mechanisms of 
forest change and precise disturbance impacts at a 
fine scale has grown (ch. 4). Moderate Resolution 
Imaging Spectroradiometer (MODIS) satellite 
imagery was accessed using Google Earth Engine 
to produce 250-m-resolution national maps of the 
Normalized Difference Vegetation Index (NDVI) 
for the 2021 growing season. One-year absolute 
change (departure) in NDVI was determined by 
comparing 2021 to 2020, with forest-only change 
below a threshold of -0.05 NDVI summarized 

nationally using hexagons of 834 km2. The map 
of NDVI departure shows drought as the major 
detected disturbance for the West during 2021; the 
major detected disturbances in the East were spongy 
moth-caused tree defoliation in Michigan and the 
Northeast, and the effects of commercial logging 
operations in the Southeastern Coastal Plain. The 
patterns shown in the map of NDVI departure 
represent the more prominent disturbances while 
contextualizing them within the forested landscape 
in which they occur. Such regional or national 
analyses provide a coarse-filter perspective on forest 
disturbance, with a full understanding requiring 
landscape or site analysis that involves multiple years 
of context and regional expertise.

Mortality is a natural process in all forested 
ecosystems, but high levels of mortality at large 
scales may be an indicator of forest health 
problems. Phase 2 data collected by the Forest 
Inventory and Analysis (FIA) program of the 
Forest Service offer tree mortality information on 
a relatively spatially intense basis of approximately 
one plot per 6,000 acres, and mortality analysis 
is possible for areas where data are available from 
repeated plot measurements using consistent 
sampling protocols (ch. 5). Due to the COVID-19 
pandemic, FIA data collection was slowed during 
2020 and 2021, so no new data were available 
from any Western States. Analyses focused on 
States in the Eastern and Central United States. 
Preliminary analyses of FIA data from these 
States indicated especially high mortality as a 
percentage of live volume in the Black Hills (due 
to insects and fire), the south-central Great Plains 
in Kansas and Oklahoma (due to fire, disease, and 
weather-related issues), and the western Great 



Fo
re

st 
He

alt
h M

on
ito

rin
g

3

Ex
ec

ut
ive

 Su
mm

ar
y

Plains in South Dakota and Nebraska (due to 
fire and weather-related issues). These mortality-
causing agents are related in that weather events 
can stress trees, making them more susceptible to 
insect attack. Both insect-killed trees and damage 
from weather events, such as tornadoes, can create 
conditions favorable for wildfires. Mortality as a 
percentage of live volume was lower in Eastern 
U.S. areas, with insects and weather-related issues 
dominating the major causes of mortality. 

Assessments of tree crown conditions, which 
are visually assessed by the FIA program as an 
indicator of forest health, are useful because tree 
photosynthetic capacity depends on the size and 
condition of the crown (ch. 6). A fourth national 
summary of crown condition in the United 
States indicated that recent crown conditions 
were as expected for most species and overall 
exemplified the presence of known stressors in 
the Eastern United States, such as beech bark 
disease, emerald ash borer, hemlock woolly adelgid 
(Adelges tsugae), spongy moth, and eastern spruce 
budworm (Choristoneura fumiferana). With only 
a few exceptions, average crown dieback has 
remained stable or declined over the last 20 years. 
Among the softwood species groups included in 
the analyses, crown dieback was greatest among 
northern white-cedar (Thuja occidentalis) trees in 
the Northern region and pinyon-juniper (Pinus-
Juniperus) trees in the Southern region. Among 
the hardwood species groups, crown dieback 
was greatest among ash (Fraxinus spp.) and elm 
(Ulmus spp.) trees in the Northern region and 
honey mesquite (Prosopis glandulosa) trees in the 
Southern region. Favorably, a downward trend in 
crown dieback was observed for northern white-

cedar over the last 20 years and for elm within the 
last 10 years; however, crown dieback continued to 
trend upward for ash. The first remeasurement of 
trees in central and western Texas is incomplete, 
so it is unclear if the high levels of crown dieback 
for pinyon-juniper and honey mesquite are 
characteristic for these species groups.

Since its inception in 1989, the National 
Lichen Indicator has been the single most 
extensive lichen community monitoring program 
in the world with nearly 10,000 standardized 
surveys of epiphytic (tree-dwelling) lichen 
communities conducted (ch. 7). Used widely 
by Federal land managers and researchers, 
these surveys provide valuable information 
on air quality, climate, biodiversity, and lichen 
floristics in U.S. forests. Lichen indicator data 
were packaged from across three Forest Service 
programs using a consistent, user-friendly format. 
This comprehensive National FIA Lichen 
Database (NFLD) was used to create a National 
Lichen Atlas to illustrate the breadth of the 
combined Indicator datasets. These products 
mark a significant milestone, making thousands 
of lichen surveys conducted between 1989 and 
2012 available to the public for the first time. 
Despite reduced data collection since 2012, FIA 
and the National Forest System’s Air Resource 
Management (ARM) program have maintained 
their long-term partnership to continue serving 
clients of the Indicator, making data more readily 
available and, when possible, supporting additional 
data collection to answer specific research or 
management questions. Future versions of the 
NFLD will incorporate these newer datasets, 
including assay data where available.
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Finally, four recently completed EM projects 
address a wide variety of forest health concerns 
at a scale smaller than the national or multistate 
regional analyses included in the first two sections 
of the report. These EM projects (funded by the 
FHM program):

•	Studied the impacts of emerald ash borer 
on white ash (F. americana), green ash (F. 
pennsylvanica), pumpkin ash (F. profunda), black 
ash (F. nigra), and blue ash (F. quadrangulata) 
in different landscape contexts in Ohio and 
Pennsylvania, tracking individual trees on a 
yearly basis during a rapid mortality event that 
allowed for an accurate quantification of the 
effects of emerald ash borer (ch. 8)

•	Described a flexible moving-window approach 
for Landsat-based harmonic condition 
monitoring (HCM) that considers both spatial 
and temporal variability in forest disturbance 
dynamics, comparing HCM results with 
comparable fixed-baseline results for a set 
of field sites in central Massachusetts and 
testing the utility of HCM scores for assessing 
relationships between defoliation and growth 
and mortality rates of oaks (Quercus spp.) in 
Pennsylvania (ch. 9)

•	Summarized results of a study to examine the 
spread and impact of laurel wilt caused by the 
fungus Harringtonia lauricola, an ambrosial 
symbiont of the redbay ambrosia beetle (Xyleborus 
glabratus), in sassafras (Sassafras albidum) across 
46 sites in the Gulf-Atlantic Coastal Plain, 
Piedmont, and Central and Eastern Mountains 
of the Southeastern United States (ch. 10)

•	Determined the effects of spruce beetle 
outbreaks on Rocky Mountain spruce-fir 
stand characteristics in northern Colorado 
and southern Wyoming, including quantifying 
fuels structure and regeneration across 
a chronosequence of outbreaks, aging 
seedlings to understand tree regeneration and 
recruitment in relation to the disturbances and 
long-term climate, and quantifying fuels in 
sites after spruce beetle disturbance (ch. 11)
The FHM program, in cooperation with forest 

health specialists and researchers inside and 
outside the Forest Service, continues to investigate 
a broad range of issues relating to forest health 
using a wide variety of data and techniques. This 
report presents some of the latest results from 
ongoing national-scale detection monitoring and 
smaller scale environmental monitoring efforts by 
FHM and its cooperators. For more information 
about efforts to determine the status, changes, 
and trends in indicators of the condition of U.S. 
forests, please visit the FHM website at https://
www.fs.usda.gov/foresthealth/protecting-forest/
forest-health-monitoring. 
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CHAPTER 1 
Introduction

Kevin M. Potter
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Forests and woodlands cover an extensive 
area of the United States, 333 million ha 
or approximately 36 percent of the Nation’s 

land area (Oswalt and others 2019). These forests 
provide a broad range of goods and services 
for current and future generations, safeguard 
biological diversity, and contribute to the 
resilience of ecosystems, societies, and economies 
(USDA Forest Service 2011). Their socioeconomic 
benefits include wood products, nontimber goods, 
recreational opportunities, and natural beauty. 
Their ecological roles include supplying large and 
consistent quantities of clean water, preventing 
soil erosion, and providing habitat for a broad 
diversity of plant and animal species. At the 
same time, both the ecological integrity and the 
continued capacity of these forests to provide 
ecological and economic goods and services face 
a long list of threats, including insect and disease 
infestation, drought, fragmentation and forest 
conversion to other land uses, catastrophic fire, 
invasive species, and the effects of climate change.

Natural and anthropogenic stresses vary among 
biophysical regions and local environments; they 
also change over time and interact with each 
other. These and other factors make it challenging 
to establish baselines of forest health and to 
detect important departures from normal forest 
ecosystem functioning (Riitters and Tkacz 2004). 
Monitoring the health of forests is a critically 
important task, reflected within the Criteria and 
Indicators for the Conservation and Sustainable 
Management of Temperate and Boreal Forests 
(Montréal Process Working Group 1995), which 
the U.S. Department of Agriculture, Forest 
Service uses as a forest sustainability assessment 

framework (USDA Forest Service 2004, 2011). 
The primary objective of such monitoring is to 
identify ecological resources whose condition is 
deteriorating in subtle ways over large regions 
in response to cumulative stresses, a goal that 
requires consistent, large-scale, and long-term 
monitoring of key indicators of forest health 
status, change, and trends (Riitters and Tkacz 
2004). Given the magnitude of this task, it is 
best accomplished through the participation of 
multiple Federal, State, academic, and private 
partners.

The concept of a healthy forest has universal 
appeal, but forest ecologists and managers have 
struggled with how exactly to define forest health 
(Teale and Castello 2011). There is no universally 
accepted definition. Most definitions of forest 
health can be categorized as representing either 
an ecological or a utilitarian perspective (Kolb 
and others 1994). From an ecological perspective, 
the current understanding of ecosystem dynamics 
suggests that healthy ecosystems are those that 
maintain their organization and autonomy over 
time while remaining resilient to stress (Costanza 
1992), and that evaluations of forest health 
should emphasize factors that affect the inherent 
processes and resilience of forests (Edmonds and 
others 2011, Kolb and others 1994, Raffa and 
others 2009). On the other hand, the utilitarian 
perspective holds that a forest is healthy if 
management objectives are met, and that a forest 
is unhealthy if these objectives are not met (Kolb 
and others 1994). Although this definition may 
be appropriate when a single, unambiguous 
management objective exists, such as the 
production of wood fiber or the maintenance of 

https://doi.org/10.2737/SRS-GTR-273-Chap1
https://doi.org/10.2737/SRS-GTR-273-Chap1
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wilderness attributes, it can be too narrow when 
multiple management objectives are required 
(Edmonds and others 2011, Teale and Castello 
2011). Teale and Castello (2011) incorporate both 
ecological and utilitarian perspectives into their 
two-component definition of forest health: first, 
a healthy forest must be sustainable with respect 
to its size structure, including a correspondence 
between baseline and observed mortality; second, 
a healthy forest must meet the landowner’s 
objectives, provided that these objectives do not 
conflict with sustainability.

This Forest Health Monitoring: National Status, 
Trends, and Analysis report, the 22nd in an annual 
series sponsored by the Forest Health Monitoring 
(FHM) program of the Forest Service, attempts 
to quantify the status of, changes to, and trends 
in a wide variety of broadly defined indicators 
of forest health. The indicators described in 
this report encompass forest insect and disease 
activity, wildland fire occurrence, tree mortality, 
crown condition, lichen diversity, and general 
forest disturbance, among others. The previous 
reports in this series are Ambrose and Conkling 
(2007, 2009), Conkling (2011), Conkling and 
others (2005), Coulston and others (2005a, 2005b, 
2005c), and Potter and Conkling (2012a, 2012b, 
2013a, 2013b, 2014, 2015a, 2015b, 2016, 2017, 
2018, 2019, 2020, 2021, 2022). Visit https://www.
fs.usda.gov/foresthealth/publications/fhm/fhm-
annual-national-reports.shtml for links to each of 
these reports in their entirety and for searchable 
lists of links to chapters included in the reports.

This report has three specific objectives. The 
first is to present information about forest health 
from a national perspective, or from a multistate 

regional perspective when appropriate, using 
data collected by the Forest Health Protection 
(FHP) and Forest Inventory and Analysis (FIA) 
programs of the Forest Service, as well as from 
other sources available at a wide extent. The 
chapters that present analyses at a national scale, 
or multistate regional scale, are divided between 
sections 1 and 2 of the report. Section 1 presents 
analyses of forest health data that are available 
on an annual basis. Such repeated analyses of 
regularly collected indicator measurements 
allow for the detection of trends over time and 
help establish a baseline for future comparisons 
(Riitters and Tkacz 2004). Section 2 presents 
longer term forest health trends and describes 
new techniques for analyzing forest health 
data at national or regional scales (the second 
objective of the report, see below). While in-depth 
interpretation and analysis of specific geographic 
or ecological regions are beyond the scope of these 
parts of the report, the chapters in sections 1 and 
2 present information that can be used to identify 
areas that may require investigation at a finer scale. 

The second objective of the report is to present 
new techniques for analyzing forest health data as 
well as new applications of established techniques, 
often applied to longer timescales; these are 
presented in section 2. The examples in this report 
are in chapter 6, which presents current crown 
dieback, current crown-damaging agents, and 20-
year crown dieback trends for the most common 
genera and species in the Eastern United States, 
and chapter 7, which provides an overview of 
the 23 years of epiphytic lichen data summarized 
recently in the National Lichen Atlas ( Jovan and 
others 2021).

https://www.fs.usda.gov/foresthealth/publications/fhm/fhm-annual-national-reports.shtml
https://www.fs.usda.gov/foresthealth/publications/fhm/fhm-annual-national-reports.shtml
https://www.fs.usda.gov/foresthealth/publications/fhm/fhm-annual-national-reports.shtml
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The third objective of the report is to present 
results of recently completed Evaluation 
Monitoring (EM) projects funded through the 
FHM national program. These project summaries, 
presented in section 3, determine the extent, 
severity, and/or cause of forest health problems 
(FHM 2022), generally at a finer scale than that 
addressed by the analyses in sections 1 and 2. 
Each of the four chapters in section 3 contains 
an overview of an EM project, key results, and 
contacts for more information. 

When appropriate throughout this report, 
authors use the Forest Service revised ecoregions 
for the conterminous United States (CONUS) 
and Alaska (Cleland and others 2007, Spencer 
and others 2002) as a common ecologically 
based spatial framework for their forest health 
assessments (fig. 1.1). Specifically, when the 
spatial scale of the data and the expectation of an 
identifiable pattern in the data are appropriate, 
authors use ecoregion sections, larger scale 
provinces, or smaller scale subsections as 
assessment units for their analyses. Bailey’s 

hierarchical system bases the two broadest 
ecoregion scales, domains and divisions, on large 
ecological climate zones, while each division 
is broken into provinces based on vegetation 
macrofeatures (Bailey 1995). Provinces are further 
divided into sections, which may be thousands 
of km2 in area and are expected to encompass 
regions similar in their geology, climate, soils, 
potential natural vegetation, and potential 
natural communities (Cleland and others 1997). 
Subsections are nested within sections as the 
smallest level in the hierarchy. This hierarchical 
system does not address either Hawaii or Puerto 
Rico beyond including each in a unique, single 
ecoregion province (Bailey 1995). A set of Hawaii 
ecoregions based on moisture and elevational 
characteristics was developed for use in FHM 
national reports (Potter 2020, 2023) because 
a finer scale and ecologically oriented spatial 
assessment framework was needed to estimate the 
impacts of a destructive forest disease (ch. 2) and 
of forest fire occurrences (ch. 3) (fig. 1.2, table 1.1).
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Figure 1.1—Ecoregion provinces 
and sections for (A) the conterminous 
United States (Cleland and others 
2007) and (B) Alaska (Spencer and 
others 2002). Ecoregion sections 
within each ecoregion province are 
shown in the same color. 
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Conterminous States ecoregion provinces
■ 211: Northeastern Mixed Forest
■ M211: Adirondack-New England Mixed Forest—Coniferous Forest—Alpine Meadow
■ 212: Laurentian Mixed Forest
■ 221: Eastern Broadleaf Forest
■ M221: Central Appalachian Broadleaf Forest—Coniferous Forest—Meadow
■ 222: Midwest Broadleaf Forest
■ 223: Central Interior Broadleaf Forest
■ M223: Ozark Broadleaf Forest
■ 231: Southeastern Mixed Forest
■ M231: Ouachita Mixed Forest—Meadow
■ 232: Outer Coastal Plain Mixed Forest
■ 234: Lower Mississippi Riverine Forest
■ 242: Pacific Lowland Mixed Forest
■ 251: Prairie Parkland (Temperate)
■ 255: Prairie Parkland (Subtropical)
■ M242: Cascade Mixed Forest—Coniferous Forest—Alpine Meadow
■ 261: California Coastal Chaparral Forest and Shrub
■ M261: Sierran Steppe—Mixed Forest—Coniferous Forest—Alpine Meadow
■ 262: California Dry Steppe
■ M262: California Coastal Range Open Woodland—Shrub—Coniferous Forest—Meadow
■ 263: California Coastal Steppe—Mixed Forest—Redwood Forest
■ 313: Colorado Plateau Semi-Desert
■ M313: Arizona-New Mexico Mountains Semi-Desert—Open Woodland—Coniferous Forest—Alpine Meadow
■ 315: Southwest Plateau and Plains Dry Steppe and Shrub
■ 321: Chihuahuan Semi-Desert
■ 322: American Semi-Desert and Desert
■ 331: Great Plains—Palouse Dry Steppe
■ M331: Southern Rocky Mountain Steppe—Open Woodland—Coniferous Forest—Alpine Meadow
■ 332: Great Plains Steppe
■ M332: Middle Rocky Mountain Steppe—Coniferous Forest—Alpine Meadow
■ M333: Northern Rocky Mountain Forest-Steppe—Coniferous Forest—Alpine Meadow
■ M334: Black Hills Coniferous Forest
■ 341: Intermountain Semi-Desert and Desert
■ M341: Nevada-Utah Mountains Semi-Desert—Coniferous Forest—Alpine Meadow
■ 342: Intermountain Semi-Desert
■ 411: Everglades

Alaska ecoregion provinces
■ 121: Arctic Tundra
■ M122: Bering Tundra
■ M131: Bering Taiga
■ M132: Intermontane Boreal
■ 133: Alaska Range Transition
■ M134: Coastal Mountains Transition
■ M241: Coastal Rainforest
■ M243: Aleutian Meadows
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Hawai‘i

Maui

Lana‘i

Kaho‘olawe

Moloka‘i

Ni‘ihau

O‘ahu

Kaua‘i

MEh

MEh

LLDh

LLDh

ALh

ALh

SAh
SAh

MWh-ka

MWh-hp

MWh-ko

MWh-kh

LWh-hp

LWh-kh

LLDn

LLDk
MEk

MWk

LWk

LLDo

MEo LWo

MWo

LLDka

LLDm
LLDl

LLDmo

SAm

MWm-e
MEm-e

LWm-e

MWm-w

LWm-w

MEm-w

MEmo MWmo

MWl

MEl

Hawaii ecoregions
■ AL: Alpine
■ LW: Lowland Wet
■ LLD: Lowland/Leeward Dry
■ ME: Mesic
■ MW: Montane Wet
■ SA: Subalpine

Figure 1.2—Ecoregions, and ecoregion subunits, for Hawaii (Potter 2023), developed based on moisture zones and elevation (see box 1.1). Ecoregion 
subunits are shown in the same color by ecoregion. See table 1.1 for the names of the ecoregion subunits listed on the map.
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Table 1.1—The six ecoregions and 34 ecoregion subunits for the State of Hawaii (Potter 2023)

Ecoregion Subunit Ecoregion Subunit

AL: Alpine Alh: Alpine-Hawai i̒

MW: Montane Wet

MWh-hp: Montane Wet-Hawai‘i-Hilo-Puna
MWh-ka: Montane Wet-Hawai i̒-Kaʻū

LW: Lowland Wet

LWh-hp: Lowland Wet-Hawai i̒-Hilo-Puna MWh-kh: Montane Wet-Hawai i̒-Kohala-Hāmākua
LWh-kh: Lowland Wet-Hawai i̒-Kohala-Hāmākua MWh-ko: Montane Wet-Hawai i̒-Kona
LWk: Lowland Wet-Kaua i̒ MWk: Montane Wet-Kaua i̒
LWm-e: Lowland Wet-Maui-East MWl: Montane Wet-Lāna i̒
LWm-w: Lowland Wet-Maui-West MWm-e: Montane Wet-Maui-East
LWo: Lowland Wet-Oʻahu MWm-w: Montane Wet-Maui-West

MWmo: Montane Wet-Moloka i̒

LLD: Lowland/
Leeward Dry

LLDh: Lowland/Leeward Dry-Hawai i̒ MWo: Montane Wet-Oʻahu
LLDka: Lowland/Leeward Dry-Kahoʻolawe
LLDk: Lowland/Leeward Dry-Kaua i̒

SA: Subalpine
SAh: Subalpine-Hawai i̒

LLDl: Lowland/Leeward Dry-Lāna i̒ SAm: Subalpine-Maui
LLDm: Lowland/Leeward Dry-Maui
LLDmo: Lowland/Leeward Dry-Moloka i̒
LLDn: Lowland/Leeward Dry-Ni i̒hau
LLDo: Lowland/Leeward Dry-Oʻahu

ME: Mesic

MEh: Mesic-Hawai i̒
MEk: Mesic-Kaua i̒
MEl: Mesic-Lāna i̒
MEm-e: Mesic-Maui-East
MEm-w: Mesic-Maui-West
MEmo: Mesic-Moloka i̒
MEo: Mesic-Oʻahu

Source: Potter (2023)
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THE FOREST HEALTH MONITORING 
PROGRAM
The national FHM program is designed to 
determine the status, changes, and trends in 
indicators of forest condition on an annual 
basis and covers all forested lands through a 
partnership encompassing the Forest Service, 
State foresters, and other State and Federal 
agencies and academic groups (FHM 2022). 
The FHM program utilizes data from a wide 
variety of data sources, both inside and outside 
the Forest Service, and develops analytical 
approaches for addressing forest health issues 
that affect the sustainability of forest ecosystems. 
The FHM program has four major components 
(fig. 1.3):
•	Detection Monitoring—nationally 

standardized aerial and ground surveys to 
evaluate status and change in condition of 
forest ecosystems (sections 1 and 2 of this 
report)

•	Evaluation Monitoring—projects to 
determine the extent, severity, and causes of 
undesirable changes in forest health identified 
through Detection Monitoring (section 3 of 
this report)

•	Research on Monitoring Techniques—work 
to develop or improve indicators, monitoring 
systems, and analytical techniques, such as 
urban and riparian forest health monitoring, 
early detection of invasive species, multivariate 
analyses of forest health indicators, and spatial 
scan statistics (section 2 of this report)

•	Analysis and Reporting of Results—synthesis 
of information from various data sources within 
and external to the Forest Service to produce 
issue-driven reports on status and change in 
forest health at national, regional, and State 
levels (sections 1, 2, and 3 of this report)

The FHM program, in addition to national 
reporting, generates regional and State reports, 
often in cooperation with FHM partners, both 

Research on
Monitoring
Techniques

Evaluation
Monitoring

Detection
Monitoring

Analysis and
Reporting of

Results

Figure 1.3—The design of the Forest Health Monitoring program (FHM 2003). 
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within the Forest Service and in State forestry and 
agricultural departments. For example, the FHM 
megaregions cooperate with their respective State 
partners to produce the annual Forest Health 
Highlights report series, available on the FHM 
website at https://www.fs.usda.gov/foresthealth/
protecting-forest/forest-health-monitoring/
monitoring-forest-highlights.shtml. Other 
examples include Steinman (2004) and Harris and 
others (2011). 

The FHM program is divided into four 
“megaregions.” These correspond with the two 
Forest Service regions in the Eastern United States 
(Eastern and Southern) while joining four Forest 
Service regions into the Interior West megaregion 
(Northern, Rocky Mountain, Southwestern, 
and Intermountain), and three Forest Service 
regions into the West Coast megaregion (Pacific 
Southwest, Pacific Northwest, and Alaska)  
(fig. 1.4). Some analyses in this FHM national 
report provide results by FHM megaregion, 
though they separate Alaska and Hawaii from the 
rest of the West Coast megaregion.

The FHM program and its partners also 
produce peer-reviewed reports and journal articles 
on monitoring techniques and analytical methods 
(see https://www.fs.usda.gov/foresthealth/
publications/fhm/fhm-publications.shtml). The 
emphases of these publications include forest 
health data (Potter and others 2016, Siry and 
others 2018, Smith and Conkling 2004); soils as 
an indicator of forest health (O’Neill and others 
2005); urban forest health monitoring (Bigsby and 
others 2014; Cumming and others 2006, 2007; 
Lake and others 2006); remote sensing of forest 
disturbances (Chastain and others 2015, Rebbeck 
and others 2015); health conditions in national 

forests (Morin and others 2006); crown conditions 
(Morin and others 2015; Randolph 2010a, 2010b, 
2013; Randolph and Moser 2009; Schomaker 
and others 2007); indicators of regeneration 
(McWilliams and others 2015); vegetation 
diversity and structure (Schulz and Gray 2013, 
Schulz and others 2009, Simkin and others 2016); 
forest lichen communities ( Jovan and others 2012, 
Root and others 2014); down woody materials in 
forests (Woodall and others 2012, 2013); drought 
(Vose and others 2016); ozone monitoring 
(Rose and Coulston 2009); patterns of nonnative 
invasive plant occurrence (Guo and others 2015, 
2017; Iannone and others 2015, 2016a, 2016b, 
2018; Jo and others 2018; Oswalt and others 
2015; Potter and others 2022, 2023; Riitters and 
others 2018a, 2018b); assessments of forest risk 
or tree species vulnerability to exotic invasive 
forest insects and diseases (Koch and others 2011, 
2014; Krist and others 2014; Potter and others 
2019a, 2019b; Vogt and Koch 2016; Yemshanov 
and others 2014); spatial patterns of land cover 
and forest fragmentation (Guo and others 2018; 
Riitters 2011; Riitters and Costanza 2019; Riitters 
and Wickham 2012; Riitters and others 2012, 
2016, 2017); impacts of deer browse on forest 
structure (Russell and others 2017); broad-scale 
assessments of forest biodiversity (Guo and 
others 2019; Potter 2018; Potter and Koch 2014; 
Potter and Woodall 2012, 2014); predictions and 
indicators of climate change effects on forests and 
forest tree species (Anderson and others 2021, Fei 
and others 2017, Heath and others 2015, Potter 
and Hargrove 2013); legal, institutional, and 
economic indicators of forest conservation and 
sustainable management (McGinley and Cubbage 
2020); and the overall forest health indicator 
program (Woodall and others 2010). 

https://www.fs.usda.gov/foresthealth/protecting-forest/forest-health-monitoring/monitoring-forest-highlights.shtml
https://www.fs.usda.gov/foresthealth/protecting-forest/forest-health-monitoring/monitoring-forest-highlights.shtml
https://www.fs.usda.gov/foresthealth/protecting-forest/forest-health-monitoring/monitoring-forest-highlights.shtml
https://www.fs.usda.gov/foresthealth/publications/fhm/fhm-publications.shtml
https://www.fs.usda.gov/foresthealth/publications/fhm/fhm-publications.shtml
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       FHM megaregion
Forest Service regions
■ Northern (R1) ■ Intermountain (R4) ■ Southern (R8)
■ Rocky Mountain (R2) ■ Pacific Southwest (R5) ■ Eastern (R9)
■ Southwestern (R3) ■ Pacific Northwest (R6) ■ Alaska (R10)

Eastern

Southern

Interior West

West Coast

Alaska

Hawaii

Figure 1.4—The four megaregions of the Forest Health Monitoring program and their relationship to Forest Service regions. Note that Alaska and 
Hawaii are parts of the West Coast megaregion, but data from these States are analyzed separately in most cases in this report. 
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DATA SOURCES
Forest Service data sources in this edition of the 
FHM national report include FIA annualized 
Phase 2 survey data (Bechtold and Patterson 
2005, Burrill and others 2018, Woodall and 
others 2010); FHP national Insect and Disease 
Survey forest mortality and defoliation data 
for 2021 (FHP 2022); Moderate Resolution 
Imaging Spectroradiometer (MODIS) Active 
Fire Detections for the United States data for 
2021 (NASA Fire Information for Resource 
Management System 2022); tree canopy cover 
data generated from the 2011 National Land 
Cover Database (NLCD) (Homer and others 
2015) through a cooperative project between 
the Multi-Resolution Land Characteristics 
Consortium and Forest Service Geospatial 
Technology and Applications Center (GTAC) 
(Coulston and others 2012); and FIA’s publicly 
available Environmental Monitoring and 
Assessment Program (EMAP) hexagons (Brand 
and others 2000). Other sources of data include 
MODIS 8-day composite Normalized Difference 
Vegetation Index (NDVI) data for the CONUS 
at 250 m during parts of the 2020 and 2021 
growing seasons, information from the National 
FIA Lichen Database ( Jovan and others 2020), 

and Alaskan forest and shrub cover derived from 
the 2011 NLCD. For more information about the 
FIA program, which is a major source of data for 
several FHM analyses, see box 1.1.

FOREST HEALTH MONITORING 
REPORT PRODUCTION
The FHM national report is produced annually 
by forest health monitoring researchers at the 
Eastern Forest Environmental Threat Assessment 
Center (EFETAC) in collaboration with North 
Carolina State University cooperators in the 
Forest Health Monitoring Research Group 
(https://go.ncsu.edu/foresthealth). A unit of the 
Southern Research Station of the Forest Service, 
EFETAC was established under the Healthy 
Forests Restoration Act of 2003 to generate 
the knowledge and tools needed to anticipate 
and respond to environmental threats. For 
more information about the research team and 
about threats to U.S. forests, please visit https://
forestthreats.org/about.

https://go.ncsu.edu/foresthealth
https://forestthreats.org/about
https://forestthreats.org/about
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BOX 1.1

1 U.S. Department of Agriculture, Forest Service. 1998. Forest Health Monitoring 1998 field methods guide. Research Triangle Park, NC: U.S. Department of Agriculture, Forest 
Service, Forest Health Monitoring program. 473 p. On file with: Forest Health Monitoring program, 3041 Cornwallis Rd., Research Triangle Park, NC 27709.

The Forest Inventory and Analysis (FIA) 
program collects forest inventory information 
across all forest land ownerships in the 
United States and maintains a network of 
more than 130,000 permanent forested 
ground plots across the conterminous 
United States, southeastern Alaska, Hawaii, 
Caribbean territories, and U.S.-Affiliated 
Pacific Islands with a sampling intensity of 
approximately one plot/2428 ha (one plot per 
6,000 acres). Forest Inventory and Analysis 
Phase 2 encompasses the annualized 
inventory measured on plots at regular 
intervals, with each plot surveyed every 5 to 7 
years in most Eastern States but with plots in 
the Rocky Mountain and Pacific Northwest 
regions surveyed once every 10 years (Reams 
and others 2005). The standard 0.067-ha plot 
(see figure) consists of four 7.315-m (24-
foot) radius subplots (approximately 168.6 
m2 or 1/24th acre), on which field crews 
measure trees at least 12.7 cm (5 inches) in 
diameter. Within each of these subplots is 
nested a 2.073-m (6.8-foot) radius microplot 
(approximately 13.48 m2 or 1/300th acre), on 
which crews measure trees smaller than 12.7 
cm (5 inches) in diameter. A core-optional 
variant of the standard design includes four 
“macroplots,” each with a radius of 17.953 
m or 58.9 feet (approximately 0.1012 ha or 
1/4 acre) that originates at the center of each 
subplot (Burrill and others 2018).

Forest Inventory and Analysis Phase 3 
plots previously represented a subset of 
these Phase 2 plots, with one Phase 3 plot 
for every 16 standard FIA Phase 2 plots. 
In addition to traditional forest inventory 
measurements, data for a variety of important 
ecological indicators were from Phase 3 
plots, including tree crown condition, lichen 
communities, down woody material, soil 
condition, and vegetation structure and 
diversity, whereas data on ozone bioindicator 
plants were collected on a separate grid of 
plots (Woodall and others 2010, 2011). Most 
of these additional forest health indicators 
were measured as part of the Forest Health 
Monitoring Detection Monitoring ground 
plot system prior to 20001 (Palmer and 
others 1991). The FIA program recently 
updated its sampling techniques with flexible 
spatial and temporal intensities for some of 
these ecosystem health indicators (including 
down woody material, vegetation diversity 
and structure, and crown conditions) to 
improve field operation efficiency, address 
emerging user demands, and adjust to 
evolving forest health science (Castillo and 
Alvarez 2020). This “Phase 2 Plus Program/
Ecosystem Indicator Program” (P2+) 
sampling scheme facilitates the collection of 
a national core set of indicator information 
on more plots for less cost than the original 
indicator protocols, with sampling based 
on a systematic subsample that can change 
in response to budgetary fluctuations 

without compromising long-term analytical 
capabilities. The enhanced indicator 
protocols collect less-detailed information 
on each sampled plot than on the previous 
Phase 3 plots, but substantially more plots 
are sampled, increasing the statistical power 
of forest health analyses and improving the 
reliability of estimates in important national 
assessments (Castillo and Alvarez 2020). 

2

1

34

Annular ring
(shaded)

Microplot:
6.8 ft radius center 
is 12.0 ft horizontal 
@ 90° azimuth from 
subplot centers

Subplot:
24.0 ft radius

Macroplot:
58.9 ft radius

Distance between
subplot centers is 
120.0 ft horizontal

Azimuth 1–2: 360°
Azimuth 1–3: 120°
Azimuth 1–4: 240

Box 1.1 figure—The Forest Inventory and 
Analysis mapped plot design. Subplot 1 is the 
center of the cluster with subplots 2, 3, and 4 
located 120 feet away at azimuths of 360°, 120°, 
and 240°, respectively (Burrill and others 2018).



Fo
re

st 
He

alt
h M

on
ito

rin
g

17

Ch
ap

ter
 1

LITERATURE CITED
Ambrose, M.J.; Conkling, B.L., eds. 2007. Forest Health Monitoring 

2005 national technical report. Gen. Tech. Rep. SRS-104. 
Asheville, NC: U.S. Department of Agriculture, Forest Service, 
Southern Research Station. 76 p. https://doi.org/10.2737/SRS-
GTR-104.

Ambrose, M.J.; Conkling, B.L., eds. 2009. Forest Health Monitoring 
2006 national technical report. Gen. Tech. Rep. SRS-117. 
Asheville, NC: U.S. Department of Agriculture, Forest Service, 
Southern Research Station. 118 p. https://doi.org/10.2737/SRS-
GTR-117.

Anderson, S.M.; Heath, L.S.; Emery, M.R. [and others]. 2021. 
Developing a set of indicators to identify, monitor, and track 
impacts and change in the forests of the United States. Climatic 
Change.165: 13. https://doi.org/10.1007/s10584-021-02993-6.

Bailey, R.G. 1995. Descriptions of the ecoregions of the United 
States. 2d ed. Misc. Publ. No. 1391. Washington, DC: U.S. 
Department of Agriculture, Forest Service. Map; presentation 
scale 1:7,500,000. 108 p.

Bechtold, W.A.; Patterson, P.L., eds. 2005. The enhanced Forest 
Inventory and Analysis program—national sampling design 
and estimation procedures. Gen. Tech. Rep. SRS-80. Asheville, 
NC: U.S. Department of Agriculture, Forest Service, Southern 
Research Station. 85 p. https://doi.org/10.2737/SRS-GTR-80.

Bigsby, K.M.; Ambrose, M.J.; Tobin, P.C.; Sills, E.O. 2014. The cost 
of gypsy moth sex in the city. Urban Forestry & Urban Greening. 
13(3): 459–468. https://doi.org/10.1016/j.ufug.2014.05.003.

Brand, G.J.; Nelson, M.D.; Wendt, D.G.; Nimerfro, K.K. 2000. The 
hexagon/panel system for selecting FIA plots under an annual 
inventory. In: McRoberts, R.E.; Reams, G.A.; Van Deusen, 
P.C., eds. Proceedings of the first annual Forest Inventory and 
Analysis symposium. Gen. Tech. Rep. NC-213. St. Paul, MN: 
U.S. Department of Agriculture, Forest Service, North Central 
Research Station: 8–13. 

Burrill, E.A.; Wilson, A.M.; Turner, J.A. [and others]. 2018. The 
Forest Inventory and Analysis Database: database description 
and user guide for Phase 2 (version 8.0). Washington, DC: U.S. 
Department of Agriculture, Forest Service. 946 p. http://www.
fia.fs.usda.gov/library/database-documentation/. [Date accessed: 
August 8, 2022].

Castillo, P.S.B.; Alvarez, M. 2020. Forest Inventory and Analysis: 
fiscal year 2018 business report. FS-1153. Washington, DC: U.S. 
Department of Agriculture, Forest Service. 71 p. https://www.fia.
fs.usda.gov/library/bus-org-documents/docs/17973%20FS%20
FIA%20Fiscal%20Year%202018%20Business%20Reportv3%20
508.pdf. [Date accessed: August 10, 2022].

Chastain, R.A.; Fisk, H.; Ellenwood, J.R. [and others]. 2015. 
Near-real time delivery of MODIS-based information on forest 
disturbances. In: Lippitt, C.D.; Stow, D.A.; Coulter, L.L., eds. 
Time-sensitive remote sensing. New York: Springer: 147–164. 
https://doi.org/10.1007/978-1-4939-2602-2_10.

Cleland, D.T.; Avers, P.E.; McNab, W.H. [and others]. 1997. 
National hierarchical framework of ecological units. In: Boyce, 
M.S.; Haney, A., eds. Ecosystem management applications for 
sustainable forest and wildlife resources. New Haven, CT: Yale 
University Press: 181–200.

Cleland, D.T.; Freeouf, J.A.; Keys, J.E. [and others]. 2007. Ecological 
subregions: sections and subsections for the conterminous 
United States. Gen. Tech. Rep. WO-76D. Washington, DC: U.S. 
Department of Agriculture, Forest Service. Map; Sloan, A.M., 
cartographer; presentation scale 1:3,500,000; colored. https://doi.
org/10.2737/WO-GTR-76D. 

Conkling, B.L., ed. 2011. Forest Health Monitoring 2007 national 
technical report. Gen. Tech. Rep. SRS-147. Asheville, NC: U.S. 
Department of Agriculture, Forest Service, Southern Research 
Station. 159 p. https://doi.org/10.2737/SRS-GTR-147.

Conkling, B.L.; Coulston, J.W.; Ambrose, M.J., eds. 2005. Forest 
Health Monitoring 2001 national technical report. Gen. Tech. 
Rep. SRS-81. Asheville, NC: U.S. Department of Agriculture, 
Forest Service, Southern Research Station. 204 p. https://doi.
org/10.2737/SRS-GTR-81.

Costanza, R. 1992. Toward an operational definition of ecosystem 
health. In: Costanza, R.; Norton, B.G.; Haskell, B.D., eds. 
Ecosystem health: new goals for environmental management. 
Washington, DC: Island Press: 239–256.

Coulston, J.W.; Riitters, K.H.; Conkling, B.L., eds. 2005a. Forest 
Health Monitoring 2002 national technical report. Gen. Tech. 
Rep. SRS-84. Asheville, NC: U.S. Department of Agriculture, 
Forest Service, Southern Research Station. 97 p. https://doi.
org/10.2737/SRS-GTR-84.

Coulston, J.W.; Ambrose, M.J.; Riitters, K.H. [and others], eds. 
2005b. Forest Health Monitoring 2003 national technical report. 
Gen. Tech. Rep. SRS-85. Asheville, NC: U.S. Department of 
Agriculture, Forest Service, Southern Research Station. 97 p. 
https://doi.org/10.2737/SRS-GTR-85.

Coulston, J.W.; Ambrose, M.J.; Riitters, K.H.; Conkling, B.L., eds. 
2005c. Forest Health Monitoring 2004 national technical report. 
Gen. Tech. Rep. SRS-90. Asheville, NC: U.S. Department of 
Agriculture, Forest Service, Southern Research Station. 81 p. 
https://doi.org/10.2737/SRS-GTR-90.

Coulston, J.W.; Moisen, G.G.; Wilson, B.T. [and others]. 
2012. Modeling percent tree canopy cover: a pilot study. 
Photogrammetric Engineering and Remote Sensing. 78(7): 
715–727. https://doi.org/10.14358/PERS.78.7.715.

https://doi.org/10.2737/SRS-GTR-104
https://doi.org/10.2737/SRS-GTR-104
https://doi.org/10.2737/SRS-GTR-117
https://doi.org/10.2737/SRS-GTR-117
https://doi.org/10.1007/s10584-021-02993-6
https://doi.org/10.2737/SRS-GTR-80
https://doi.org/10.1016/j.ufug.2014.05.003
http://www.fia.fs.usda.gov/library/database-documentation/
http://www.fia.fs.usda.gov/library/database-documentation/
https://www.fia.fs.usda.gov/library/bus-org-documents/docs/17973%20FS%20FIA%20Fiscal%20Year%202018%2
https://www.fia.fs.usda.gov/library/bus-org-documents/docs/17973%20FS%20FIA%20Fiscal%20Year%202018%2
https://www.fia.fs.usda.gov/library/bus-org-documents/docs/17973%20FS%20FIA%20Fiscal%20Year%202018%2
https://www.fia.fs.usda.gov/library/bus-org-documents/docs/17973%20FS%20FIA%20Fiscal%20Year%202018%2
https://doi.org/10.1007/978-1-4939-2602-2_10
https://doi.org/10.2737/WO-GTR-76D
https://doi.org/10.2737/WO-GTR-76D
https://doi.org/10.2737/SRS-GTR-147
https://doi.org/10.2737/SRS-GTR-81
https://doi.org/10.2737/SRS-GTR-81
https://doi.org/10.2737/SRS-GTR-84
https://doi.org/10.2737/SRS-GTR-84
https://doi.org/10.2737/SRS-GTR-85
https://doi.org/10.2737/SRS-GTR-90
https://doi.org/10.14358/PERS.78.7.715


Fo
re

st 
He

alt
h M

on
ito

rin
g

18

Ch
ap

ter
 1

Cumming, A.B.; Nowak, D.J.; Twardus, D.B. [and others]. 2007. 
Urban forests of Wisconsin: pilot monitoring project 2002. NA-
FR-05-07. Newtown Square, PA: U.S. Department of Agriculture, 
Forest Service, Northeastern Area State and Private Forestry. 33 p. 

Cumming, A.B.; Twardus, D.B.; Smith, W.D. 2006. National Forest 
Health Monitoring program, Maryland and Massachusetts street 
tree monitoring pilot projects. NA-FR-01-06. Newtown Square, 
PA: U.S. Department of Agriculture, Forest Service, Northeastern 
Area State and Private Forestry. 23 p.

Edmonds, R.L.; Agee, J.K.; Gara, R.I. 2011. Forest health and 
protection. Long Grove, IL: Waveland Press, Inc. 667 p.

Fei, S.; Desprez, J.M.; Potter, K.M. [and others]. 2017. Divergence 
of species responses to climate change. Science Advances. 3(5): 
e1603055. https://doi.org/10.1126/sciadv.1603055.

Forest Health Monitoring (FHM). 2003. Forest Health Monitoring: 
a national strategic plan. 7 p. 

Forest Health Monitoring (FHM). 2022. Program description. 
Forest Health Monitoring fact sheet series. https://www.fs.usda.
gov/foresthealth/protecting-forest/forest-health-monitoring/. 
[Date accessed: August 10, 2022].

Forest Health Protection (FHP). 2022. Insect and Disease Detection 
Survey (IDS) data downloads. Fort Collins, CO: U.S. Department 
of Agriculture, Forest Service, Forest Health Technology 
Enterprise Team. https://www.fs.usda.gov/foresthealth/applied-
sciences/mapping-reporting/detection-surveys.shtml. [Date 
accessed: June 13, 2022].

Guo, Q.; Fei, S.; Dukes, J.S. [and others]. 2015. A unified approach 
to quantify invasibility and degree of invasion. Ecology. 95(10): 
2613–2621. https://doi.org/10.1890/14-2172.1.

Guo, Q.; Fei, S.; Potter, K.M. [and others]. 2019. Tree diversity 
regulates forest pest invasion. Proceedings of the National 
Academy of Sciences. 116(15): 7382–7386. https://doi.
org/10.1073/pnas.1821039116.

Guo, Q.; Iannone, B.V.; Nunez-Mir, G.C. [and others]. 2017. Species 
pool, human population, and global vs. regional invasion patterns. 
Landscape Ecology. 32(2): 229–238. https://doi.org/10.1007/
s10980-016-0475-6.

Guo, Q.; Riitters, K.H.; Potter, K.M. [and others]. 2018. A 
subcontinental analysis of forest fragmentation and pest invasion. 
Forests. 9(12): 744. https://doi.org/10.3390/f9120744.

Harris, J.L., comp.; Region 2 Forest Health Protection staff. 
2011. Forest health conditions, 2009–2010: Rocky Mountain 
Region (R2). R2-11-RO-31. Golden, CO: U.S. Department of 
Agriculture, Forest Service, Renewable Resources, Forest Health 
Protection, Rocky Mountain Region. 108 p.

Heath, L.S.; Anderson, S.; Emery, M.R. [and others]. 2015. 
Indicators for climate change impacts for forests: National 
Climate Assessment indicators. Gen. Tech. Rep. NRS-155. 
Newtown Square, PA: U.S. Department of Agriculture, Forest 
Service, Northern Research Station. 143 p.

Homer, C.G.; Dewitz, J.A.; Yang, L. [and others]. 2015. Completion 
of the 2011 National Land Cover Database for the conterminous 
United States: representing a decade of land cover change 
information. Photogrammetric Engineering and Remote Sensing. 
81(5): 345–354.

Iannone, B.V.; Oswalt, C.M.; Liebhold, A.M. [and others]. 2015. 
Region-specific patterns and drivers of macroscale forest plant 
invasions. Diversity and Distributions. 21: 1181–1192. https://doi.
org/10.1111/ddi.12354.

Iannone, B.V.; Potter, K.M.; Guo, Q. [and others]. 2016a. Biological 
invasion hotspots: a trait-based perspective reveals new sub-
continental patterns. Ecography. 39: 961–969. https://doi.
org/10.1111/ecog.01973.

Iannone, B.V.; Potter, K.M.; Guo, Q. [and others]. 2018. 
Environmental harshness drives spatial heterogeneity in biotic 
resistance. NeoBiota. 40: 87–105. https://doi.org/10.3897/
neobiota.40.28558.

Iannone, B.V.; Potter, K.M.; Hamil, K.-A.D. [and others]. 2016b. 
Evidence of biotic resistance to invasions in forests of the Eastern 
USA. Landscape Ecology. 31: 85–99. https://doi.org/10.1007/
s10980-015-0280-7.

Jo, I.; Potter, K.M.; Domke, G.; Fei, S. 2018. Dominant forest tree 
mycorrhizal type mediates understory plant invasions. Ecology 
Letters. 21: 217–224. https://doi.org/10.1111/ele.12884.

Jovan, S.; Haldeman, M.; Will-Wolf, S. [and others]. 2021. National 
atlas of epiphytic lichens in forested habitats of the United States. 
Gen. Tech. Rep. PNW-986. Portland, OR: U.S. Department of 
Agriculture, Forest Service, Pacific Northwest Research Station. 
96 p.

Jovan, S.; Riddell, J.; Padgett, P.E.; Nash, T.H., III. 2012. Eutrophic 
lichens respond to multiple forms of N: implications for critical 
levels and critical loads research. Ecological Applications. 22(7): 
1910–1922. https://doi.org/10.1890/11-2075.1.

Jovan, S.; Will-Wolf, S.; Geiser, L. [and others]. 2020. User guide 
for the national Forest Inventory and Analysis lichen database 
(version 1.0). Gen. Tech. Rep. PNW-988. Portland, OR: U.S. 
Department of Agriculture, Forest Service, Pacific Northwest 
Research Station. 83 p.

Koch, F.H.; Yemshanov, D.; Colunga-Garcia, M. [and others]. 2011. 
Potential establishment of alien-invasive forest insect species in 
the United States: where and how many? Biological Invasions. 13: 
969–985. https://doi.org/10.1007/s10530-010-9883-8.

https://doi.org/10.1126/sciadv.1603055
https://www.fs.usda.gov/foresthealth/protecting-forest/forest-health-monitoring/
https://www.fs.usda.gov/foresthealth/protecting-forest/forest-health-monitoring/
https://www.fs.usda.gov/foresthealth/applied-sciences/mapping-reporting/detection-surveys.shtml
https://www.fs.usda.gov/foresthealth/applied-sciences/mapping-reporting/detection-surveys.shtml
https://doi.org/10.1890/14-2172.1
https://doi.org/10.1073/pnas.1821039116
https://doi.org/10.1073/pnas.1821039116
https://doi.org/10.1007/s10980-016-0475-6
https://doi.org/10.1007/s10980-016-0475-6
https://doi.org/10.3390/f9120744
https://doi.org/10.1111/ddi.12354
https://doi.org/10.1111/ddi.12354
https://doi.org/10.1111/ecog.01973
https://doi.org/10.1111/ecog.01973
https://doi.org/10.3897/neobiota.40.28558
https://doi.org/10.3897/neobiota.40.28558
https://doi.org/10.1007/s10980-015-0280-7
https://doi.org/10.1007/s10980-015-0280-7
https://doi.org/10.1111/ele.12884
https://doi.org/10.1890/11-2075.1
https://doi.org/10.1007/s10530-010-9883-8


Fo
re

st 
He

alt
h M

on
ito

rin
g

19

Ch
ap

ter
 1

Koch, F.H.; Yemshanov, D.; Haack, R.A.; Magarey, R.D. 2014. Using 
a network model to assess risk of forest pest spread via recreational 
travel. PLOS ONE. 9(7): e102105. https://doi.org/10.1371/
journal.pone.0102105.

Kolb, T.E.; Wagner, M.R.; Covington, W.W. 1994. Concepts of 
forest health: utilitarian and ecosystem perspectives. Journal of 
Forestry. 92: 10–15.

Krist, F.J., Jr.; Ellenwood, J.R.; Woods, M.E. [and others]. 2014. 
2012–2027 national insect and disease forest risk assessment. 
FHTET-14-01. U.S. Department of Agriculture, Forest Service, 
Forest Health Technology Enterprise Team. 199 p. http://www.
fs.usda.gov/foresthealth/technology/pdfs/2012_RiskMap_
Report_web.pdf. [Date accessed: August 9, 2022].

Lake, M.; Marshall, P.; Mielke, M. [and others]. 2006. National 
Forest Health Monitoring program monitoring urban forests 
in Indiana: pilot study 2002, part 1. Analysis of field methods 
and data collection. NA-FR-06-06. Newtown Square, PA: U.S. 
Department of Agriculture, Forest Service, Northeastern Area 
State and Private Forestry. 22 p.

McGinley, K.A.; Cubbage, F.W., tech. eds. 2020. Legal, institutional, 
and economic indicators of forest conservation and sustainable 
management in the United States: analyzing criterion 7 of the 
Montréal Process criteria and indicators framework. Gen. Tech. 
Rep. IITF-52. Río Piedras, PR: U.S. Department of Agriculture, 
Forest Service, International Institute of Tropical Forestry. 174 p.

McWilliams, W.H.; Westfall, J.A.; Brose, P.H. [and others]. 2015. 
A regeneration indicator for Forest Inventory and Analysis: 
history, sampling, estimation, analytics, and potential use in the 
Midwest and Northeast United States. Gen. Tech. Rep. NRS-148. 
Newtown Square, PA: U.S. Department of Agriculture, Forest 
Service, Northern Research Station. 74 p. https://doi.org/10.2737/
NRS-GTR-148.

Montréal Process Working Group. 1995. Criteria and indicators for 
the conservation and sustainable management of temperate and 
boreal forests. https://montreal-process.org. [Date accessed: July 
26, 2023]. 

Morin, R.S.; Liebhold, A.M.; Gottschalk, K.W. [and others]. 2006. 
Analysis of Forest Health Monitoring surveys on the Allegheny 
National Forest (1998–2001). Gen. Tech. Rep. NE-339. Newtown 
Square, PA: U.S. Department of Agriculture, Forest Service, 
Northeastern Research Station. 102 p. https://doi.org/10.2737/
NE-GTR-339.

Morin, R.S.; Randolph, K.C.; Steinman, J. 2015. Mortality rates 
associated with crown health for eastern forest tree species. 
Environmental Monitoring and Assessment. 187(3): 87. https://
doi.org/10.1007/s10661-015-4332-x.

NASA Fire Information for Resource Management System. 2022. 
MODIS fire archive download tool. https://firms.modaps.eosdis.
nasa.gov/download/. [Date accessed: April 26, 2022].

O’Neill, K.P.; Amacher, M.C.; Perry, C.H. 2005. Soils as an 
indicator of forest health: a guide to the collection, analysis, 
and interpretation of soil indicator data in the Forest Inventory 
and Analysis program. Gen. Tech. Rep. NC-258. St. Paul, MN: 
U.S. Department of Agriculture, Forest Service, North Central 
Research Station. 53 p. https://doi.org/10.2737/NC-GTR-258.

Oswalt, C.M.; Fei, S.; Guo, Q. [and others]. 2015. A subcontinental 
view of forest plant invasions. NeoBiota. 24: 49–54. https://doi.
org/10.3897/neobiota.24.4526.

Oswalt, S.N.; Smith, W.B.; Miles, P.D.; Pugh, S.A., coords. 2019. 
Forest resources of the United States, 2017: a technical document 
supporting the Forest Service 2020 RPA Assessment. Gen. Tech. 
Rep. WO-97. Washington, DC: U.S. Department of Agriculture, 
Forest Service, Washington Office. 223 p. https://doi.org/10.2737/
WO-GTR-97.

Palmer, C.J.; Riitters, K.H.; Strickland, T. [and others]. 1991. 
Monitoring and research strategy for forests—Environmental 
Monitoring and Assessment Program (EMAP). EPA/600/4-
91/012. Washington, DC: U.S. Environmental Protection Agency. 
189 p.

Potter, K.M. 2018. Do United States protected areas effectively 
conserve forest tree rarity and evolutionary distinctiveness? 
Biological Conservation. 224: 34–46. https://doi.org/10.1016/j.
biocon.2018.05.007.

Potter, K.M. 2020. Introduction. In: Potter, K.M.; Conkling, B.L., 
eds. Forest Health Monitoring: national status, trends, and analysis 
2019. Gen. Tech. Rep. SRS-250. Asheville, NC: U.S. Department 
of Agriculture, Forest Service, Southern Research Station: 5–24. 

Potter, K.M. 2023. Ecological regions of Hawai‘i. Fort Collins, CO: 
Forest Service Research Data Archive. https://doi.org/10.2737/
RDS-2023-0018. [Date accessed: July 31, 2023]. 

Potter, K.M.; Conkling, B.L., eds. 2012a. Forest Health Monitoring 
2008 national technical report. Gen. Tech. Rep. SRS-158. 
Asheville, NC: U.S. Department of Agriculture, Forest Service, 
Southern Research Station. 179 p. https://doi.org/10.2737/SRS-
GTR-158.

Potter, K.M.; Conkling, B.L., eds. 2012b. Forest Health Monitoring 
2009 national technical report. Gen. Tech. Rep. SRS-167. 
Asheville, NC: U.S. Department of Agriculture, Forest Service, 
Southern Research Station. 252 p. https://doi.org/10.2737/SRS-
GTR-167.

https://doi.org/10.1371/journal.pone.0102105
https://doi.org/10.1371/journal.pone.0102105
http://www.fs.usda.gov/foresthealth/technology/pdfs/2012_RiskMap_Report_web.pdf
http://www.fs.usda.gov/foresthealth/technology/pdfs/2012_RiskMap_Report_web.pdf
http://www.fs.usda.gov/foresthealth/technology/pdfs/2012_RiskMap_Report_web.pdf
https://doi.org/10.2737/NRS-GTR-148
https://doi.org/10.2737/NRS-GTR-148
 https://doi.org/10.1017/CBO9780511974977.002
https://doi.org/10.2737/NE-GTR-339
https://doi.org/10.2737/NE-GTR-339
https://doi.org/10.1007/s10661-015-4332-x
https://doi.org/10.1007/s10661-015-4332-x
https://firms.modaps.eosdis.nasa.gov/download/
https://firms.modaps.eosdis.nasa.gov/download/
https://doi.org/10.2737/NC-GTR-258
https://doi.org/10.3897/neobiota.24.4526
https://doi.org/10.3897/neobiota.24.4526
https://doi.org/10.2737/WO-GTR-97
https://doi.org/10.2737/WO-GTR-97
https://doi.org/10.2737/RDS-2023-0018
https://doi.org/10.2737/RDS-2023-0018
https://doi.org/10.2737/SRS-GTR-158
https://doi.org/10.2737/SRS-GTR-158
https://doi.org/10.2737/SRS-GTR-167
https://doi.org/10.2737/SRS-GTR-167


Fo
re

st 
He

alt
h M

on
ito

rin
g

20

Ch
ap

ter
 1

Potter, K.M.; Conkling, B.L., eds. 2013a. Forest Health Monitoring: 
national status, trends, and analysis 2010. Gen. Tech. Rep. 
SRS-176. Asheville, NC: U.S. Department of Agriculture, 
Forest Service, Southern Research Station. 162 p. https://doi.
org/10.2737/SRS-GTR-176.

Potter, K.M.; Conkling, B.L., eds. 2013b. Forest Health Monitoring: 
national status, trends, and analysis 2011. Gen. Tech. Rep. 
SRS-185. Asheville, NC: U.S. Department of Agriculture, 
Forest Service, Southern Research Station. 149 p. https://doi.
org/10.2737/SRS-GTR-185.

Potter, K.M.; Conkling, B.L., eds. 2014. Forest Health Monitoring: 
national status, trends, and analysis 2012. Gen. Tech. Rep. 
SRS-198. Asheville, NC: U.S. Department of Agriculture, 
Forest Service, Southern Research Station. 192 p. https://doi.
org/10.2737/SRS-GTR-198.

Potter, K.M.; Conkling, B.L., eds. 2015a. Forest Health Monitoring: 
national status, trends, and analysis 2013. Gen. Tech. Rep. 
SRS-207. Asheville, NC: U.S. Department of Agriculture, 
Forest Service, Southern Research Station. 199 p. https://doi.
org/10.2737/SRS-GTR-207.

Potter, K.M.; Conkling, B.L., eds. 2015b. Forest Health Monitoring: 
national status, trends, and analysis 2014. Gen. Tech. Rep. 
SRS-209. Asheville, NC: U.S. Department of Agriculture, 
Forest Service, Southern Research Station. 190 p. https://doi.
org/10.2737/SRS-GTR-209.

Potter, K.M.; Conkling, B.L., eds. 2016. Forest Health Monitoring: 
national status, trends, and analysis 2015. Gen. Tech. Rep. 
SRS-213. Asheville, NC: U.S. Department of Agriculture, 
Forest Service, Southern Research Station. 199 p. https://doi.
org/10.2737/SRS-GTR-213.

Potter, K.M.; Conkling, B.L., eds. 2017. Forest Health Monitoring: 
national status, trends, and analysis 2016. Gen. Tech. Rep. 
SRS-222. Asheville, NC: U.S. Department of Agriculture, 
Forest Service, Southern Research Station. 195 p. https://doi.
org/10.2737/SRS-GTR-222.

Potter, K.M.; Conkling, B.L., eds. 2018. Forest Health Monitoring: 
national status, trends, and analysis 2017. Gen. Tech. Rep. 
SRS-233. Asheville, NC: U.S. Department of Agriculture, 
Forest Service, Southern Research Station. 190 p. https://doi.
org/10.2737/SRS-GTR-233.

Potter, K.M.; Conkling, B.L., eds. 2019. Forest Health Monitoring: 
national status, trends, and analysis 2018. Gen. Tech. Rep. 
SRS-239. Asheville, NC: U.S. Department of Agriculture, 
Forest Service, Southern Research Station. 168 p. https://doi.
org/10.2737/SRS-GTR-239.

Potter, K.M.; Conkling, B.L., eds. 2020. Forest Health Monitoring: 
national status, trends, and analysis 2019. Gen. Tech. Rep. 
SRS-250. Asheville, NC: U.S. Department of Agriculture, 
Forest Service, Southern Research Station. 189 p. https://doi.
org/10.2737/SRS-GTR-250.

Potter, K.M.; Conkling, B.L., eds. 2021. Forest Health Monitoring: 
national status, trends, and analysis, 2020. Gen. Tech. Rep. 
SRS-261. Asheville, NC: U.S. Department of Agriculture, 
Forest Service, Southern Research Station. 211 p. https://doi.
org/10.2737/SRS-GTR-261.

Potter, K.M.; Conkling, B.L., eds. 2022. Forest Health Monitoring: 
national status, trends, and analysis, 2021. Gen. Tech. Rep. 
SRS-266. Asheville, NC: U.S. Department of Agriculture, 
Forest Service, Southern Research Station. 193 p. https://doi.
org/10.2737/SRS-GTR-266.

Potter, K.M.; Escanferla, M.E.; Jetton, R.M.; Man, G. 2019a. 
Important insect and disease threats to United States tree species 
and geographic patterns of their potential impacts. Forests. 10(4): 
304. https://doi.org/10.3390/f10040304.

Potter, K.M.; Escanferla, M.E.; Jetton, R.M. [and others]. 2019b. 
Prioritizing the conservation needs of United States tree species: 
evaluating vulnerability to forest insect and disease threats. Global 
Ecology and Conservation. 18: e00622. https://doi.org/10.1016/j.
gecco.2019.e00622.

Potter, K.M.; Giardina, P.; Hughes, F. [and others]. 2023. How 
invaded are Hawaiian forests? Non-native understory tree 
dominance signals potential canopy replacement. Landscape 
Ecology. https://doi.org/10.1007/s10980-023-01662-6. 

Potter, K.M.; Hargrove, W.W. 2013. Quantitative metrics for 
assessing predicted climate change pressure on North American 
tree species. Mathematical and Computational Forestry and 
Natural Resources Sciences. 5(2): 151–169.

Potter, K.M.; Koch, F.H. 2014. Phylogenetic community structure of 
forests across the conterminous United States: regional ecological 
patterns and forest health implications. Forest Science. 60(5): 
851–861. https://doi.org/10.5849/forsci.13-115.

Potter, K.M.; Koch, F.H.; Oswalt, C.M.; Iannone, B.V. 2016. Data, 
data everywhere: detecting spatial patterns in fine-scale ecological 
information collected across a continent. Landscape Ecology. 31: 
67–84. https://doi.org/10.1007/s10980-015-0295-0.

Potter, K.M.; Riitters, K.H.; Guo, G. 2022. Non-native tree 
regeneration indicates regional and national risks from current 
invasions. Frontiers in Forests and Global Change. 5:966407. 
https://doi.org/10.3390/f13010019. 

https://doi.org/10.2737/SRS-GTR-176
https://doi.org/10.2737/SRS-GTR-176
https://doi.org/10.2737/SRS-GTR-185
https://doi.org/10.2737/SRS-GTR-185
https://doi.org/10.2737/SRS-GTR-198
https://doi.org/10.2737/SRS-GTR-198
https://doi.org/10.2737/SRS-GTR-207
https://doi.org/10.2737/SRS-GTR-207
https://doi.org/10.2737/SRS-GTR-209
https://doi.org/10.2737/SRS-GTR-209
https://doi.org/10.2737/SRS-GTR-213
https://doi.org/10.2737/SRS-GTR-213
https://doi.org/10.2737/SRS-GTR-222
https://doi.org/10.2737/SRS-GTR-222
https://doi.org/10.2737/SRS-GTR-233
https://doi.org/10.2737/SRS-GTR-233
https://doi.org/10.2737/SRS-GTR-239
https://doi.org/10.2737/SRS-GTR-239
https://doi.org/10.2737/SRS-GTR-250
https://doi.org/10.2737/SRS-GTR-250
https://doi.org/10.2737/SRS-GTR-261
https://doi.org/10.2737/SRS-GTR-261
https://doi.org/10.2737/SRS-GTR-266
https://doi.org/10.2737/SRS-GTR-266
https://doi.org/10.3390/f10040304
https://doi.org/10.1016/j.gecco.2019.e00622
https://doi.org/10.1016/j.gecco.2019.e00622
https://doi.org/10.5849/forsci.13-115
https://doi.org/10.1007/s10980-015-0295-0
 https://doi.org/10.1017/CBO9780511974977.002


Fo
re

st 
He

alt
h M

on
ito

rin
g

21

Ch
ap

ter
 1

Potter, K.M.; Woodall, C.W. 2012. Trends over time in tree and 
seedling phylogenetic diversity indicate regional differences 
in forest biodiversity change. Ecological Applications. 22(2): 
517–531. https://doi.org/10.1890/10-2137.1.

Potter, K.M.; Woodall, C.W. 2014. Does biodiversity make a 
difference? Relationships between species richness, evolutionary 
diversity, and aboveground live tree biomass across U.S. forests. 
Forest Ecology and Management. 321: 117–129. https://doi.
org/10.1016/j.foreco.2013.06.026.

Raffa, K.F.; Aukema, B.; Bentz, B.J. [and others]. 2009. A literal use 
of “forest health” safeguards against misuse and misapplication. 
Journal of Forestry. 107: 276–277.

Randolph, K.C. 2010a. Equations relating compacted and 
uncompacted live crown ratio for common tree species in the 
South. Southern Journal of Applied Forestry. 34(3): 118–123. 
https://doi.org/10.1093/sjaf/34.3.118.

Randolph, K.C. 2010b. Comparison of the arithmetic and geometric 
means in estimating crown diameter and crown cross-sectional 
area. Southern Journal of Applied Forestry. 34(4): 186–189. 
https://doi.org/10.1093/sjaf/34.4.186.

Randolph, K.C. 2013. Development history and bibliography of the 
U.S. Forest Service crown-condition indicator for forest health 
monitoring. Environmental Monitoring and Assessment. 185(6): 
4977–4993. https://doi.org/10.1007/s10661-012-2919-z.

Randolph, K.C.; Moser, W.K. 2009. Tree crown condition in 
Missouri, 2000–2003. Gen. Tech. Rep. SRS-113. Asheville, 
NC: U.S. Department of Agriculture, Forest Service, Southern 
Research Station. 11 p. https://doi.org/10.2737/SRS-GTR-113.

Reams, G.A.; Smith, W.D.; Hansen, M.H. [and others]. 2005. The 
Forest Inventory and Analysis sampling frame. In: Bechtold, 
W.A.; Patterson, P.L., eds. The enhanced Forest Inventory and 
Analysis program—national sampling design and estimation 
procedures. Gen. Tech. Rep. SRS-80. Asheville, NC: U.S. 
Department of Agriculture, Forest Service, Southern Research 
Station: 11–26.

Rebbeck, J.; Kloss, A.; Bowden, M. [and others]. 2015. Aerial 
detection of seed-bearing female Ailanthus altissima: a cost-
effective method to map an invasive tree in forested landscapes. 
Forest Science. 61: 1068–1078. https://doi.org/10.5849/
forsci.14-223.

Riitters, K.H. 2011. Spatial patterns of land cover in the United 
States: a technical document supporting the Forest Service 2010 
RPA assessment. Gen. Tech. Rep. SRS-136. Asheville, NC: U.S. 
Department of Agriculture, Forest Service, Southern Research 
Station. 64 p. https://doi.org/10.2737/SRS-GTR-136.

Riitters, K.; Costanza, J. 2019. The landscape context of family 
forests in the United States: anthropogenic interfaces and 
forest fragmentation from 2001 to 2011. Landscape and 
Urban Planning. 188: 64–71. https://doi.org/10.1016/j.
landurbplan.2018.04.001.

Riitters, K.H.; Costanza, J.K.; Buma, B. 2017. Interpreting multiscale 
domains of tree cover disturbance patterns in North America. 
Ecological Indicators. 80: 147–152. https://doi.org/10.1016/j.
ecolind.2017.05.022.

Riitters, K.H.; Coulston, J.W.; Wickham, J.D. 2012. Fragmentation 
of forest communities in the Eastern United States. Forest 
Ecology and Management. 263: 85–93. https://doi.org/10.1016/j.
foreco.2011.09.022.

Riitters, K.; Potter, K.M.; Iannone, B.V. [and others]. 2018a. 
Exposure of protected forest to plant invasions in the Eastern 
United States. Forests. 9(11): 723. https://doi.org/10.3390/
f9110723.

Riitters, K.; Potter, K.M.; Iannone, B.V. [and others]. 2018b. 
Landscape correlates of forest plant invasions: a high-resolution 
analysis across the Eastern United States. Diversity and 
Distributions. 24: 274–284. https://doi.org/10.1111/ddi.12680.

Riitters, K.H.; Tkacz, B. 2004. The U.S. Forest Health 
Monitoring program. In: Wiersma, G.B., ed. Environmental 
monitoring. Boca Raton, FL: CRC Press: 669–683. https://doi.
org/10.1201/9780203495476.ch30.

Riitters, K.H.; Wickham, J.D. 2012. Decline of forest interior 
conditions in the conterminous United States. Scientific Reports. 
2: 653. https://doi.org/10.1038/srep00653.

Riitters, K.H.; Wickham, J.D.; Costanza, J.K.; Vogt, P. 2016. A global 
evaluation of forest interior area dynamics using tree cover data 
from 2000 to 2012. Landscape Ecology. 31: 137–148. https://doi.
org/10.1007/s10980-015-0270-9.

Root, H.T.; McCune, B.; Jovan, S. 2014. Lichen communities and 
species indicate climate thresholds in southeast and south-central 
Alaska, USA. The Bryologist. 117(3): 241–252. https://doi.
org/10.1639/0007-2745-117.3.241.

Rose, A.K.; Coulston, J.W. 2009. Ozone injury across the Southern 
United States, 2002–06. Gen. Tech. Rep. SRS-118. Asheville, 
NC: U.S. Department of Agriculture, Forest Service, Southern 
Research Station. 25 p. https://doi.org/10.2737/SRS-GTR-118.

Russell, M.B.; Woodall, C.W.; Potter, K.M. [and others]. 2017. 
Interactions between white-tailed deer density and the 
composition of forest understories in the Northern United 
States. Forest Ecology and Management. 384: 26–33. https://doi.
org/10.1016/j.foreco.2016.10.038.

https://doi.org/10.1890/10-2137.1
https://doi.org/10.1016/j.foreco.2013.06.026
https://doi.org/10.1016/j.foreco.2013.06.026
https://doi.org/10.1093/sjaf/34.3.118
https://doi.org/10.1093/sjaf/34.4.186
https://doi.org/10.1007/s10661-012-2919-z
https://doi.org/10.2737/SRS-GTR-113
https://doi.org/10.5849/forsci.14-223
https://doi.org/10.5849/forsci.14-223
https://doi.org/10.2737/SRS-GTR-136
https://doi.org/10.1016/j.landurbplan.2018.04.001
https://doi.org/10.1016/j.landurbplan.2018.04.001
https://doi.org/10.1016/j.ecolind.2017.05.022
https://doi.org/10.1016/j.ecolind.2017.05.022
https://doi.org/10.1016/j.foreco.2011.09.022
https://doi.org/10.1016/j.foreco.2011.09.022
https://doi.org/10.3390/f9110723
https://doi.org/10.3390/f9110723
https://doi.org/10.1111/ddi.12680
https://doi.org/10.1201/9780203495476.ch30
https://doi.org/10.1201/9780203495476.ch30
https://doi.org/10.1038/srep00653
https://doi.org/10.1007/s10980-015-0270-9
https://doi.org/10.1007/s10980-015-0270-9
https://doi.org/10.1639/0007-2745-117.3.241
https://doi.org/10.1639/0007-2745-117.3.241
https://doi.org/10.2737/SRS-GTR-118
https://doi.org/10.1016/j.foreco.2016.10.038
https://doi.org/10.1016/j.foreco.2016.10.038


Fo
re

st 
He

alt
h M

on
ito

rin
g

22

Ch
ap

ter
 1

Schomaker, M.E.; Zarnoch, S.J.; Bechtold, W.A. [and others]. 
2007. Crown-condition classification: a guide to data collection 
and analysis. Gen. Tech. Rep. SRS-102. Asheville, NC: U.S. 
Department of Agriculture, Forest Service, Southern Research 
Station. 78 p. https://doi.org/10.2737/SRS-GTR-102.

Schulz, B.K.; Bechtold, W.A.; Zarnoch, S.J. 2009. Sampling and 
estimation procedures for the vegetation diversity and structure 
indicator. Gen. Tech. Rep. PNW-781. Portland, OR: U.S. 
Department of Agriculture, Forest Service, Pacific Northwest 
Research Station. 53 p. https://doi.org/10.2737/PNW-GTR-781.

Schulz, B.K.; Gray, A.N. 2013. The new flora of Northeastern 
USA: quantifying introduced plant species occupancy in forest 
ecosystems. Environmental Monitoring and Assessment. 185: 
3931–3957. https://doi.org/10.1007/s10661-012-2841-4.

Simkin, S.M.; Allen, E.B.; Bowman, W.D. [and others]. 2016. 
Conditional vulnerability of plant diversity to atmospheric 
nitrogen deposition across the United States. Proceedings of the 
National Academy of Sciences. 113: 4086–4091. https://doi.
org/10.1073/pnas.1515241113.

Siry, J.; Cubbage, F.W.; Potter, K.M.; McGinley, K. 2018. Current 
perspectives on sustainable forest management: North America. 
Current Forestry Reports. 4(3): 138–149. https://doi.org/10.1007/
s40725-018-0079-2.

Smith, W.D.; Conkling, B.L. 2004. Analyzing forest health data. 
Gen. Tech. Rep. SRS-77. Asheville, NC: U.S. Department of 
Agriculture, Forest Service, Southern Research Station. 33 p. 
https://doi.org/10.2737/SRS-GTR-77.

Spencer, P.; Nowacki, G.; Fleming, M. [and others]. 2002. Home 
is where the habitat is: an ecosystem foundation for wildlife 
distribution and behavior. Arctic Research of the United States. 
16: 6–17.

Steinman, J. 2004. Forest Health Monitoring in the Northeastern 
United States: disturbances and conditions during 1993–2002. 
NA-TP-01-04. Newtown Square, PA: U.S. Department of 
Agriculture, Forest Service, Northeastern Area State and Private 
Forestry. 46 p. 

Teale, S.A.; Castello, J.D. 2011. The past as key to the future: 
a new perspective on forest health. In: Castello, J.D.; Teale, 
S.A., eds. Forest health: an integrated perspective. New York: 
Cambridge University Press: 3–16. https://doi.org/10.1017/
CBO9780511974977.002.

U.S. Department of Agriculture (USDA) Forest Service. 2004. 
National report on sustainable forests—2003. FS-766. 
Washington, DC. 139 p.

U.S. Department of Agriculture (USDA) Forest Service. 2011. 
National report on sustainable forests—2010. FS-979. 
Washington, DC. 134 p. 

Vogt, J.T.; Koch, F.H. 2016. The evolving role of Forest Inventory and 
Analysis data in invasive insect research. American Entomologist. 
62(1): 46–58. https://doi.org/10.1093/ae/tmv072.

Vose, J.M.; Clark, J.S.; Luce, C.H.; Patel-Weynand, T., eds. 2016. 
Effects of drought on forests and rangelands in the United States: 
a comprehensive science synthesis. Gen. Tech. Rep. WO-93b. 
Washington, DC: U.S. Department of Agriculture, Forest Service, 
Washington Office. 289 p. https://doi.org/10.2737/WO-GTR-
93b.

Woodall, C.W.; Amacher, M.C.; Bechtold, W.A. [and others]. 2011. 
Status and future of the forest health indicators program of the 
USA. Environmental Monitoring and Assessment. 177: 419–436. 
https://doi.org/10.1007/s10661-010-1644-8.

Woodall, C.W.; Conkling, B.L.; Amacher, M.C. [and others]. 2010. 
The Forest Inventory and Analysis Database version 4.0: database 
description and users manual for Phase 3. Gen. Tech. Rep. 
NRS-61. Newtown Square, PA: U.S. Department of Agriculture, 
Forest Service, Northern Research Station. 180 p. https://doi.
org/10.2737/NRS-GTR-61.

Woodall, C.W.; Walters, B.F.; Oswalt, S.N. [and others]. 2013. 
Biomass and carbon attributes of downed woody materials in 
forests of the United States. Forest Ecology and Management. 
305: 48–59. https://doi.org/10.1016/j.foreco.2013.05.030.

Woodall, C.W.; Walters, B.F.; Westfall, J.A. 2012. Tracking 
downed dead wood in forests over time: development of a piece 
matching algorithm for line intercept sampling. Forest Ecology 
and Management. 277: 196–204. https://doi.org/10.1016/j.
foreco.2012.04.031.

Yemshanov, D.; Koch, F.H.; Lu, B. [and others]. 2014. There is 
no silver bullet: the value of diversification in planning invasive 
species surveillance. Ecological Economics. 104: 61–72. https://
doi.org/10.1016/j.ecolecon.2014.04.024.

https://doi.org/10.2737/SRS-GTR-102
https://doi.org/10.2737/PNW-GTR-781
https://doi.org/10.1007/s10661-012-2841-4
https://doi.org/10.1073/pnas.1515241113
https://doi.org/10.1073/pnas.1515241113
https://doi.org/10.1007/s40725-018-0079-2
https://doi.org/10.1007/s40725-018-0079-2
https://doi.org/10.2737/SRS-GTR-77
https://doi.org/10.1017/CBO9780511974977.002
https://doi.org/10.1017/CBO9780511974977.002
https://doi.org/10.1093/ae/tmv072
https://doi.org/10.2737/WO-GTR-93b
https://doi.org/10.2737/WO-GTR-93b
https://doi.org/10.1007/s10661-010-1644-8
https://doi.org/10.2737/NRS-GTR-61
https://doi.org/10.2737/NRS-GTR-61
https://doi.org/10.1016/j.foreco.2013.05.030
https://doi.org/10.1016/j.foreco.2012.04.031
https://doi.org/10.1016/j.foreco.2012.04.031
https://doi.org/10.1016/j.ecolecon.2014.04.024
https://doi.org/10.1016/j.ecolecon.2014.04.024


SECTION 1 
Analyses of Short-Term 
Forest Health Data





Fo
re

st 
He

alt
h M

on
ito

rin
g

25

SE
CT

ION
 1  

  C
ha

pt
er

 2

CHAPTER 2 
Broad-Scale Patterns of 
Insect and Disease Activity 
Across the United States 
From the National Insect and 
Disease Survey, 2021

Kevin M. Potter and 
Jeanine L. Paschke

How to cite this chapter:

Potter, Kevin M.; Paschke, Jeanine L. 2023. Broad-
scale patterns of insect and disease activity across 
the United States from the National Insect and 
Disease Survey, 2021. In: Potter, Kevin M.; Conkling, 
Barbara L., eds. Forest Health Monitoring: national 
status, trends, and analysis 2022. Gen. Tech. 
Rep. SRS-273. Asheville, NC: U.S. Department of 
Agriculture, Forest Service, Southern Research 
Station: 25–53. https://doi.org/10.2737/SRS-GTR-
273-Chap2.

INTRODUCTION

Forest insects and diseases have widespread 
ecological and economic impacts on forests 
in the United States and may represent the 

most serious threats to the Nation’s forests (Logan 
and others 2003, Lovett and others 2016, Tobin 
2015). U.S. law, therefore, authorizes the U.S. 
Department of Agriculture, Forest Service to 
“conduct surveys to detect and appraise insect 
infestations and disease conditions and man-
made stresses affecting trees and establish a 
monitoring system throughout the forests of the 
United States to determine detrimental changes 
or improvements that occur over time, and report 
annually concerning such surveys and monitoring” 
(FHP 2022). Insects and diseases cause changes 
in forest structure and function, species succession, 
and biodiversity, which may be considered 
negative or positive depending on management 
objectives (Edmonds and others 2011). Nearly 
all native tree species of the United States are 
affected by at least one injury-causing insect or 
disease agent, with exotic agents, on average, being 
considerably more severe than native ones (Potter 
and others 2019a). Additionally, the genetic 
integrity of several native tree species is highly 
vulnerable to exotic diseases and insects (Potter 
and others 2019b). 

An important task for forest managers, 
pathologists, and entomologists is to recognize and 
distinguish between natural and excessive mortality, 
a task relating to ecologically based or commodity-
based management objectives (Teale and Castello 
2011). Impacts of insects and diseases on forests 
vary from natural thinning to disruption of valued 

ecosystem processes due to tree mortality, but 
insects and diseases that kill trees are not necessarily 
the enemies of forests (Teale and Castello 2011). 
If disturbances, including insects and diseases, are 
viewed in their full ecological context, then some 
amount can be considered “healthy.” Disturbances 
can sustain forest structures (Manion 2003, Zhang 
and others 2011) by facilitating a sanitation role, 
culling weak competitors, and releasing resources 
needed to support the growth of surviving trees 
(Teale and Castello 2011). 

Analyzing patterns of forest insect infestations, 
disease occurrences, forest declines, and related 
biotic stress factors is necessary to monitor the 
health of forested ecosystems and their potential 
impacts on forest structure, composition, 
biodiversity, and species distributions (Castello 
and others 1995). Introduced insects and diseases 
are of particular concern because they can 
extensively damage the biodiversity, ecology, and 
economy of affected areas (Brockerhoff and others 
2006, Mack and others 2000). Few forests remain 
unaffected by invasive species, and their impacts 
to forest ecosystems are undeniable. These impacts 
can include wholesale changes in structures and 
function of ecosystems (Parry and Teale 2011).

Examining insect pest occurrences and related 
stress factors from a landscape-scale perspective 
is useful, given the regional extent of many 
infestations and the large-scale complexity of 
interactions between host distribution, stress 
factors, and the development of outbreaks 
(Holdenrieder and others 2004, Liebhold and 
others 2013). One such landscape-scale approach 
is detecting geographic patterns of disturbance, 
allowing for the identification of areas at greater 

https://doi.org/10.2737/SRS-GTR-273-Chap2
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risk of significant ecological and economic 
impacts, and for selecting locations for more 
intensive monitoring and analysis. National Insect 
and Disease Survey (IDS) data (FHP 2022), 
coordinated by the Forest Service’s Forest Health 
Protection (FHP) program, provide an important 
source of information on forest disturbances 
and their causal agents across broad regions. 
Recent long-term analyses of these data highlight 
insects as more widely detected agents of 
mortality compared to diseases, with bark beetles 
consistently the most important mortality agents 
across regions and time (Potter and others 2020a). 
(These results may be somewhat skewed toward 
insects because the visible signatures of insect 
damage are easier for IDS surveyors to detect.) 

Here, we report the area affected in 2021 by 
insect and disease mortality and defoliation agents 
across all 50 States using IDS data collected by 
the Forest Service and its State partners. We 
further estimate the percentage of surveyed 
tree canopy cover area with insect- and disease-
related mortality or defoliation within ecoregions 
across the United States and identify statistically 
significant geographic hot spots of mortality or 
defoliation in the conterminous United States 
(CONUS).

METHODS
Data
The IDS data (FHP 2022) consist of information 
from low-altitude aerial survey and ground survey 
efforts by FHP and its partners in State agencies. 
These data can be used to summarize insect and 
disease activity by regions in the CONUS, Alaska, 

and Hawaii (Potter 2012, 2013; Potter and Koch 
2012; Potter and Paschke 2013, 2014, 2015a, 
2015b, 2016, 2017, 2022; Potter and others 2018, 
2019c, 2020b, 2021). The 2021 data collection 
season was more typical than 2020, when the 
global COVID-19 pandemic precluded the ability 
of many State partners and regional Forest Service 
personnel to conduct aerial survey flights because 
of risks posed by spending extended periods 
of time in the confined space of an aircraft. In 
2020, a group of forest health specialists worked 
together to generate new workflows, training 
materials, and help sessions to address this 
challenge, including “scan and sketch” methods to 
outline damage polygons and points directly on 
base imagery (Hanavan and others 2021). In 2021, 
however, most data in the IDS data stream were 
collected using aerial and ground survey methods.

The IDS data identify areas with mortality and 
defoliation caused by insect and disease activity, 
although some important forest insects (such 
as emerald ash borer [Agrilus planipennis] and 
hemlock woolly adelgid [Adelges tsugae]), diseases 
(such as laurel wilt [Harringtonia lauricola], 
Dutch elm disease [Ophiostoma novo-ulmi], 
white pine blister rust [Cronartium ribicola], and 
thousand cankers disease [Geosmithia morbida]), 
and mortality complexes (such as oak decline) 
have not been not easily detected or thoroughly 
quantified through aerial detection and other 
remote sensing methods. (Recent efforts, 
however, have successfully used remotely sensed 
data to map damage caused by hemlock woolly 
adelgid, laurel wilt, and emerald ash borer in 
urban settings [Abdulridha and others 2018, 
Hanavan and others 2015, Pontius and others 
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2017].) Such pests may attack hosts that are 
widely dispersed throughout forests with high 
tree species diversity or may cause mortality or 
defoliation that is otherwise difficult to detect. 
A visual interpreter might consider a pathogen 
or insect to be a mortality-causing agent in 
one location and a defoliation-causing agent in 
another, depending on the level of damage to the 
forest in an area and the convergence of other 
stress factors (such as drought). In some cases, 
identified agents of mortality or defoliation are 
actually complexes of multiple agents summarized 
under an impact label related to a specific host 
tree species (e.g., “beech bark disease complex” 
or “yellow-cedar decline”). In other cases, one 
or more agents (such as ash yellows [caused by 
the Candidatus Phytoplasma fraxini bacterium], 
ash rust [Puccinia sparganioides], and verticillium 
wilt [Verticillium albo-atrum] in ash [Fraxinus 
spp.]) may cause stress to a tree that may 
ultimately increase its susceptibility to another 
agent to which the damage is attributed (such 
as emerald ash borer). Additionally, differences 
in data collection, attribute recognition, and 
coding procedures among States and regions 
can complicate data analysis and interpretation 
of results. A comparison of aerial survey data 
by four aerial observers with ground presence/
absence observations found the accuracy of aerial 
survey data exceeded 70 percent, and damage type 
observations for tree mortality and defoliation 
had high levels of accuracy, but further showed 
the accuracy declined for severity estimates and as 
specificity for observations went from the genus 
to the species level for tree species and damage 
agents (Coleman and others 2018).

In 2021, IDS surveys of the CONUS covered 
about 191.05 million ha of both forested and 
unforested area (fig. 2.1), of which approximately 
131.35 million ha were forested, representing 
about 41.6 percent of the 315.99-million-
ha tree canopy area of the CONUS. This was 
approximately twice the percentage of tree-
canopied area surveyed in 2020 but similar to the 
amount surveyed in 2018 (46.6 percent) and 2019 
(49.2 percent) (Potter and Paschke 2022; Potter 
and others 2020b, 2021). Meanwhile, about 7.2 
percent (5.60 million ha) of Alaska’s 77.78 million 
ha of forest and shrubland was surveyed in 2021, 
out of a total of 7.35 million ha surveyed across 
land cover types. This compares to 12.7 percent 
in 2018, 10.8 percent in 2019, and 2.8 percent in 
2020. Finally, surveyors covered about 860 000 ha 
of Hawaii during 2021. Approximately 564 000 
ha of that area had tree canopy cover, or about 
65.5 percent of the 861 000 ha total, compared to 
69.4 percent in 2018, 63.9 percent in 2019, and 
60.3 percent in 2020. 

The Digital Mobile Sketch Mapping (DMSM) 
platform includes tablet hardware, software, and 
data support processes allowing trained aerial 
surveyors in light aircraft, as well as ground 
observers and those using other remote sensing 
data, to record forest disturbances and their 
causal agents. Digital Mobile Sketch Mapping 
enhances the quality and quantity of forest health 
data while having the potential to improve safety 
by integrating with remote sensing platforms 
(FHP 2019). Geospatial data collected with 
DMSM are stored in the national IDS database. 
In an important change from the legacy Digital 
Aerial Sketch Mapping (DASM) approach, 
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■ Surveyed area
       FHM megaregion

Eastern

Southern

Interior West

West Coast

Alaska

Hawaii

Figure 2.1—The extent of surveys for insect and disease activity conducted in the conterminous United States (CONUS), Alaska, and Hawaii in 
2021. The red lines delineate Forest Health Monitoring (FHM) megaregions in the CONUS. Note: Alaska and Hawaii are not shown to scale with 
map of the CONUS. (Data source: U.S. Department of Agriculture, Forest Service, Forest Health Protection)
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the DMSM platform allows surveyors to both 
define the extent of an area experiencing damage 
and estimate the percent range of the area 
within polygons that is affected (Berryman and 
McMahan 2019). While additional validation is 
required for this new metric, it should increase 
the accuracy of derived damage metrics because 
it potentially corrects for previous overestimation 
caused by “lassoing” areas of undamaged trees into 
large areas of damage (Coleman and others 2018, 
Slaton and others 2021). For this reason, IDS 
analysis chapters in FHM reports before 2019 
did not incorporate derived damage estimates 
beyond the areal footprint damage with mortality 
or defoliation polygon boundaries. However, 
these are now possible because of the inclusion of 
damage percentage estimates within polygons (see 
“Analyses” below).

Digital Mobile Sketch Mapping includes both 
polygon geometry, used for damage areas where 
boundaries are discrete and obvious, and point 
geometry, used for small clusters of damage 
where size and shape of the damage are less 
important than recording the location. Examples 
of insects and diseases for which point data are 
utilized include sudden oak death (caused by 
the pathogen Phytophthora ramorum), southern 
pine beetle (Dendroctonus frontalis), and some 
types of bark beetle damage in the West. For 
analyses in this report, these points were assigned 
an area of 0.8 ha (about 2 acres). Additionally, 
DMSM allows for the use of grid cells (240-, 
480-, 960-, or 1920-m resolution) to estimate 
the percentage of trees affected by damages that 
may be widespread and diffuse, such as those 
associated with spongy moth (Lymantria dispar) 

and emerald ash borer. When calculating the 
total areas affected by each damage agent, we 
used the entire areas of these grid cells (e.g., 240-
m cell = 5.76 ha).

Analyses
To estimate the extent of damaging insect and 
disease agents in 2021, we conducted three 
types of analyses: (1) compiling a series of tables 
reporting the most widely detected mortality and 
defoliation agents, (2) describing the percentage of 
surveyed tree canopy cover area with insect- and 
disease-related mortality or defoliation within 
ecoregions across the United States, and (3) 
using a geographic hot spot analytical approach 
to identify statistically significant geographic hot 
spots of mortality or defoliation in the CONUS. 

For the first of these, we used the 2021 mortality 
and defoliation polygons to identify the select 
mortality and defoliation agents and complexes 
causing damage on >5000 ha of forest in the 
CONUS that year. Similarly, we listed the five 
most widely reported mortality and defoliation 
agents and complexes within each of the four 
FHM megaregions in the CONUS (West Coast, 
Interior West, Eastern, and Southern), as well as 
for Alaska and Hawaii where data were available. 
Because of the insect and disease aerial sketch-
mapping process (i.e., digitization of polygons by 
a human interpreter aboard aircraft or by a forest 
health specialist applying the “scan and sketch” 
approach with remotely sensed data), all quantities 
are approximate “footprint” areas for each agent 
or complex, delineating areas of visible damage 
within which the agent or complex is present. 
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Unaffected trees may exist within the footprint, 
and the amount of damage within the footprint 
is not reflected in the estimates of forest area 
affected. The sum of areas affected by all agents 
and complexes is not equal to the total affected 
area because of overlapping polygons and the 
reporting of multiple agents per polygon in some 
situations.

In our second set of analyses, we used the 
IDS data for 2021 to more directly estimate 
impacts of insect- and disease-related mortality 
and defoliation on U.S. forests. These results 
are reported in a set of figures describing the 
percentage of surveyed tree canopy cover area 
with insect- and disease-related mortality 
or defoliation within ecoregions across the 
United States. For these indicators of the 
extent of damaging insect and disease agents, 
we summarized the percentage of surveyed tree 
canopy cover area experiencing mortality or 
defoliation for ecoregions within the CONUS 
and Hawaii, and for surveyed forest and 
shrubland in Alaska ecoregions. This is a change 
from FHM reports before 2019, in which we 
reported on the percentage of regions exposed 
to mortality and defoliating agents based only 
on the footprint with mortality or defoliation 
polygon boundaries (masked by forest cover) 
because information on the percentage of 
damage within polygons was not yet completely 
available. As noted above, DMSM now allows 
surveyors to both define the extent of an area 
experiencing damage and estimate percent 
range of the area within the polygon affected 
(specifically, 1–3 percent, 4–10 percent, 11–29 
percent, 30–50 percent, and >50 percent). By 

multiplying the area of damage within each 
polygon (after masking by tree canopy cover) by 
the midpoint of the estimated percent-affected 
range, it is possible to generate an adjusted 
estimate of the area affected by each mortality 
or defoliation agent detection (Berryman and 
McMahan 2019). These individual estimates can 
be summed for all polygons within an ecoregion 
(intersected and dissolved) and divided by the 
total surveyed tree canopy cover area within 
the ecoregion to generate an estimate of the 
percentage of its canopy cover area affected by 
defoliating or mortality-causing agents. (Digital 
Mobile Sketch Mapping point data are also 
included in this estimate. Surveyors have the 
option to estimate the number of trees affected 
at a point and are required to assign an area value 
associated with each point, which is assumed 
to be 100 percent affected by its mortality or 
defoliation agent. For simplicity, we transformed 
each point into a 2-acre [0.809-ha] polygon. 
These areas for all the points in an ecoregion 
were then added to the polygon-adjusted affected 
area estimates for the ecoregion.)

We calculated the percentage of surveyed 
tree canopy area with mortality or defoliation 
within each of the 190 ecoregion sections in the 
CONUS (Cleland and others 2007). Similarly, 
we summarized mortality and defoliation data 
for each of the 32 ecoregion sections in Alaska 
(Spencer and others 2002). For Hawaii, we 
calculated the percentage of surveyed tree canopy 
area affected by mortality and defoliation agents 
in 34 ecoregion subunits on each of the major 
islands of the archipelago (Potter 2023). We did 
not calculate statistics for analysis regions in the 
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CONUS and Hawaii with ≤5 percent of the tree 
canopy cover area surveyed, nor in Alaska with 
≤2.5 percent of the forest and shrubland area 
surveyed.

We resampled tree canopy data for the CONUS 
and Hawaii to 240 m from a 30-m raster dataset 
that estimates percentage of tree canopy cover 
(0–100 percent) for each grid cell; this dataset was 
generated from the 2011 National Land Cover 
Database (NLCD) (Homer and others 2015) 
through a cooperative project between the Multi-
Resolution Land Characteristics Consortium 
and the Forest Service Geospatial Technology 
and Applications Center (GTAC) (Coulston 
and others 2012). For our purposes, we treated 
any cell with >0-percent tree canopy cover as 
forest. Comparable tree canopy cover data were 
not available for Alaska, so we instead created a 
240-m-resolution layer of forest and shrub cover 
from the 2011 NLCD. 

Finally, we used the Spatial Association of 
Scalable Hexagons (SASH) analytical approach 
to identify statistically significant geographic 
hot spots of mortality or defoliation in the 
CONUS. This method identifies locations where 
ecological phenomena occur at greater or lower 
frequency than expected by random chance 
and is based on a sampling frame optimized for 
spatial neighborhood analysis, adjustable to the 
appropriate spatial resolution, and applicable to 
multiple data types (Potter and others 2016). 
Specifically, it consists of dividing an analysis area 
into scalable equal-area hexagonal cells within 
which data are aggregated, followed by identifying 
statistically significant geographic clusters of 
hexagonal cells within which mean values are 

greater or less than those expected by chance. To 
identify these clusters, we employed a Getis-Ord 
(Gi*) hot spot analysis (Getis and Ord 1992) in 
ArcMap® 10.3 (ESRI 2017) separately for both 
mortality- and defoliation-causing agents across 
the CONUS. The low density of survey data in 
2021 from Alaska, as well as the small spatial 
extent of Hawaii (fig. 2.1), precluded the use of 
Getis-Ord Gi* hot spot analyses in these areas.

The units of analysis were 9,810 hexagonal 
cells, each approximately 834 km2 in area, 
generated in a lattice across the CONUS using 
intensification of the Environmental Monitoring 
and Assessment Program (EMAP) North 
American hexagon coordinates (White and others 
1992). These coordinates are the foundation of a 
sampling frame in which a hexagonal lattice was 
projected onto the CONUS by centering a large 
base hexagon over the region (Reams and others 
2005, White and others 1992). This base hexagon 
can be subdivided into many smaller hexagons, 
depending on sampling needs, and serves as the 
basis of the plot sampling frame for the Forest 
Service’s Forest Inventory and Analysis (FIA) 
program (Reams and others 2005). Importantly, 
hexagons maintain equal areas across the study 
region regardless of the degree of intensification 
of the EMAP hexagon coordinates. In addition, 
hexagons are compact and uniform in their 
distance to the centroids of neighboring hexagons, 
meaning a hexagonal lattice has a higher degree 
of isotropy (uniformity in all directions) than 
a square grid (Shima and others 2010). These 
are convenient and highly useful attributes for 
spatial neighborhood analyses. These scalable 
hexagons are independent of geopolitical and 
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ecological boundaries, avoiding the possibility of 
different sample units (such as counties, States, or 
watersheds) encompassing vastly different areas 
(Potter and others 2016). We selected hexagons 
834 km2 in area because this is a manageable size 
for making monitoring and management decisions 
in analyses that are national in extent (Potter and 
others 2016).

We then used the Getis-Ord Gi* statistic to 
identify clusters of hexagonal cells within which 
the percentage of surveyed tree canopy area 
with mortality or defoliation was higher than 
expected by chance. This statistic allows for the 
decomposition of a global measure of spatial 
association into its contributing factors, by 
location, and is therefore particularly suitable for 
detecting instances of nonstationarity in a dataset, 
such as when spatial clustering is concentrated 
in one subregion of the data (Anselin 1992). We 
excluded hexagons if they contained <5-percent 
tree canopy cover or if <1 percent of the tree 
canopy cover was surveyed in 2021.

The Getis-Ord Gi* statistic for each hexagon 
summed differences between mean values in a 
local sample, determined by a moving window 
consisting of the hexagon and its 18 first- and 
second-order neighbors (the 6 adjacent hexagons 
and the 12 additional hexagons contiguous to 
those 6) and a global mean. The Gi* statistic 
was standardized as a z-score with a mean of 0 
and a standard deviation of 1, with values >1.96 
representing significant (p <0.025) local clustering 
of high values and values <-1.96 representing 
significant clustering of low values (p <0.025), 
since 95 percent of observations under a normal 
distribution should be within approximately two 

(exactly 1.96) standard deviations of the mean 
(Laffan 2006). In other words, a Gi* value of 
1.96 indicates the local mean of the percentage 
of forest exposed to mortality- or defoliation-
causing agents for a hexagon and its 18 neighbors 
is approximately two standard deviations greater 
than the mean expected in the absence of spatial 
clustering, while a Gi* value of -1.96 indicates the 
local mortality or defoliation mean for a hexagon 
and its 18 neighbors is approximately two 
standard deviations less than the mean expected in 
the absence of spatial clustering. Values between 
-1.96 and 1.96 have no statistically significant 
concentration of high or low values. In other 
words, when a hexagon has a Gi* value between 
-1.96 and 1.96, mortality or defoliation damage 
within it and its 18 neighbors is not statistically 
different from a normal expectation. As described 
in Laffan (2006), it is calculated as:

where
Gi* = the local clustering statistic (in this case, 
for the target hexagon)
i = the center of local neighborhood (the target 
hexagon)
d = the width of local sample window (the 
target hexagon and its first- and second-order 
neighbors)
xj = the value of neighbor j
wij = the weight of neighbor j from location i 
(all the neighboring hexagons in the moving 
window were given an equal weight of 1)
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n = number of samples in the dataset (the 4,303 
hexagons containing >5-percent tree cover 
and with at least 1 percent of the canopy cover 
surveyed)
Wi* = the sum of the weights
s*1i = the number of samples within d of the 
central location (19: the focal hexagon and its 
18 first- and second-order neighbors)
x –  * = mean of whole dataset (in this case, the 
4,303 hexagons)
s* = the standard deviation of whole dataset (for 
the 4,303 hexagons)

It is worth noting that the -1.96 and 1.96 
threshold values are not exact because the 
correlation of spatial data violates the assumption 
of independence required for statistical 
significance (Laffan 2006). The Getis-Ord 
approach does not require the input data to be 
normally distributed because the local Gi* values 
are computed under a randomization assumption, 
with Gi* equating to a standardized z-score that 
asymptotically tends to a normal distribution 
(Anselin 1992). The z-scores are reliable, even 
with skewed data, if the distance band used 
to define the local sample around the target 
observation is large enough to include several 
neighbors for each feature (ESRI 2017).

RESULTS AND DISCUSSION
Conterminous United States Mortality
The national IDS data in 2021 identified 60 
mortality-causing agents and complexes across 
the CONUS on approximately 2.21 million ha, 
slightly less than the land area of New Hampshire. 

Of the 60 mortality agents, 13 were detected on 
>5000 ha within the area surveyed. These numbers 
were higher than in 2020, when 45 agents and 
complexes were detected on 1.17 million ha 
(Potter and Paschke 2022), largely because of 
the challenges associated with collecting insect 
and disease damage data during the COVID-19 
pandemic. They are more consistent with the 
numbers during a typical year of data collection, 
such as 2.69 million ha from 58 agents and 
complexes in 2019 (Potter and others 2021). 

Emerald ash borer was the most widely detected 
mortality agent in 2021, identified on about 878 
000 ha (table 2.1), which represents about 40 
percent of the total CONUS mortality area. It 
is important to note, however, that emerald ash 
borer damage is challenging to map during aerial 
surveys, that it is difficult to differentiate the 
occurrence of damage between years, and that 
agents other than emerald ash borer affect ash 
species. Fir engraver (Scolytus ventralis), identified 
on 412 000 ha, was the next most widely detected 
mortality agent, as in 2020 (Potter and Paschke 
2022). Three other agents were detected on >100 
000 ha. The first of these is characterized as an 
“unknown bark beetle” on approximately 230 
000 ha, with damage primarily in ponderosa pine 
(Pinus ponderosa) forests by a group of known 
and varied bark beetles impossible to distinguish 
using IDS data. This also has been characterized 
as “Southwest bark beetle complex” consisting 
mainly of damage caused by roundheaded 
pine beetle (D. adjunctus), western pine beetle 
(D. brevicomis), and ips beetles. As a separate 
individual agent, western pine beetle was detected 
on almost 158 000 ha, while eastern larch beetle 
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Table 2.1—Mortality agents and complexes affecting 
>5000 ha in the conterminous United States during 
2021

Agents/complexes causing mortality, 2021 Area (ha)a

Emerald ash borer 877 631

Fir engraver 411 511

Unknown bark beetleb 230 426

Western pine beetle 157 550

Eastern larch beetle 101 516

Mountain pine beetle 72 636

Pinyon ips 66 706

Douglas-fir beetle 61 653

Spruce beetle 57 443

Unknown 51 406

Western balsam bark beetle 35 521

Flatheaded fir borer 22 739

Balsam woolly adelgid 18 952

Oak decline 16 832

Jeffrey pine beetle 10 630

Subalpine fir decline 10 104

Ips engraver beetles 7822

Sudden oak death 6578

Other (42) 21 611

Total, all mortality agents 2 213 302
a All values are “footprint” areas for each agent or complex. The sum of the 
individual agents is not equal to the total for all agents due to the reporting 
of multiple agents per polygon.
b In the Interior West, this is primarily damage on ponderosa pines. The 
group of bark beetles is known and varied but not distinguishable from 
the air. Regions have characterized it as “Southwest bark beetle complex” 
consisting mainly of damage caused by roundheaded pine beetle, western 
pine beetle, and ips beetles.

(D. simplex) was identified on 102 000 ha. 
Meanwhile, mortality from the 14 IDS agents 
constituting the western bark beetle group  
(table 2.2) encompassed about 49 percent of all 
the 2021 mortality area across the CONUS (1.09 
million ha in the West). 

The Eastern FHM megaregion in 2021 had 
the largest area on which mortality agents and 
complexes were detected, about 1.02 million ha 
(table 2.3), within the surveyed area. The large 
majority of this (86.2 percent) was associated 
with emerald ash borer, which was detected on 
878 000 ha. Eastern larch beetle was next, at 102 
000 ha (10 percent of the total). Oak decline 
represented 1.7 percent and southern pine beetle 
was 0.5 percent of the total. Overall, 35 agents 
and complexes were identified in the megaregion. 
The ecoregion sections with the greatest mortality 
of surveyed tree canopy cover were 222M–
Minnesota and Northeast Iowa Morainal-Oak 
Savannah (6.66 percent) and 222L–North Central 
U.S. Driftless and Escarpment of southwestern 
Wisconsin, northeastern Iowa, and southeastern 
Minnesota (5.87 percent), places where emerald 
ash borer killed white, green, and black ash  
(F. americana, F. pennsylvanica, and F. nigra)  
(fig. 2.2). Parts of these ecoregion sections, 
along with 251C–Central Dissected Till Plains 
and 251B–North Central Glaciated Plains, 
encompassed hot spots of extremely high and very 
high mortality density (fig. 2.3).

Other ecoregion sections in the Eastern FHM 
megaregion with relatively high mortality were 
212M–Northern Minnesota and Ontario  
(1.92 percent of surveyed tree canopy cover), 
following an infestation of eastern larch beetle, and  
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Table 2.2—Beetle taxa included in the “western bark 
beetle” group in 2021

Western bark beetle mortality agents

Douglas-fir beetle Dendroctonus pseudotsugae

Douglas-fir engraver Scolytus unispinosus

Fir engraver Scolytus ventralis

Ips engraver beetles Ips spp.

Jeffrey pine beetle Dendroctonus jeffreyi

Mountain pine beetle Dendroctonus ponderosae

Pine engraver Ips pini

Pinyon ips Ips confusus

Roundheaded pine beetle Dendroctonus adjunctus

Silver fir beetle Pseudohylesinus sericeus

Spruce beetle Dendroctonus rufipennis

Unknown bark beetle —

Western balsam bark beetle Dryocoetes confusus

Western pine beetle Dendroctonus brevicomis

222I–Erie and Ontario Lake Plain (1.51 percent) 
because of emerald ash borer-caused mortality in 
white ash. Both ecoregion sections were locations 
of hot spots of moderate mortality density (fig. 
2.3). Oak decline was an issue in 223B–Interior 
Low Plateau-Transition Hills (0.49 percent) in 
south-central Indiana, while eastern larch beetle, 
emerald ash borer, and eastern spruce budworm 
(Choristoneura fumiferana) all caused mortality in 
212T–Northern Green Bay Lobe (0.31 percent).

The West Coast FHM megaregion had the 
second largest area of detected mortality within 
the area surveyed, about 748 000 ha linked to 24 
agents and complexes (table 2.3). Slightly more 
than half of this area (53.1 percent) was attributed 
to fir engraver (397 000 ha). Three other bark 
beetles were detected on large areas: western 
pine beetle on 157 000 ha (21.0 percent of the 
total), mountain pine beetle (D. ponderosae) on 
66 000 ha (8.8 percent), and Douglas-fir beetle 
(D. pseudotsugae) on 30 000 ha (4.0 percent). 
Much of eastern and northern California, as well 
as southwestern Oregon, had at least moderate 
mortality detected in their surveyed areas (>0.25 
percent) (fig. 2.2). First among these ecoregion 
sections was M261E–Sierra Nevada (1.13 
percent), where fir engraver caused mortality in 
California red fir (Abies magnifica var. shastensis), 
mountain pine beetle killed lodgepole pine  
(P. contorta), Jeffrey pine beetle (D. jeffreyi) 
resulted in mortality in Jeffrey pine (P. jeffreyi ),  
and western pine beetle affected ponderosa pine 
stands. Neighboring ecoregion sections also had 
high mortality: M261D–Southern Cascades 
(0.94-percent mortality of surveyed areas), 
M261A–Klamath Mountains (0.93 percent), 
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Table 2.3—The top five mortality agents or complexes for each Forest Health Monitoring megaregion 
and for Alaska and Hawaii in 2021

Mortality agents and complexes, 2021 Area (ha)a Mortality agents and complexes, 2021 Area (ha)a

Eastern West Coast
Emerald ash borer 877 631 Fir engraver 397 297
Eastern larch beetle 101 516 Western pine beetle 156 989
Oak decline 16 832 Mountain pine beetle 65 673
Unknown 11 147 Unknown 36 755
Southern pine beetle 4789 Douglas-fir beetle 29 896
Other mortality agents (30) 6171 Other mortality agents (19) 81 338
Total, all mortality agents and complexes 1 018 029 Total, all mortality agents and complexes 747 768

Interior West Alaska
Unknown bark beetleb 224 720 Spruce beetle 78 325
Pinyon ips 66 463 Hemlock sawfly 8510
Spruce beetle 56 884 Yellow-cedar decline 3299
Douglas-fir beetle 30 642 Western balsam bark beetle 36
Western balsam bark beetle 15 218 Aspen running canker 23
Other mortality agents (12) 51 930 Other mortality agents (4) 5
Total, all mortality agents and complexes 441 007 TOTAL 90 196

Southern Hawaii
Ips engraver beetles 2831 Unknownd 36 415
Unknown bark beetlec 1930 Total, all mortality agents and complexes 36 415
Douglas-fir beetlec 1115
Unknown 762
Needlecast 257
Other mortality agents (7) 482
Total, all mortality agents and complexes 6499

a The total area affected by other agents is listed at the end of each section. All values are “footprint” areas for each agent or complex. The sum 
of the individual agents is not equal to the total for all agents due to the reporting of multiple agents per polygon.
b In the Interior West, this is primarily damage on ponderosa pines. The group of bark beetles is known and varied but not distinguishable from 
the air. Regions have characterized it as “Southwest bark beetle complex” consisting mainly of damage caused by roundheaded pine beetle, 
western pine beetle, and ips beetles.
c Personnel from Forest Service Region 3 (Southwestern Region) conducted surveys into southwestern Texas (Region 8 [Southern Region]) 
because of extended damage in the Guadalupe Mountains which included Douglas-fir beetle and “unknown bark beetle” damage on ponderosa 
pines (see note b in table 2.1). 
d Most of the mortality recorded in Hawaii is coded as “unknown” mortality on ‘ōhiʻa lehua. Damage is likely attributed to rapid ʻōhiʻa death but 
has not been confirmed in all cases. 
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Figure 2.2—The percentage of surveyed tree canopy cover area with insect and disease mortality, by ecoregion section within the conterminous 
United States, for 2021. The gray lines delineate ecoregion sections (Cleland and others 2007), and blue lines delineate Forest Health Monitoring 
megaregions. The 240-m tree canopy cover is based on data from a cooperative project between the Multi-Resolution Land Characteristics 
Consortium (Coulston and others 2012) and the Forest Service Geospatial Technology and Applications Center using the 2011 National Land 
Cover Database. (Data source: U.S. Department of Agriculture, Forest Service, Forest Health Protection)
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M261G–Modoc Plateau (0.68 percent), 
and 341D–Mono (0.56 percent). California 
encompassed three hot spots of moderate 
mortality density, one in the northern part of the 
State and two in the Sierra Nevada (fig. 2.3).

Damage from 17 mortality agents and 
complexes was identified across 441 000 ha 
in the Interior West FHM megaregion in 
2021 (table 2.3). The primary agent was the 
set of unknown bark beetles characterized as 
“Southwest bark beetle complex” in ponderosa 
pine forests, described above. This was associated 
with mortality on approximately 225 000 ha, 
or 51 percent of the total in the region. Other 
widespread agents were pinyon ips (Ips confusus) 
(66 000 ha, 15.1 percent), spruce beetle  
(D. rufipennis) (57 000 ha, 12.9 percent), Douglas-
fir beetle (31 000 ha, 6.9 percent), and western 
balsam bark beetle (Dryocoetes confusus) (15 000 
ha, 3.5 percent).

The Interior West ecoregion section with the 
highest mortality was 315A–Pecos Valley in 
east-central New Mexico (fig. 2.2), with mortality 
on 5.17 percent of surveyed tree canopy cover 
within the surveyed area. This mortality was 
associated with Southwest bark beetle complex, 
Douglas-fir beetle, and pinyon ips. These agents, 
along with fir engraver in white fir (A. concolor), 
were responsible for the relatively high levels 
of mortality in other ecoregion sections of the 
Southwest: 313C–Tonto Transition (1.56 percent), 
M313A–White Mountains-San Francisco Peaks-
Mogollon Rim (0.93 percent), 313D–Painted 
Desert (0.75 percent), 313B–Navajo Canyonlands1 

1 This ecoregion section appears as 313B–Navaho Canyonlands in Cleland and others (2007).

(0.57 percent), and 313A–Grand Canyon (0.56 
percent). A hot spot of moderate and high 
mortality densities occurred in M313A–White 
Mountains-San Francisco Peaks-Mogollon Rim 
and 313C–Tonto Transition (fig. 2.3).

Approximately 6500 ha in the Southern FHM 
megaregion had recorded damage from 12 
mortality agents and complexes in 2021 (table 
2.3). Ips engraver beetles represented the most 
widely detected agent, on 2800 ha or 44 percent 
of the total. The next two most widespread agents, 
the “unknown bark beetle” agent noted above and 
Douglas-fir beetle, caused damage in ponderosa 
pine forests of the Guadalupe Mountains of 
western Texas. As a result of these two agents, 
the 321A–Basin and Range ecoregion section of 
far-west Texas had 0.28-percent mortality of the 
surveyed tree canopy area (fig. 2.2).

Conterminous United States Defoliation
The national IDS in 2021 identified 56 defoliation 
agents and complexes affecting approximately 
1.67 million ha within the area surveyed across 
the CONUS (table 2.4), which is almost equal to 
the land area of Hawaii. This is somewhat higher 
than in 2020, when defoliation across 1.54 million 
ha was attributed to 59 defoliating agents (Potter 
and Paschke 2022), although only about half as 
much area was surveyed in 2020. Spongy moth 
was the most widely detected defoliation agent in 
2021, found on 1.02 million ha or 61.2 percent 
of the total defoliation area. This was a change 
from the previous 3 years, during which eastern 
spruce budworm was the most widely detected 
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defoliation agent (Potter and Paschke 2022; Potter 
and others 2020b, 2021). In 2021, eastern spruce 
budworm was identified on about 183 000 ha, 
or 10.9 percent of the total. This was followed by 
western spruce budworm (C. freemani) on 172 
000 ha (10.3 percent of the total). No other agents 
were detected on >100 000 ha, but browntail moth 
(Euproctis chrysorrhoea) (80 000 ha, 4.8 percent), 
which is currently only a problem in the coastal 
region of the Northeast, and Gelechiid moths/
needleminers (Coleotechnites spp.) (41 000 ha, 2.4 
percent) were relatively widespread.

The Eastern FHM megaregion had by far the 
largest area on which defoliation was detected 
in 2021, 1.36 million ha (table 2.5). Surveyors 
identified 33 defoliation agents in the surveyed 
area, with three-quarters of the defoliation area 
attributed to spongy moth (1.02 million ha). 
Other major defoliators were eastern spruce 
budworm (183 000 ha, 13.4 percent), browntail 
moth (80 000 ha, 5.8 percent), and locust 
leafminer (Odontota dorsalis) (21 000 ha,  
1.6 percent). 

As in 2020, two ecoregion sections in 
the Great Lakes area exceeded 5-percent 
defoliation of surveyed canopy cover (fig. 2.4): 
212H–Northern Lower Peninsula of Michigan 
and 212L–Northern Superior Uplands in 
northeastern Minnesota. The defoliation in the 
Lower Peninsula was caused by spongy moth in 
hardwood forests, while the Northern Superior 
Uplands mortality was the result of eastern 
spruce budworm in fir and spruce forests. These 
ecoregions encompassed three hot spots of very 
high defoliation density (fig. 2.5).

Table 2.4—Defoliation agents and complexes affecting 
>5000 ha in the conterminous United States in 2021

Agents/complexes causing defoliation, 2021 Area (ha)a

Spongy moth 1 024 902

Eastern spruce budworm 183 159

Western spruce budworm 171 926

Browntail moth 79 587

Gelechiid moths/needleminers 40 509

Pinyon needle scale 22 587

Locust leafminer 21 168

Unknown 17 180

Balsam woolly adelgid 14 432

Unknown defoliator 14 073

Maple leafcutter 10 541

Douglas-fir tussock moth 10 390

Other defoliator, known (code pending) 8937

Fall cankerworm 8447

Large aspen tortrix 8079

Forest tent caterpillar 8014

Larch casebearer 5300

Other (39) 25 816

Total, all defoliation agents 1 673 020
a All values are “footprint” areas for each agent or complex. The sum of the 
individual agents is not equal to the total for all agents due to the reporting of 
multiple agents per polygon.
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Table 2.5—The top five defoliation agents or complexes for each Forest Health Monitoring megaregion and for 
Alaska and Hawaii in 2021

Defoliation agents and complexes, 2021 Area (ha)a Defoliation agents and complexes, 2021 Area (ha)a

Eastern West Coast
Spongy moth 1 017 414 Balsam woolly adelgid 14 432
Eastern spruce budworm 183 159 Unknown 10 900
Browntail moth 79 587 Douglas-fir tussock moth 4841
Locust leafminer 21 168 Lodgepole needleminer 3440
Maple leafcutter 10 541 Lodgepole sawfly 1290
Other defoliation agents (28) 51 102 Other defoliation agents (13) 3888
Total, all defoliation agents and complexes 1 362 419 Total, all defoliation agents and complexes 37 690

Interior West Alaska
Western spruce budworm 171 926 Western blackheaded budworm 210 412
Gelechiid moths/needleminers 40 509 Aspen leafminer 59 163
Pinyon needle scale 22 587 Birch leafminer 19 307
Unknown defoliator 13 647 Rusty tussock moth 17 855
Douglas-fir tussock moth 5549 Unknown defoliator 6917
Other defoliation agents (6) 7215 Other defoliation agents (37) 5800
Total, all defoliation agents and complexes 261 059 Total, all defoliation agents and complexes 314 219

Southern Hawaii
Spongy moth 7487 ‘Ōhi‘a/guava rust 0
Loblolly pine sawfly 3425 Total, all defoliation agents and complexes 0
Other defoliator 458
Dothistroma needle blight (D. pini) 454
Unknown 27
Total, all defoliation agents and complexes 11 852

a The total area affected by other agents is listed at the end of each section. All values are “footprint” areas for each agent or complex. The sum of the 
individual agents is not equal to the total for all agents due to the reporting of multiple agents per polygon.
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Figure 2.4—The percentage of surveyed tree canopy cover area with insect and disease defoliation, by ecoregion section within the conterminous 
United States, for 2021. The gray lines delineate ecoregion sections (Cleland and others 2007), and blue lines delineate Forest Health Monitoring 
megaregions. The 240-m tree canopy cover is based on data from a cooperative project between the Multi-Resolution Land Characteristics 
Consortium (Coulston and others 2012) and the Forest Service Geospatial Technology and Applications Center using the 2011 National Land 
Cover Database. (Data source: U.S. Department of Agriculture, Forest Service, Forest Health Protection)  
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The Eastern megaregion encompassed several 
other areas of high defoliation (>2.5 percent of 
surveyed canopy area). Several in New York and 
northern Pennsylvania were the result of spongy 
moth infestations (fig. 2.4):
•	M211D–Adirondack Highlands (4.91-percent 

defoliation of surveyed canopy area)
•	211G–Northern Unglaciated Allegheny 

Plateau (4.85 percent)
•	211F–Northern Glaciated Allegheny Plateau 

(4.06 percent)
•	222I–Erie and Ontario Lake Plain (2.67 

percent) 
•	211E–St. Lawrence and Champlain Valley 

(2.66 percent) 
These ecoregion sections were also the location 
of three hot spot areas of high defoliation density 
(fig. 2.5).

Farther west in the Great Lakes region, 
2.88-percent defoliation in 222J–South Central 
Great Lakes on the Lower Peninsula of 
Michigan was caused by spongy moth, while the 
2.75-percent defoliation of 212Y–Southwest Lake 
Superior Clay Plain (in northern Minnesota and 
Wisconsin and the Upper Peninsula of Michigan) 
was caused by large aspen tortrix (Choristoneura 
conflictana). Elsewhere, moderate levels of 
defoliation (1–2.5 percent) occurred in 212S–
Northern Upper Peninsula (1.89 percent) because 
of an eastern spruce budworm outbreak, in 211D–
Central Maine Coastal and Embayment (1.74 
percent) because of a browntail moth infestation 
in northern red oak (Quercus rubra) stands, and 
in 222U–Lake Whittlesey Glaciolacustrine Plain 

(1.68 percent) and M221A–Northern Ridge and 
Valley (1.11 percent) because of spongy moth. 
All these areas had hot spots of at least moderate 
defoliation density (fig. 2.5).

In the Interior West FHM megaregion, 261 000 
ha of damage in the surveyed area was attributed 
to 11 defoliators (table 2.5). As in recent years 
(Potter and Paschke 2022; Potter and others 
2020b, 2021), western spruce budworm (172 000 
ha) encompassed most of this area (65.9 percent). 
Gelechiid moths/needleminers were identified 
on 41 000 ha (15.5 percent), pinyon needle 
scale (Matsucoccus acalyptus) on 23 000 ha (8.7 
percent), and Douglas-fir tussock moth (Orgyia 
pseudotsugata) on 6000 ha (2.1 percent).

The Interior West ecoregion section with the 
highest percent defoliation of surveyed canopy 
area (3.57 percent) was M331F–Southern Parks 
and Rocky Mountain Range, where outbreaks 
of Gelechiid moths/needleminers in ponderosa 
pine, western spruce budworm in fir and spruce, 
and an unknown defoliator in quaking aspen 
(Populus tremuloides) were detected (fig. 2.4). 
Meanwhile, western spruce budworm was 
the primary defoliation agent in the nearby 
M331G–South-Central Highlands ecoregion 
section (2.10-percent defoliation). Together, this 
damage caused a hot spot of moderate defoliation 
density in north-central New Mexico and south-
central Colorado (fig. 2.5). Defoliation was also 
relatively high in M313B–Sacramento-Manzano 
Mountains to the south (0.77 percent), mostly 
because of pinyon needle scale.

Farther north, an outbreak of Douglas-
fir tussock moth resulted in relatively high 
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defoliation (1.52 percent of surveyed canopy 
area) in 342C–Owyhee Highlands, while western 
spruce budworm was detected in M331J–Wind 
River Mountains (0.89 percent) and M331B–
Bighorn Mountains (0.79 percent).

Meanwhile, 18 defoliating agents were recorded 
as affecting about 38 000 ha of surveyed area in 
the West Coast FHM megaregion during 2021 
(table 2.5). Balsam woolly adelgid (Adelges piceae) 
was the most commonly detected, on 14 000 ha 
or 38.2 percent of all defoliation. An additional 
11 000 ha of defoliation was attributed to an 
unknown defoliating agent (28.9 percent), while 
Douglas-fir tussock moth was detected on 4800 
ha (12.8 percent) and lodgepole needleminer 
(Coleotechnites milleri ) was found on 3400 ha 
(9.1 percent). No West Coast ecoregion section 
exceeded 1-percent defoliation of surveyed 
canopy area (fig. 2.4), and the megaregion did not 
encompass any defoliation hot spots (fig. 2.5).

In the Southern FHM megaregion, spongy 
moth (7500 ha, 63.1 percent of the total) was 
the most widely detected of five defoliation 
agents across 12 000 ha (table 2.5) within the 
surveyed area. Loblolly pine sawfly (Neodiprion 
taedae linearis) and Dothistroma needle blight 
(Dothistroma pini ) were the other two identified 
defoliation agents, on 3400 ha and 500 ha, 
respectively (28.9 percent and 3.8 percent of 
defoliation area in the region). M221A–Northern 
Ridge and Valley in northern Virginia had 
1.11-percent defoliation of the surveyed area  
(fig. 2.4) because of spongy moth detections. There 
were no defoliation hot spots in the megaregion 
(fig. 2.5).

Alaska and Hawaii
Surveyors detected 90 000 ha of mortality in 
Alaska in 2021 associated with nine agents (table 
2.3), a slight increase in area from 2020. Spruce 
beetle, as in previous years, was the most widely 
detected mortality agent, representing 86.8 
percent of the total for the State, across 78 000 
ha. Two other mortality agents had a relatively 
extensive footprint, hemlock sawfly (Neodiprion 
tsugae), detected on 8500 ha (9.4 percent of the 
total), and yellow-cedar decline, identified on 
3300 ha or 3.7 percent of the total. 

As in 2020 (Potter and Paschke 2022), spruce 
beetle mortality was high in stands of white 
spruce (Picea glauca) in south-central Alaska  
(fig. 2.6), with extremely high 10.31-percent 
mortality across surveyed forest and shrubland in 
M133B–Alaska Range and a relatively high 2.58 
percent in 133A–Cook Inlet Basin. M241C–
Chugach-St. Elias Mountains also experienced 
spruce beetle mortality (0.31 percent). Meanwhile, 
mortality from hemlock sawfly in western 
hemlock (Tsuga heterophylla) stands and from 
yellow-cedar decline resulted in 0.15-percent 
mortality of the surveyed forest and shrubland of 
M241D–Alexander Archipelago in the Alaska 
panhandle.

Alaska experienced 314 000 ha of defoliation in 
2021 (table 2.5), a considerable increase from the 
68 000 ha detected in 2020 (Potter and Paschke 
2022). This area was greater than any of the FHM 
regions in the CONUS except the Eastern, which 
experienced an extensive spongy moth outbreak. 
Of the 42 defoliating agents, western blackheaded 
budworm (Acleris gloverana) was the most 
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Figure 2.6—Percentage of 2021 surveyed Alaska forest and shrubland area within ecoregions with mortality caused by insects and diseases. The gray 
lines delineate ecoregion sections (Spencer and others 2002). Forest and shrub cover is derived from the 2011 National Land Cover Database. (Data 
source: U.S. Department of Agriculture, Forest Service, Forest Health Protection)
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widely detected, on 210 000 ha, or 66.9 percent 
of the total defoliation area. Other widespread 
defoliators were aspen leafminer (Phyllocnistis 
populiella) on 59 000 ha (18.8 percent of the total), 
birch leafminer (Fenusa pusilla) on 19 000 ha (6.1 
percent), and rusty tussock moth (Orgyia antiqua) 
on 18 000 ha (5.7 percent).

The highest levels of defoliation (5.03 percent 
of surveyed forest and shrubland) occurred in 
M241D–Alexander Archipelago in the Alaska 
panhandle, the location of a western blackheaded 
budworm outbreak in western hemlock (fig. 2.7). 
Four ecoregion sections in east-central Alaska had 
relatively high defoliation (>1 percent) because of 
activity by aspen leafminer, birch leafminer, and 
willow leaf blotchminer (Micrurapteryx salicifoliella):
•	M132C–Yukon-Tanana Uplands (1.94 percent 

of surveyed forest and shrubland)
•	M132E–Ray Mountains (1.49 percent)
•	132A–Yukon-Old Crow Basin (1.24 percent)
•	132C–Tanana-Kuskokwim Lowlands (1.15 

percent).
Rusty tussock moth was the primary defoliator in 
M133B–Alaska Range (0.85-percent defoliation), 
while birch leafminer was detected in 133A–Cook 
Inlet Basin (0.35 percent).

Meanwhile, surveyors detected approximately 
36 000 ha of mortality in Hawaii during 2021 
(table 2.3), compared to 32 000 ha in 2020 (Potter 
and Paschke 2022) and 27 000 ha in 2019 (Potter 
and others 2021). While the mortality was not 
attributed to a specific agent, at least some of 
the damage was likely the result of rapid ‘ōhi‘a 
death. This wilt disease is caused by two fungal 

pathogens, the more aggressive Ceratocystis 
lukuohia and the less aggressive C. huliohia, which 
both can kill ‘ōhi‘a lehua (Metrosideros polymorpha) 
(Barnes and others 2018). This endemic species 
is the most abundant native tree in Hawaii, 
where it is deeply woven into Hawaiian culture 
(University of Hawai‘i 2022). Both pathogens 
have been confirmed on Hawai‘i Island, where 
most detections are of the more aggressive  
C. lukuohia, and on the island of Kaua‘i 
(University of Hawai‘i 2022). In 2019, a small 
number of trees infected with C. huliohia were 
detected on O‘ahu and Maui, but it has not 
been detected on Maui since then (University of 
Hawai‘i 2022).

Mortality was high across most of the montane 
wet ecoregions of Hawai‘i Island, with extremely 
high mortality in Montane Wet-Hawai‘i-Ka‘ū 
(MWh-ka), where mortality was identified on 
6.47 percent of the surveyed tree canopy area  
(fig. 2.8). Montane Wet-Hawai‘i-Kona (MWh-
ko) had 2.80-percent mortality, followed by 
Montane Wet-Hawai‘i-Hilo-Puna (MWh-hp) 
(2.17 percent) and Montane Wet-Hawai‘i-
Kohala-Hāmākua (MWh-kh) (1.27 percent). 
There was 0.62-percent mortality of surveyed 
canopy area in the Mesic-Hawai‘i ecoregion. High 
to moderate levels of mortality were also detected 
in three ecoregions on the island of Kaua‘i: 
Lowland Wet-Kaua‘i (LWk) (1.35 percent of 
surveyed tree canopy area), Montane Wet-Kaua‘i 
(MWk) (0.61 percent), and Mesic-Kaua‘i (MEk) 
(0.37 percent).
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Figure 2.7—Percentage of 2021 surveyed Alaska forest and shrubland area within ecoregions with defoliation caused by insects and diseases. The gray 
lines delineate ecoregion sections (Spencer and others 2002). Forest and shrub cover is derived from the 2011 National Land Cover Database. (Data 
source: U.S. Department of Agriculture, Forest Service, Forest Health Protection) 
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Figure 2.8—Percentage of 2021 surveyed Hawaii tree canopy area within island/ecoregion combinations with mortality caused by insects and 
diseases. Tree canopy cover is based on data from a cooperative project between the Multi-Resolution Land Characteristics Consortium (Coulston and 
others 2012) and the Forest Service Geospatial Technology and Applications Center using the 2011 National Land Cover Database. See table 1.1 for 
ecoregion identification. (Data source: U.S. Department of Agriculture, Forest Service, Forest Health Protection) 
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CONCLUSIONS
In 2021, forest health surveyors identified 60 
mortality-causing agents and complexes across 
the CONUS on approximately 2.21 million ha, 
an area slightly less than the land area of New 
Hampshire. Emerald ash borer was the most 
widely detected mortality agent, identified on 
about 878 000 ha across the Eastern FHM 
megaregion, though mortality caused by this 
insect agent is challenging to map given the 
low density of ash in northern forests and other 
agents that also can cause ash mortality. This is 
consistent with recent years. Fir engraver caused 
extensive mortality in parts of the West, but the 
area of its impact has declined from recent years 
(e.g., Potter and others 2020b, 2021). As in recent 
years, Alaska experienced extensive mortality 
from spruce beetle, while much of the mortality in 
Hawaii may be associated with rapid ‘ōhi‘a death.

Meanwhile, the national IDS reported damage 
in 2021 from 56 defoliation agents and complexes 
affecting approximately 1.67 million ha across 
the CONUS, almost equal to the land area of 
Hawaii. The majority of this defoliation was the 
result of a spongy moth outbreak, primarily in the 
Eastern FHM megaregion but in the Southern 
megaregion as well. Alaska had extensive 
defoliation, caused mostly by western blackheaded 
budworm in the Alexander Archipelago in the 
panhandle, as well as by aspen leafminer, birch 
leafminer, and rusty tussock moth in the interior 
of the State.

Continued monitoring of insect and disease 
outbreaks across the United States can guide 
appropriate follow-up investigation and 

management activities. Due to limitations of 
survey efforts to detect certain important forest 
insects and diseases, pests and pathogens discussed 
in this chapter do not include all the biotic forest 
health threats that are important to consider 
when making management decisions and budget 
allocations. However, large-scale assessments 
of mortality and defoliation severity represent 
a useful approach for identifying geographic 
areas where concentrations of monitoring and 
management activities might be most effective. 
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INTRODUCTION

W ildland fire is a pervasive disturbance agent 
in many forest ecosystems across the United 
States, causing widespread tree damage 

and mortality and impacting forest health both 
positively and negatively (Agee 1998, Thom and 
Seidl 2016, Wade and others 2000). Some forest 
types and tree species are adapted to fire under 
certain intensities and return intervals (Hanberry 
and others 2018, Jeronimo and others 2019). In 
some ecosystems, wildland fire has been essential 
for regulating processes that maintain forest 
health (Lundquist and others 2011). For example, 
it is an important ecological mechanism that 
shapes the distributions of species, maintains the 
structure and function of fire-prone communities, 
and acts as a significant evolutionary force (Bond 
and Keeley 2005, Pausas and Keeley 2019).

At the same time, wildland fires have created 
forest health and sustainability problems in some 
ecosystems (Edmonds and others 2011). Fires 
in some regions and ecosystems have become 
larger, more intense, and more damaging because 
of the accumulation of fuels from prolonged 
fire suppression (Pyne 2010). Robust research 
indicates that climate change, via more common 
drought conditions and higher temperatures, has 
already played a role in increased wildfire activity 
(Abatzoglou and Williams 2016, Higuera and 
Abatzoglou 2021). Current fire regimes on more 
than half the forested area in the conterminous 
United States (CONUS) have been moderately 
or significantly altered from historical regimes 
(Barbour and others 1999), potentially altering 
key ecosystem components, such as species 

composition, structural stage, stand age, canopy 
closure, and fuel loadings (Schmidt and others 
2002, Stephens and others 2018). Evidence, 
in fact, suggests that few entirely natural fire 
regimes remain in North America (Parisien 
and others 2016). Such changes in fire intensity 
and recurrence could result in decreased forest 
resilience and persistence (Lundquist and others 
2011), with plant communities in some regions 
undergoing rapid compositional and structural 
changes following fire suppression (Coop and 
others 2020, Nowacki and Abrams 2008). 

In addition to their ecological and forest health 
consequences, large wildland fires also can have 
long-lasting social and economic consequences, 
including the loss of human life and property, 
smoke-related human health impacts, and the 
economic cost and dangers of fighting the fires 
themselves (Gill and others 2013, Richardson 
and others 2012). These impacts are particularly 
intense within the wildland-urban interface, 
the zone in which human development mixes 
with forest (Calkin and others 2015, Radeloff 
and others 2018). Additionally, exposure to 
wildfire smoke may have increased SARS-CoV-2 
positivity rates among the public and thereby 
exacerbated the COVID-19 pandemic (Kiser 
and others 2021), while inhalation of wildfire 
smoke may have exposed firefighters to increased 
likelihood of SARS-CoV-2 infection and 
increased COVID-19 disease severity (Navarro 
and others 2021).

This chapter presents analyses of daily satellite-
based fire occurrence data that map and quantify 
the locations and intensities of fire occurrences 
spatially across the CONUS, Alaska, Hawaii, and 

https://doi.org/10.2737/SRS-GTR-273-Chap3
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the Caribbean territories in 2021. It also compares 
2021 fire occurrences, within a geographic context, 
to all the recent years for which such data are 
available. Quantifying and monitoring such large-
scale patterns of fire occurrence across the United 
States, as described in this chapter, can help 
improve our understanding of the ecological and 
economic impacts of fire. Specifically, large-scale 
assessments of fire occurrence can help identify 
areas where specific management activities may 
be needed, or where research into the ecological 
and socioeconomic impacts of fires would be 
beneficial. 

METHODS
Data
The Moderate Resolution Imaging 
Spectroradiometer (MODIS) Rapid Response 
System ( Justice and others 2002, 2011) extracts 
fire location and intensity information from 
the thermal infrared bands of imagery collected 
daily by two satellites at a resolution of 1 km, 
with the center of a pixel recorded as a fire 
occurrence (NASA Fire Information for Resource 
Management System 2022a). The MODIS 
Active Fire Detections for the United States 
database (NASA Fire Information for Resource 
Management System 2022b) allows analysts to 
spatially display and summarize fire occurrences 
across broad geographic regions for monitoring 
and reporting of wildland fire events (Coulston 
and others 2005; Potter 2012a, 2012b, 2013a, 
2013b, 2014, 2015a, 2015b, 2016, 2017, 2018, 
2019, 2020, 2021, 2022). The Terra and Aqua 
satellites’ MODIS sensors identify the presence 

of a fire at the time of image collection by using 
a contextual algorithm that exploits the strong 
emission of mid-infrared radiation from fires 
(Giglio and others 2003). A fire occurrence 
is defined as one daily satellite detection of 
wildland fire in an approximately 1-km pixel, with 
multiple fire occurrences possible on a pixel across 
multiple days resulting from a single wildland 
fire that lasts more than 1 day. The resulting fire 
occurrence data represent only whether a fire 
was active because the MODIS data bands may 
not differentiate between a hot fire in a relatively 
small area (0.01 km2, for example) and a cooler 
fire over a larger area (1 km2, for example) if the 
foreground-to-background temperature contrast 
is not sufficiently high. The MODIS Active Fire 
database does well at capturing large fires during 
cloud-free conditions but may underrepresent 
rapidly burning, small, and low-intensity fires, as 
well as fires in areas with frequent cloud cover 
(Hawbaker and others 2008). The likelihood 
of detecting a fire beneath a tree canopy is 
probably low given the smaller general size of 
such fires and the fact that they are obscured 
by the canopy (Giglio and others 2018). For 
large-scale assessments, the dataset represents 
a good alternative to the use of ignition point 
information, which can be difficult to obtain or 
may not exist for many fires (Tonini and others 
2009). The fire occurrence data additionally do not 
distinguish fires intentionally set for management 
purposes (controlled burns), which are common 
in some parts of the United States, such as the 
South, where many prescribed fires are smaller 
and/or lower severity and thus not detected 
by satellite sensors (Nowell and others 2018). 
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More information about the performance of this 
product is provided by Justice and others (2011). 

It is important to underscore that estimates of 
burned area (e.g., Monitoring Trends in Burn 
Severity data [Eidenshink and others 2007, 
Picotte and others 2020]) and calculations of 
MODIS-detected fire occurrences are two 
different metrics for quantifying fire activity 
within a given year. Most importantly, the 
MODIS data contain both spatial and temporal 
components because persistent fire will be 
detected repeatedly over several days on a given 
1-km pixel. In other words, a location can have 
a fire occurrence multiple times, once for each 
day a fire is detected at the location. Analyses of 
the MODIS-detected fire occurrences, therefore, 
measure the total number of daily 1-km pixels 
with fire during a year, as opposed to quantifying 
only the area on which fire occurred at some point 
during that timeframe. A fire detected on a single 
pixel every day for a week, for example, would be 
equivalent to seven fire occurrences.

The Terra and Aqua satellites that carry the 
MODIS sensors were launched in 1999 and 
2002, respectively, and will be decommissioned 
eventually. An alternative fire occurrence data 
source is the Visible Infrared Imaging Radiometer 
Suite (VIIRS) sensors on board the Suomi 
National Polar-orbiting Partnership (Suomi NPP) 
and NOAA-20 weather satellites. The transition 
to VIIRS data for national and regional fire 
occurrence monitoring will require a comparison 
of fire occurrence detections between it and 
MODIS. This is because science-ready VIIRS 
fire data are available from 2015 onward (NASA 
Fire Information for Resource Management 

System 2022a) compared to more than 20 years 
for the MODIS data. It would be ideal for 
assessments of fire occurrence trends to analyze 
as long a temporal window as possible (i.e., from 
near the beginning of MODIS data availability), 
encompassing the combination of older MODIS 
data with newer VIIRS data. 

Analyses
Using ArcMap® (ESRI 2017), I processed 
these MODIS products for 2021 and for the 
20 preceding full years of data (beginning in 
2001 because of issues with data collection and 
processing from the Terra satellite in 2000) 
to determine forest fire occurrence density 
for (1) ecoregion sections in the CONUS 
(Cleland and others 2007), (2) ecoregions on 
each of the major islands of Hawaii (Potter 
2023), and (3) the islands of the Caribbean 
territories of Puerto Rico and the U.S. Virgin 
Islands. Fire occurrence density is the number 
of fire occurrences per 100 km2 (10 000 ha) of 
tree canopy cover area. I calculated forest fire 
occurrence density metrics for the CONUS, 
Hawaii, and the Caribbean territories for each 
year after screening out wildland fires that did 
not intersect with tree canopy data. The tree 
canopy data had been resampled to 240 m from 
a 30-m raster dataset that estimates percentage 
of tree canopy cover (from 0 to 100 percent) 
for each grid cell. This dataset was generated 
from the 2011 National Land Cover Database 
(NLCD) (Homer and others 2015) through a 
cooperative project between the Multi-Resolution 
Land Characteristics Consortium and the U.S. 
Department of Agriculture, Forest Service, 
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Geospatial Technology and Applications Center 
(GTAC) (Coulston and others 2012). I treated 
any cell with >0-percent tree canopy cover as 
forest. Comparable tree canopy cover data were 
not available for Alaska, so I instead created a 
240-m-resolution layer of forest and shrub cover 
from the 2011 NLCD. I then intersected the 
MODIS fire occurrence detection data with 
this layer and with ecoregion sections (Spencer 
and others 2002) to calculate the number of fire 
occurrences per 100 km2 of forest and shrub cover 
within each ecoregion section in Alaska. 

I also separately determined the total numbers 
of forest fire occurrences for the CONUS, Alaska, 
Hawaii, and the Caribbean territories after 
clipping the MODIS fire occurrences by the tree 
canopy cover or tree and shrub cover data.

I compared the fire occurrence density value 
for each of the ecoregions of the States and for 
the Caribbean territories in 2021 with the mean 
fire density values for the first 20 full years of 
MODIS Active Fire data collection (2001–2020). 
Specifically, I divided the difference of the 2021 
value and the previous 20-year mean for the area 
by the standard deviation across the previous 
20-year period, assuming a normal distribution 
of fire density over time. The result for each 
ecoregion was a standardized z-score, which is 
a dimensionless quantity describing the degree 
to which the fire occurrence density in the area 
in 2021 was higher, lower, or the same relative 
to all the previous years for which data have 
been collected, accounting for the variability in 
the previous years. The z-score is the number 
of standard deviations between the observation 
and the mean of the historic observations in 

the previous years. Approximately 68 percent 
of observations would be expected within one 
standard deviation of the mean, and 95 percent 
within two standard deviations. Near-normal 
conditions are those within a single standard 
deviation of the mean, although such a threshold 
is somewhat arbitrary. Conditions between about 
one and two standard deviations of the mean are 
moderately different from mean conditions but 
are not significantly different statistically. Those 
outside about two standard deviations would be 
considered statistically greater than or less than 
the long-term mean (p <0.025 at each tail of the 
distribution).

Additionally, I used the Spatial Association of 
Scalable Hexagons (SASH) analytical approach 
to identify forested areas in the CONUS with 
higher than expected fire occurrence density in 
2021. This method identifies locations where 
ecological phenomena occur at greater or lower 
occurrences than expected by random chance 
and is based on a sampling frame optimized for 
spatial neighborhood analysis, adjustable to the 
appropriate spatial resolution, and applicable to 
multiple data types (Potter and others 2016). 
Specifically, it consists of dividing an analysis area 
into scalable equal-area hexagonal cells within 
which data are aggregated, followed by identifying 
statistically significant geographic clusters of 
hexagonal cells within which mean values are 
greater or less than those expected by chance. To 
identify these clusters, I employed a Getis-Ord 
Gi* hot spot analysis (Getis and Ord 1992) in 
ArcMap® 10.5.1 (ESRI 2017). 

The spatial units of analysis were 9,810 
hexagonal cells, each approximately 834 km2 in 
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area, generated in a lattice across the CONUS 
using intensification of the Environmental 
Monitoring and Assessment Program (EMAP) 
North American hexagon coordinates (White 
and others 1992). These coordinates are the 
foundation of a sampling frame in which 
a hexagonal lattice was projected onto the 
CONUS by centering a large base hexagon 
over the region (Reams and others 2005, 
White and others 1992). The hexagons are 
compact and uniform in their distance to the 
centroids of neighboring hexagons, meaning 
that a hexagonal lattice has a higher degree 
of isotropy (uniformity in all directions) than 
does a square grid (Shima and others 2010). 
These attributes are highly useful for spatial 
neighborhood analyses. Importantly, these 
scalable hexagons also are independent of 
geopolitical and ecological boundaries, avoiding 
the possibility of different sample units (such as 
counties, States, or watersheds) encompassing 
vastly different areas (Potter and others 2016). I 
selected hexagons 834 km2 in area because this 
is a manageable size for making monitoring and 
management decisions in analyses across the 
CONUS (Potter and others 2016).

Fire occurrence density values were calculated as 
the number of forest fire occurrences per 100 km2 
of tree canopy cover area within a hexagon. I used 
the Getis-Ord Gi* statistic to identify clusters of 
hexagonal cells with fire occurrence density values 
higher than expected by chance. This statistic 
allows for the decomposition of a global measure 
of spatial association into its contributing factors, 
by location, and is therefore particularly suitable 
for detecting outlier assemblages of similar 

conditions in a dataset, such as when spatial 
clustering is concentrated in one subregion of the 
data (Anselin 1992).

Briefly, Gi* sums the differences between the 
mean values in a local sample, determined in this 
case by a moving window of each hexagon and 
its 18 first- and second-order neighbors (the 6 
adjacent hexagons and the 12 additional hexagons 
contiguous to those 6) and the global mean of the 
9,644 hexagonal cells with tree canopy cover (of 
the total 9,810) in the CONUS. As described in 
Laffan (2006), it is calculated as:

where
Gi* = the local clustering statistic (in this case, 
for the target hexagon)
i = the center of local neighborhood (the target 
hexagon)
d = the width of local sample window (the 
target hexagon and its first- and second-order 
neighbors)
xj = the value of neighbor j
wij = the weight of neighbor j from location i 
(all the neighboring hexagons in the moving 
window were given an equal weight of 1)
n = the number of samples in the dataset (the 
9,644 hexagons containing >5-percent tree 
cover and with at least 1 percent of the canopy 
cover surveyed)
Wi* = the sum of the weights
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s*1i = the number of samples within d of the 
central location (19: the focal hexagon and its 
18 first- and second-order neighbors)
x –  * = mean of whole dataset (in this case, the 
9,644 hexagons)
s* = the standard deviation of whole dataset (for 
the 9,644 hexagons)

Gi* is standardized as a z-score with a mean 
of 0 and a standard deviation of 1, with values 
>1.96 representing significant local clustering 
of higher fire occurrence densities (p <0.025) 
and values <-1.96 representing significant 
clustering of lower fire occurrence densities (p 
<0.025), because 95 percent of the observations 
under a normal distribution should be within 
approximately two standard deviations of the 
mean (Laffan 2006). Values between -1.96 
and 1.96 have no statistically significant 
concentration of high or low values. In other 
words, a hexagon and its 18 neighbors have a 
normal range of both high and low numbers 
of fire occurrences per 100 km2 of tree canopy 
cover area. The threshold values are not exact 
because the correlation of spatial data violates 
the assumption of independence required for 
statistical significance (Laffan 2006). In addition, 
the Getis-Ord approach does not require that 
the input data be normally distributed, because 
the local Gi* values are computed under a 
randomization assumption, with Gi* equating 
to a standardized z-score that asymptotically 
tends to a normal distribution (Anselin 1992). 
The z-scores are reliable, even with skewed data, 
as long as the local neighborhood encompasses 
several observations (ESRI 2017): in this case, 

via the target hexagon and its 18 first- and 
second-order neighbors.

RESULTS AND DISCUSSION
Trends in Forest Fire Occurrence 
Detections for 2021
In 2021, the MODIS Active Fire database 
recorded 111,416 forest fire occurrences across the 
CONUS. This was the fourth highest in 21 full 
years of data collection but a 9-percent decrease in 
fire activity from 2020 (122,938 fire occurrences) 
(fig. 3.1). It was also 53 percent higher than the 
mean of the previous 20 years of data. At the 
same time, Alaska saw a 281-percent increase 
in fire occurrences (1,806) from 2020 (474) but 
a 93-percent decrease from the extremely high 
fire year of 2019 (26,493). The number of fire 
occurrences in 2021 was about 80 percent less 
than the mean for the preceding 2 decades. Also 
in 2021, 43 fire occurrences were detected in the 
State of Hawaii, an increase of 95 percent from 
22 in 2020 but 84 percent below the 2001–2020 
average of about 273 a year. Finally, Puerto Rico 
and the U.S. Virgin Islands experienced 13 fire 
occurrences, which was a 225-percent increase 
from 4 in 2020 and 44 percent above the average 
of about 9 per year.

These results are largely consistent with official 
national wildland fire statistics that track the 
numbers of wildfires reported and area burned 
(National Interagency Coordination Center 
2022). The area burned in 2021 decreased to  
2 883 645 ha from 4 096 364 ha in 2020, about 
30 percent less. The number of reported wildfires, 
meanwhile, stayed approximately the same: 58,985 
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Figure 3.1—Forest fire occurrences detected by Moderate Resolution Imaging Spectroradiometer (MODIS) from 2001 through 2021 for the conterminous 
United States, Alaska, Hawaii, and Puerto Rico and the U.S. Virgin Islands, and for the entire Nation combined. (Data source: U.S. Department of 
Agriculture, Forest Service, Geospatial Technology and Applications Center, in conjunction with the NASA MODIS Rapid Response group)
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compared to 58,950 the year before. Both area 
burned and number of fires in 2021 were similar 
to the 10-year average nationally but with more 
active years than normal for northern California, 
the Northern Rockies, the Pacific Northwest, and 
the northeastern quarter of the country (National 
Interagency Coordination Center 2022). 

The National Interagency Coordination Center 
uses a benchmark threshold of 16 187 ha (40,000 
acres) for tracking very large wildland fires and 
fire complexes. In 2021, 38 fires exceeded this 
threshold, compared to 50 in 2020 and 27 in 
2019 (National Interagency Coordination Center 
2020, 2021, 2022). Estimates of area burned and 
reported fires may be correlated with calculations 
of MODIS-detected fire occurrences, but as noted 
above, they are different metrics for quantifying 
fire activity.

The analysis of the 2021 MODIS wildland fire 
occurrence data indicates that, like 2020 (Potter 
2022), the highest (extremely high) fire occurrence 
densities were present in the northwestern and 
Sierra Nevada regions of California, along with 
central Oregon and Washington (fig. 3.2). One 
ecoregion section in the Pacific Northwest had 
a very high fire occurrence density, while high 
densities were detected in the Pacific Northwest, 
the Northern Rockies, central Arizona and west-
central New Mexico, and eastern Kansas. 

Also as in 2020, the three specific ecoregion 
sections with the highest fire occurrence densities 
in 2021 were in California: M261D–Southern 
Cascades (52.2 fire occurrences/100 km2 of tree 
canopy cover), M261E–Sierra Nevada (43.2 fire 
occurrences), and M261A–Klamath Mountains 

(36.8 fire occurrences) (table 3.1). Other ecoregion 
sections of the Pacific Northwest, Northern 
Rockies, and California were among those with 
the highest fire occurrence densities: M242C–
Eastern Cascades (26.5), M242D–Northern 
Cascades (13.6), M332A–Idaho Batholith (10.9), 
M332E–Beaverhead Mountains (10.7), and 
M261C–Northern California Interior Coast 
Ranges (10.6). This geographic pattern was 
associated at least in part with the most expansive 
and intense drought throughout the West in 
the 21st century, with more than 95 percent 
of the region experiencing drought conditions 
through August and more than half of the region 
in extreme or exceptional drought (National 
Interagency Coordination Center 2022). A heat 
wave of unprecedented intensity also affected the 
Pacific Northwest, Northern Rockies, and the 
Great Basin in June. 

Meanwhile, Alaska had snowpack that was 
near or above normal during the spring but 
experienced high levels of lightning activity during 
the summer (National Interagency Coordination 
Center 2022). Fire occurrence densities across 
Alaska in 2021 were low (fig. 3.3), with only two 
ecoregions in the east-central part of the State 
exceeding 1 fire occurrence/100 km2 of forest and 
shrub cover: M132F–North Ogilvie Mountains 
(1.2) and M132C–Yukon-Tanana Uplands (1.1).

Hawaii ecoregions also had low fire occurrence 
densities in 2021, with only the Mesic (MEh, 
2.1) and Montane Wet-Hawai‘i-Hilo-Puna 
(MWh-hp, 1.1.) regions on Hawai‘i Island 
exceeding 1 fire occurrence/100 km2 of canopy 
cover (fig. 3.4). The 16 187-ha Mana Road Fire 
located in the Lowland/Leeward Dry ecoregion 
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Figure 3.2—The number of forest fire occurrences per 100 km2 (10 000 ha) of tree canopy coverage area, by ecoregion section within the conterminous 
United States, for 2021. The gray lines delineate ecoregion sections (Cleland and others 2007). Tree canopy cover is based on data from a cooperative 
project between the Multi-Resolution Land Characteristics Consortium (Coulston and others 2012) and the Forest Service Geospatial Technology 
and Applications Center using the 2011 National Land Cover Database. See figure 1.1A for ecoregion identification. (Source of fire data: U.S. 
Department of Agriculture, Forest Service, Geospatial Technology and Applications Center, in conjunction with the NASA Moderate Resolution 
Imaging Spectroradiometer Rapid Response group)
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Table 3.1—The 15 ecoregion sections in the conterminous United States with the 
highest fire occurrence densities in 2021

Section Name 

Tree canopy 
area 

(100 km2) 

Fire 
occurrences 

(number) Density a 

M261D Southern Cascades 150.6 7,862  52.2 

M261E Sierra Nevada 427.8 18,485  43.2 

M261A Klamath Mountains 338.5 12,465  36.8 

M242C Eastern Cascades 219.4 5,825  26.5 

M242D Northern Cascades 251.1 3, 421 13.6

M332A Idaho Batholith 338.9 3,680  10.9 

M332E Beaverhead Mountains 147.1 1,573  10.7 

M261C Northern California Interior Coast Ranges 18.2 193  10.6 

M333A Okanogan Highland 247.9 2, 595 10.5

M332G Blue Mountains 309.7 3,038  9.8 

M332D Belt Mountains 166.5 1,598  9.6 

262A Great Valley 19.4 185  9.5 

331A Palouse Prairie 33.4 301  9.0 

M333D Bitterroot Mountains 235.3 2,095  8.9 

M242B Western Cascades 427.9 3,591  8.4 

a Density = fire occurrences per 100 km2 of tree canopy coverage area.
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Figure 3.3—The number of forest fire occurrences per 100 km2 (10 000 ha) of forest and shrub cover, by ecoregion section within Alaska, for 2021. 
The gray lines delineate ecoregion sections (Spencer and others 2002). Forest and shrub cover are derived from the 2011 National Land Cover 
Database. See figure 1.1B for ecoregion identification. (Source of fire data: U.S. Department of Agriculture, Forest Service, Geospatial Technology 
and Applications Center, in conjunction with the NASA Moderate Resolution Imaging Spectroradiometer Rapid Response group)
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Figure 3.4—The number of forest fire occurrences per 100 km2 (10 000 ha) of tree canopy coverage area, by island/ecoregion combination in Hawaii, 
for 2021. Tree canopy cover is based on data from a cooperative project between the Multi-Resolution Land Characteristics Consortium (Coulston 
and others 2012) and the Forest Service Geospatial Technology and Applications Center using the 2011 National Land Cover Database. See table 
1.1 for ecoregion identification. (Source of fire data: U.S. Department of Agriculture, Forest Service, Geospatial Technology and Applications Center, 
in conjunction with the NASA Moderate Resolution Imaging Spectroradiometer Rapid Response group)



Fo
re

st 
He

alt
h M

on
ito

rin
g

67

SE
CT

ION
 1  

  C
ha

pt
er

 3

of Hawai‘i Island (LLDh), which was one of the 
largest in the State’s history (National Interagency 
Coordination Center 2022), was not reflected in 
the Hawaii statistics because it occurred almost 
entirely in brush.

Finally, fire occurrence densities in 2021 were 
≤1 fire occurrence/100 km2 of tree canopy cover 
for most islands of the U.S. Caribbean territories 
(Puerto Rico and the U.S. Virgin Islands) except 
for Isla de Vieques (2.2) and Saint Croix (1.8)  
(fig. 3.5).

Comparison to Longer Term Trends
The long-term collection of MODIS Active Fire 
data (more than 2 decades) makes it possible 
to contrast annual (2021) forest fire occurrence 
densities with longer term trends (2001–2020) 
for ecoregions in the CONUS, Alaska, and 
Hawaii, and for Caribbean territories. During 
that 2-decade period, the highest mean annual 
fire occurrence density (12.5 fire occurrences/100 
km2 of tree canopy cover annually) was in 
M261B–Northern California Coast Ranges 
(table 3.2), while several other ecoregion sections 
in the Pacific Coast States, Idaho, and Arizona/
New Mexico, and along the Gulf Coast in the 
Southeast, exceeded 6 fire occurrences/100 
km2 of tree canopy cover (fig. 3.6A). Other 
ecoregion sections with high average annual fire 
occurrence densities included M332A–Idaho 
Batholith in central Idaho (11.8), M261A–
Klamath Mountains of northwestern California 
and southeastern Oregon (10.8), M261E–Sierra 
Nevada in California (9.8), and M262B–Southern 
California Mountain and Valley near the southern 

California coast (9.7) (table 3.2). Elsewhere in 
the West and the Southeast, ecoregion sections 
experienced ≤3–6 fire occurrences/100 km2 of tree 
canopy cover annually, while much of the Midwest 
and all the Northeast experienced ≤1.

The M261B–Northern California Coast 
Ranges and M332A–Idaho Batholith ecoregion 
sections also had the greatest annual variation 
in fire occurrence densities from 2001 through 
2020 (fig. 3.6B). High variation was also present 
in other mountainous ecoregion sections of 
California and the Pacific Northwest, while more 
moderate variation existed in other parts of the 
West, including central Oregon and Washington, 
northwestern Montana, and central Arizona 
and west-central New Mexico. These are regions 
with relatively high mean annual fire occurrence 
densities (fig. 3.6A). Other areas—including 
in north-central Colorado and west-central 
Wyoming—have relatively high variation with 
low mean annual fire occurrence densities, 
suggesting low numbers of fire occurrences most 
years with high numbers in others. Ecoregion 
sections of the Midwest and Northeast and 
in coastal areas of Oregon and Washington 
had the lowest interannual variation (standard 
deviation <1), while slightly higher variation 
(standard deviation 1–5) was apparent across the 
Southeast, the central Rocky Mountains, and the 
Great Basin. Parts of the Southeast, especially 
along the Gulf Coast, had low annual variation 
but relatively high mean annual fire occurrence 
densities, suggesting consistently high numbers 
of fire occurrences over time.

Compared to the previous 20-year mean and 
accounting for temporal variability, nine ecoregion 
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Figure 3.5—The number of forest fire occurrences per 100 km2 (10 000 ha) of tree canopy coverage area, by island in Puerto Rico and the U.S. Virgin 
Islands, for 2021. Tree canopy cover is based on data from a cooperative project between the Multi-Resolution Land Characteristics Consortium 
(Coulston and others 2012) and the Forest Service Geospatial Technology and Applications Center using the 2011 National Land Cover Database. 
(Source of fire data: U.S. Department of Agriculture, Forest Service, Geospatial Technology and Applications Center, in conjunction with the NASA 
Moderate Resolution Imaging Spectroradiometer Rapid Response group)
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Table 3.2—The 15 ecoregion sections in the conterminous United States with the highest 
mean annual fire occurrence densities from 2001 through 2020

Section Name

Tree canopy 
area 

(100 km2)

Mean annual 
fire occurrence 

density a

M261B Northern California Coast Ranges 114.1 12.5

M332A Idaho Batholith 338.9 11.8

M261A Klamath Mountains 338.5 10.8

M261E Sierra Nevada 427.8 9.8

M262B Southern California Mountain and Valley 58.1 9.7

M313A White Mountains-San Francisco Peaks-Mogollon Rim 202.5 7.4

313C Tonto Transition 17.5 7.2

261A Central California Coast 66.8 7.0

251F Flint Hills 57.8 6.9

232B Gulf Coastal Plains and Flatwoods 888.7 6.1

M242D Northern Cascades 251.1 6.0

331A Palouse Prairie 33.4 5.7

M332F Challis Volcanics 72.2 5.6

M333C Northern Rockies 176.3 5.4

232J Southern Atlantic Coastal Plains and Flatwoods 604.0 5.3

a Mean annual fire occurrence density = fire occurrences per 100 km2 of tree canopy coverage area.
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Fire occurrence 
density annual mean,
2001–2020
■ 0.00–1.00
■ 1.01–3.00
■ 3.01–6.00
■ 6.01–12.00
■ >12.00
        Ecoregion section
        State

(C)
2021 fire occurrence 
density z-score
■ ≤-2.00 (much lower)
■ -1.99– -1.50 (moderately lower)
■ -1.49– -1.00 (slightly lower)
■ -0.99–1.00 (near normal)
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■ 1.51–2.00 (moderately higher)
■ >2.00 (much higher)
        Ecoregion section
        State

(B)
Annual fire occurrence 
density standard 
deviation, 2001–2020
■ 0.00–1.00
■ 1.01–5.00
■ 5.01–10.00
■ 10.01–20.00
■ >20.00
        Ecoregion section
        State

Figure 3.6—(A) Mean number and (B) standard deviation of forest fire occurrences per 100 km2 (10 000 ha) of tree canopy coverage area from 
2001 through 2020, by ecoregion section within the conterminous 48 States. (C) Degree of 2021 fire occurrence density excess or deficiency, by 
ecoregion section relative to 2001–2020 and accounting for variation over that period. The gray lines delineate ecoregion sections (Cleland and others 
2007). Tree canopy cover is based on data from a cooperative project between the Multi-Resolution Land Characteristics Consortium (Coulston and 
others 2012) and the Forest Service Geospatial Technology and Applications Center using the 2011 National Land Cover Database. (Source of fire 
data: U.S. Department of Agriculture, Forest Service, Geospatial Technology and Applications Center, in conjunction with the NASA Moderate 
Resolution Imaging Spectroradiometer Rapid Response group)
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sections in California, the Pacific Northwest, 
the Northern Rockies, and the Northeast had 
much higher fire occurrence densities in 2021 
than normal (fig. 3.6C). Three of the California 
ecoregion sections (M261A–Klamath Mountains, 
M261D–Southern Cascades, and M261E–Sierra 
Nevada) had a high fire occurrence density in 
2021 as well as a relatively high mean for the 
previous 2 decades. Other western ecoregion 
sections (M242D–Northern Cascades in northern 
Washington, M242C–Eastern Cascades in 
central Washington and Oregon, 341D–Mono 
in eastern California and western Nevada, and 
M332E–Beaverhead Mountains and M332D–
Belt Mountains in southwestern Montana) had 
moderate average annual fire occurrence densities. 
Those in the Northeast, however, had much 
higher fire occurrence densities in 2021 relative 
to a very low long-term normal (211G–Northern 
Unglaciated Allegheny Plateau, 221A–Lower 
New England, and 211A–Aroostook Hills 
and Lowlands). In other words, these are areas 
that tend to have few fires in a typical year and 
therefore don’t require many fire occurrences to be 
classified as having more than normal. 

Meanwhile, a handful of ecoregion sections in 
the West and the Midwest had fire occurrence 
densities in 2021 that were lower than expected, as 
indicated by z-scores ≤-1. One was in the Pacific 
Northwest (M242A–Oregon and Washington 
Coast Ranges), and two were in the Southwestern 
States (313A–Grand Canyon and 331B–Southern 
Plains). All of these are areas that had low to 
moderate annual fire occurrence densities on 
average.

In Alaska, mean annual fire occurrence densities 
for 2001–2020 were relatively low except for 
moderate densities in the central and east-central 
parts of the State (M132E–Ray Mountains and 
132A–Yukon-Old Crow Basin) (fig. 3.7A). These 
ecoregion sections, along with the neighboring 
M132C–Yukon-Tanana Uplands and M132F–
North Ogilvie Mountains, exhibited the most 
variability over the 2-decade period preceding 
2021 (fig. 3.7B). Only a single Alaska ecoregion 
section in 2021 had a fire occurrence density 
outside normal compared to the previous 20 years 
and controlling for variability: M241D–Alexander 
Archipelago, where there was a much higher 
fire occurrence density than normal (fig. 3.7C). 
This is an area that typically had very few fire 
occurrences.

In Hawaii, the area that exhibited the highest 
annual fire occurrence density mean (fig. 3.8A) 
and variability (fig. 3.8B) from 2001 through 
2020 was the Lowland Wet-Hilo-Puna ecoregion 
(LWh-hp) on the eastern side of Hawai‘i Island 
(18.7 fire occurrences/100 km2 of tree canopy 
cover, standard deviation 41.1). Contained within 
this area are recently active portions of the lower 
east rift zone of Kīlauea volcano, where lava flows 
incinerated some forested areas (Andrews 2018). 
With one exception, all other ecoregions in the 
State had an annual mean fire occurrence density 
of ≤1 fire occurrence/100 km2 of tree cover. The 
exception was the Mesic region on the Hawai‘i 
Island (MEh), where it was 2.2. In 2021, no 
Hawaiian ecoregions had fire occurrence densities 
outside expectations (z-score >1), controlling for 
variability over the previous 2 decades (fig. 3.8C). 
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Annual fire occurrence 
density standard 
deviation, 2001–2020
■ 0.00–1.00
■ 1.01–5.00
■ 5.01–10.00
■ 10.01–20.00
■ >20.00
        Ecoregion section

(A)
Fire occurrence
density annual mean,
2001–2020
■ 0.00–1.00
■ 1.01–3.00
■ 3.01–6.00
■ 6.01–12.00
        Ecoregion section

(C)
2021 fire occurrence 
density z-score
■ ≤-2.00 (much lower)
■ -1.99– -1.50 (moderately lower)
■ -1.49– -1.00 (slightly lower)
■ -0.99–1.00 (near normal)
■ 1.01–1.50 (slightly higher)
■ 1.51–2.00 (moderately higher)
■ >2.00 (much higher)
        Ecoregion section

Figure 3.7—(A) Mean number and (B) standard deviation of forest fire occurrences per 100 km2 (10 000 ha) of forest and shrub cover from 
2001 through 2020, by ecoregion section in Alaska. (C) Degree of 2021 fire occurrence density excess or deficiency, by ecoregion section relative to 
2001–2020 and accounting for variation over that period. The gray lines delineate ecoregion sections (Spencer and others 2002). Forest and shrub 
cover are derived from the 2011 National Land Cover Database. (Source of fire data: U.S. Department of Agriculture, Forest Service, Geospatial 
Technology and Applications Center, in conjunction with the NASA Moderate Resolution Imaging Spectroradiometer Rapid Response group)
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■ -0.99–1.00 (near normal)
■ 1.01–1.50 (slightly higher)
■ 1.51–2.00 (moderately higher)
■ >2.00 (much higher)
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Figure 3.8—(A) Mean number and (B) standard deviation of forest fire occurrences per 100 km2 (10 000 ha) of tree canopy coverage area from 
2001 through 2020, by island/ecoregion combination in Hawaii. (C) Degree of 2021 fire occurrence density excess or deficiency, by island/ecoregion 
combination relative to 2001–2020 and accounting for variation over that period. Tree canopy cover is based on data from a cooperative project 
between the Multi-Resolution Land Characteristics Consortium (Coulston and others 2012) and the Forest Service Geospatial Technology and 
Applications Center using the 2011 National Land Cover Database. (Source of fire data: U.S. Department of Agriculture, Forest Service, Geospatial 
Technology and Applications Center, in conjunction with the NASA Moderate Resolution Imaging Spectroradiometer Rapid Response group)
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Finally, all the islands encompassed by Puerto 
Rico and the U.S. Virgin Islands had fire 
occurrence means and standard deviations ≤1 from 
2001–2020 (figs. 3.9A and 3.9B). Two islands had 
higher than expected fire occurrence densities in 
2021 (z-score >1): Isla de Vieques in Puerto Rico 
and Saint Croix in the U.S. Virgin Islands  
(fig. 3.9C).

Geographic Hot Spots of Fire 
Occurrence Density
Geographic hot spot analyses using analysis units 
smaller than ecoregions (the main unit of analysis 
thus far in this chapter) can offer additional 
insights into where, statistically, fire occurrences 
are more concentrated than expected by chance 
during a given year. Specifically, this approach 
can identify areas across the CONUS with 
higher than expected fire occurrence densities 
compared to the entire study region. For 2021, the 
SASH method detected a geographic hot spot of 
extremely high fire occurrence density (Gi* >24) 
in northern California as well as four hot spots 
of very high fire occurrence density (Gi* >12 and 
≤24) elsewhere in the West (fig. 3.10).

The single hot spot with extremely high fire 
occurrence density spanned M261E–Sierra 
Nevada and M261D–Southern Cascades. 
This is the region of the 2021 Dixie Fire, the 
largest single wildfire in California history, and 
exceeded in area only by the August Complex 
of fires the previous year (CALFIRE 2022). The 
Dixie Fire burned 389 837 ha and destroyed 
more than 1,300 buildings between July 13 and 
October 23; it cost approximately $637 million to 

contain (CALFIRE 2022, National Interagency 
Coordination Center 2022). Additionally, the  
42 763-ha Beckwourth Complex, which was 
ignited July 3, reported as contained September 
21, and cost approximately $543 million 
to contain, was also in this area (National 
Interagency Coordination Center 2022).

A very high fire occurrence density hot spot, 
centered in nearby M261A–Klamath Mountains 
of northwestern California, was caused in 
part by five large fires and fire complexes in 
2021 (CALFIRE 2022, National Interagency 
Coordination Center 2022):
•	Monument Fire, 90 295 ha, July 31–October 

25; $164 million containment cost, 50 
structures destroyed

•	River Complex, 80 678 ha, July 30–October 24; 
$95 million containment cost, 122 structures 
destroyed

•	Antelope Fire, 58 935 ha, August 1–October 
14; $75 million containment cost

•	McFarland Fire, 49 636 ha, July 30–September 
15; $44 million containment cost

•	McCash Fire, 38 430 ha, July 31–October 27; 
$53 million containment cost

Another hot spot of similar intensity was located 
in the M261E–Sierra Nevada, also in California. 
This one was caused by the Caldor Fire west of 
Lake Tahoe, which scorched 89 773 ha between 
its ignition on August 14 and its containment 
on October 20. This human-caused blaze cost an 
estimated $271 million to contain after burning 
1,003 buildings (CALFIRE 2022, National 
Interagency Coordination Center 2022).
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(C)
2021 fire occurrence 
density z-score
■ ≤-2.00 (much lower)
■ -1.99– -1.50 (moderately lower)
■ -1.49– -1.00 (slightly lower)
■ -0.99–1.00 (near normal)
■ 1.01–1.50 (slightly higher)
■ 1.51–2.00 (moderately higher)
■ >2.00 (much higher)
        Ecoregion section

Figure 3.9—(A) Mean number and (B) standard deviation of forest fire occurrences per 100 km2 (10 000 ha) of forested area from 2001 through 
2020, by island in Puerto Rico and the U.S. Virgin Islands. (C) Degree of 2021 fire occurrence density excess or deficiency, by island relative to 
2001–2020 and accounting for variation over that period. Tree canopy cover is based on data from a cooperative project between the Multi-
Resolution Land Characteristics Consortium (Coulston and others 2012) and the U.S. Department of Agriculture, Forest Service, Geospatial 
Technology and Applications Center using the 2011 National Land Cover Database.
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Figure 3.10—Hot spots of fire occurrence, by ecoregion section within the conterminous United States, for 2021. Values are Getis-Ord Gi* scores, with 
values >2 representing significant clustering of high fire occurrence densities. (No areas of significant clustering of lower fire occurrence densities, <-2, 
were detected.) The gray lines delineate ecoregion sections (Cleland and others 2007).  



Fo
re

st 
He

alt
h M

on
ito

rin
g

77

SE
CT

ION
 1  

  C
ha

pt
er

 3

To the south, also in M261E–Sierra Nevada 
as well as in M261F–Sierra Nevada Foothills, a 
very high fire occurrence density hot spot was 
associated with the Windy Fire (39 468 ha, $78 
million) and the KNP Complex (35 737 ha, $170 
million), which burned from September through 
November and December, respectively (National 
Interagency Coordination Center 2022).

One additional hot spot of very high fire 
occurrence density in 2021 was detected outside 
of California (fig. 3.10) and was also associated 
with a megafire:
•	313C–Tonto Transition and 321A–Basin and 

Range of southeastern Arizona, location of the 
human-caused Telegraph Fire, which burned 
73 150 ha between June 4 and July 2 and cost 
$36 million to contain, and the nearby human-
caused Mescal Fire, which burned 29 239 ha 
(National Interagency Coordination Center 
2022)

Additionally, four hot spots of high fire 
occurrence density (Gi* >6 and ≤12) were 
identified in the West during 2021 (fig. 3.10): 
•	In south-central Oregon (M242C–Eastern 

Cascades and M261G–Modoc Plateau), where 
the Bootleg Fire—the third largest fire in 
recorded Oregon history (Sutton and others 
2021)—burned 167 425 ha between July 6 and 
August 13, costing approximately $101 million 
to contain (National Interagency Coordination 
Center 2022) and destroying more than 400 
structures (InciWeb 2021)

•	In north-central Washington (M242D–
Northern Cascade and M333A–Okanogan 
Highland)

•	In southeastern Washington and northeastern 
Oregon (331A–Palouse Prairie)

•	In central Idaho (M332F–Challis Volcanics)
A hot spot of moderate fire occurrence density 
(Gi* >2 and ≤6) occurred in the southwestern 
corner of Georgia and the panhandle of Florida 
(232B–Gulf Coastal Plains and Flatwoods and 
232L–Gulf Coastal Lowlands). One additional 
small moderate fire occurrence density hot spot 
was detected in southeastern Kansas (255A–Cross 
Timbers and Prairie).

CONCLUSIONS
In 2021, the number of MODIS satellite-detected 
forest fire occurrences in the CONUS was the 
fourth highest in 21 full years of data collection 
but still represented a 9-percent decrease in 
fire activity from the extremely active 2020 fire 
season. The year included the largest single fire 
event in California history as well as the third 
largest in Oregon’s. Parts of California and the 
Pacific Northwest in 2021 had extremely high 
fire occurrence densities (fire occurrences per 
100 km2 of tree canopy cover area), while areas 
of the Northern Rockies, Pacific Northwest, and 
Southwest had very high or high densities. The 
extensive fire activity in these regions resulted in 
geographic hot spots of extremely high or very 
high fire occurrence density. Not surprisingly, 
these areas experienced fire occurrence densities 
that were much higher than normal in 2021 
compared to the previous 20-year mean and 
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accounting for variability over time. Parts of the 
Northeast also had fire occurrence densities that 
exceeded normal, although these areas tend to 
have few fires in a typical year and therefore don’t 
require many fire occurrences to be classified as 
outside expectations. At the same time, a few 
ecoregion sections in the Southwest and Pacific 
Northwest had significantly lower fire occurrence 
densities than normal.

Meanwhile, Alaska in 2021 experienced a 
281-percent increase in fire occurrences from 
2020, but this was a 93-percent decrease from 
the extremely high fire year of 2019 and about 
80 percent less than the mean for the preceding 
2 decades. An ecoregion section within the 
panhandle of Alaska was the only part of the State 
that had a higher than normal fire occurrence 
density. Hawaiian forests in 2021 also had fire 
occurrence densities that were low and within 
expectations. Parts of both Puerto Rico (Isla de 
Vieques) and the U.S. Virgin Islands (Saint Croix) 
had higher than expected fire occurrence densities 
in 2021.

The results of these geographic analyses 
are intended to offer insights into where fire 
occurrences have been concentrated spatially 
during a given year and compared to previous 
years; they are not intended to quantify the 
severity of a given fire season. Given the 
limits of MODIS active fire detection using 
1-km-resolution data, these products may 
underrepresent the number of fire occurrences in 
some ecosystems where small and low-intensity 
fires are common, and where high cloud frequency 
can interfere with fire detection. These products 
can also have commission errors. At the same 

time, these high-temporal-fidelity products 
currently offer the best means for daily monitoring 
of forest fire occurrences. 

Ecological and forest health impacts relating 
to fire and other abiotic disturbances are 
scale-dependent properties, which in turn are 
affected by management objectives (Lundquist 
and others 2011). Information about the 
concentration of fire occurrences may pinpoint 
areas of concern for aiding management activities 
and for investigations into the ecological and 
socioeconomic impacts of forest fire potentially 
outside the range of historic frequency. Given 
the potential for climate change and shifting 
species distributions to alter historic fire regimes, 
quantifying the location and frequency of 
forest fire occurrences across the United States 
can also help to better understand emerging 
spatiotemporal patterns of fire occurrence.
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INTRODUCTION

A ccurate forest disturbance mapping is a 
critical aspect of forest monitoring, but efforts 
have been inconsistent over landscapes and 

time (Coleman and others 2018, Housman and 
others 2018, Potter and Paschke 2022). Remote 
sensing is particularly adept at monitoring 
change in canopy cover from patch mortality 
or defoliation at scale, but it struggles to resolve 
dispersed tree impacts common to mixed species 
forests, gradual declines, delayed mortality, and 
cumulative impacts. As our need for precise 
mapping and understanding of disturbance grows, 
technology has provided invaluable solutions, but 
efficient causal attribution and impact assessment 
remain obstacles at broad scales. Recent advances 
in high-spatial-resolution imagery and high-speed 
computation have revolutionized forest canopy 
monitoring. With more efficient use of higher 
resolution imagery, our capacity to understand 
the mechanisms of forest change and precise 
disturbance impacts at scale has grown (Norman 
and Christie 2022). 

Coordinated use of remote sensing datasets 
of different temporal and spatial resolution can 
satisfy a range of forest monitoring needs. For 
example, imagery is often of sufficiently high 
spatial resolution to resolve change in the canopy 
status of tree clusters if not that of individual trees. 
While such high-resolution imagery can also 
be generalized to map change in forest patches, 
coarser 250-m-resolution imagery from the 
Moderate Resolution Imaging Spectroradiometer 
(MODIS) (i.e., Terra and Aqua satellites) and 
the 300-m-resolution European Space Agency’s 

Sentinel-3 satellites can often satisfy this need as 
well but do so more efficiently at scale due in part 
to their high pass-over frequency. Such spatially 
coarse but frequent imagery tracks large canopy 
disturbances at subseasonal temporal resolution in 
ways that distinguish persistent disturbance from 
ephemeral disturbance. Of particular concern in 
eastern deciduous forests are early season fire, 
wind, frost, or defoliation events, which may 
be detectable for just a few weeks or months 
of the growing season and yet be the target of 
forest monitoring efforts. Moreover, frequent 
observations give us more opportunities to acquire 
clear canopy views during the most optimal time 
of year for a given region. That is, with high-
frequency streaming data, analysts can avoid issues 
related to seasonal weather-related differences 
in spring and fall timing and better target 
disturbances based on their optimal phenological 
characteristics.

This chapter provides a broad overview of 
disturbance during the 2021 growing season for 
the conterminous United States (CONUS) using 
spatially coarse but temporally frequent satellite 
imagery. We demonstrated the scalability of this 
general technique in an earlier publication, which 
described mapping of prominent disturbances for 
the United States at 10-m resolution (Norman 
and Christie 2022).

METHODS
We used Google Earth Engine (Gorelick 
and others 2017) to calculate the Normalized 
Difference Vegetation Index (NDVI) for the 
CONUS for a portion of the 2020 and 2021 

https://doi.org/10.2737/SRS-GTR-273-Chap4
https://doi.org/10.2737/SRS-GTR-273-Chap4
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growing seasons using surface-corrected MODIS 
8-day composite NDVI from the Terra and 
Aqua satellites (MOD09Q1 and MYD09Q1, 
respectively) at 250-m resolution. We calculated 
the maximum value of these 8-day NDVI values 
over regionally adaptive 1–2-month windows. 
This regional modification of date windows lets 
us avoid months with heavy clouds and strong 
seasonal phenological change, while letting us 
capture key ephemeral disturbances during the 
growing season. For areas west of the 100th 
meridian, the NDVI composite window was July 
15 to August 31 during the warm season; for 
the Northeast above the 36.5° N parallel, it was 
June 15 to July 15 to capture the effects of early 
summer defoliators; for the South, we used June 1 
to July 15 given the region’s early growing season 
and patchy persistent cloud cover; for peninsular 
Florida south of the 29° N parallel, we used 
September 1 to October 31 when clouds were 
less frequent compared to earlier in the summer. 
Comparison of NDVI values for 2021 with 2020 
provided a regionally mosaiced map of 1-year 
change in NDVI. 

We filtered the MODIS grid cells to only 
include those having majority forest cover based 
on the 30-m classification of the North American 
Land Change Monitoring System (NALCMS) 
for 2015 for a portion of Canada (http://www.cec.
org/north-american-land-change-monitoring-
system/) (Latifovic and others 2012) and the 
National Land Cover Dataset for 2016 for the 
United States (https://www.mrlc.gov/) ( Jin 
and others 2019). Forests included evergreen, 
deciduous, mixed forest, and woody wetland types. 

We thresholded NDVI departure at -0.05 and 
used values lower than that to define departure. 
We summed the majority-forest MODIS cells 
with NDVI departures and the total number 
of forest cells overall by 834-km2 hexagons 
to provide landscape-scale insights useful for 
broad-scale monitoring (Norman and Christie 
2022, Potter and others 2016). This gave us the 
percentage of majority-forest MODIS cells with 
NDVI departures for each hexagon. Where tree 
cover was sparse or absent, such as across the 
Great Plains, we imposed a minimum forest 
area requirement of 1500 ha (3,700 acres) for a 
hexagon. 

RESULTS AND DISCUSSION
At a broad scale, the pattern of prominent 
forest disturbances across the CONUS for 2021 
reflected that of prior years (fig. 4.1) (Norman 
and Christie 2020, 2022). The strongest NDVI 
departures occurred in the West, followed by the 
South, then the Northeast. States or ecoregions 
having these large anomalies often shift, however, 
in response to specific regional disturbances, such 
as drought, and more local disturbances, such as 
fire, insect outbreaks, and hurricanes. 

West
The major disturbance detected for the West 
during 2021 was drought. According to the U.S. 
Drought Monitor (USDM), by August 2021, 
severe to exceptional drought was widespread 
and affecting every State west of the 100th 
meridian except for the southern Great Plains 
(https://droughtmonitor.unl.edu/). Other 

http://www.cec.org/north-american-land-change-monitoring-system/
http://www.cec.org/north-american-land-change-monitoring-system/
http://www.cec.org/north-american-land-change-monitoring-system/
https://www.mrlc.gov/
https://droughtmonitor.unl.edu/
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Percentage of 
forest disturbed
■ 75.1–100.0
■ 60.1–75.0
■ 40.1–60.0
■ 25.1–40.0
■ 15.1–25.0
■ 9.1–15.0
■ 5.1–9.0
■ 2.51–5.0
■ 1.1–2.5
■ 0.0–1.0

Figure 4.1—Percentage of majority-forest 250-m Moderate Resolution Imaging Spectroradiometer grid cells with disturbance in 2021 compared to 
2020 using a Normalized Difference Vegetation Index departure threshold of ≤-0.05 summarized by 834-km2 hexagons for the conterminous United 
States and southern Canada. Gray hexagons had too little forest cover to reliably map.
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regional exceptions where drought was minor 
or absent included the Cascades and coastal 
forests of western Washington, coastal Oregon, 
northwestern Montana, the Black Hills of South 
Dakota, and central Colorado. Through summer, 
the USDM showed severe to exceptional drought 
building northward, with Southwestern States 
experiencing summer drought of longer duration 
than the Northwestern States. Figure 4.1 reflects 
more NDVI anomalies in California and in the 
Northwestern States than for Arizona, New 
Mexico, Colorado, and Utah, so the general 
pattern seen in figure 4.1 does not reflect 
differences in summer drought duration. It may, 
however, reflect differences in the baseline NDVI 
values from 2020 as there was more drought 
in the Southwest in 2020. The 1-year NDVI 
departure for those areas may reflect a less reliable 
expectation of “normal.” 

Known limitations of tracking evergreen tree 
stress associated with drought in the West from 
coarse remote sensing and NDVI are within-
grid-cell mixed vegetation cover and the relative 
insensitivity of conifer NDVI to drought stress. 
From an optical remote sensing perspective, grass 
is highly sensitive to drought stress compared to 
evergreen trees, so 13-ha MODIS grid cells with 
a mixed grass and evergreen tree cover may be 
overwhelmed by variation in grass productivity or 
phenological responses more than any direct tree 
response to drought (Norman and others 2016). 
Spatial patterns of NDVI departure may then be 
a function of the fraction of the MODIS cell that 
supports the sensitive (grass) cover type rather 
than a meaningful measure of tree stress. Adding 
to the assessment challenge, extensive western 

forests have recently lost their conifer cover to fire, 
drought, or insects, but these remain classified as 
“forest” by NLCD. As disturbance and mortality 
become more widespread, this is a growing 
problem that can only be resolved by a more 
accurate or current forest mask or through use of 
finer resolution imagery, such as Sentinel-2 that 
reduces the mixed cover-type problem (Norman 
and Christie 2022).

Large local anomalies are readily seen across 
the West in figure 4.1, and these usually related 
to large wildfires that occurred between the fall 
of 2020 and early 2021. The most prominent 
nondrought disturbance that is evident on 
figure 4.1 is the million-acre (418 000 ha) 
August Complex that burned a large part of the 
Mendocino National Forest and adjacent areas in 
northwestern California during late 2020. Based 
on perimeters from the Monitoring Trends in 
Burn Severity (MTBS) project (https://www.mtbs.
gov/) and satellite-detected thermal hot spots, 
wildfires from late 2020 or early 2021 also explain 
most isolated hexagon anomalies elsewhere in 
California, Oregon, Idaho, Colorado, and Arizona. 
In less treed areas, such as northern Nevada, 
eastern Montana, and the Dakotas, however, figure 
4.1 shows forest disturbances not associated with 
wildfires. These areas could have been responding 
to drought, which is likely given their tendency to 
occur in riparian zones that include considerable 
edge with drought-sensitive grass. These areas 
experienced moderate to exceptional drought 
during the 2021 growing season. 

Insect and Disease Survey (IDS) maps, 
coordinated by the U.S. Department of Agriculture, 
Forest Service, Forest Health Protection program, 

https://www.mtbs.gov/
https://www.mtbs.gov/
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showed extensive tree defoliation or mortality 
across forest areas of all Western States, including 
areas experiencing drought in 2021, but not 
exclusively. Wherever the 2021 insect damage 
exceeded that of 2020, it would add to the fraction 
of the hexagon measured as disturbed. However, 
as the COVID-19 pandemic may have impacted 
the extent of mapping in 2020 (Potter and Paschke 
2022), the influence of a single-year baseline in 
2020 cannot be easily resolved. In 2020, IDS maps 
showed large areas of canopy damage in Colorado, 
New Mexico, Montana, Idaho, Washington, and 
Oregon. In California, however, COVID-19 
precautions prevented aerial survey flights from 
occurring in 2020, making comparisons impossible.

Northeast
The USDM showed severe to exceptional drought 
in Minnesota and Iowa and minor drought 
in northernmost New England and central 
Appalachia during the summer of 2021. Low to 
severe drought was also a factor in New England 
in 2020. Figure 4.1 shows strong forest NDVI 
departure in central and western Minnesota 
that is consistent with the extreme drought of 
midsummer, but there was not a clear association 
with drought for northern New England nor the 
central Appalachians.

Moderate forest NDVI decline was evident over 
broad portions of many Midwestern States where 
tree cover is fragmented or limited to riparian 
zones. The IDS maps were incomplete for most of 
these areas with limited forest, so the cause of this 
decline was difficult to interpret from the available 
data. A portion of this decline may be from 

emerald ash borer (Agrilus planipennis) mortality. 
When ash (Fraxinus spp.) occurs in mixed stands 
and declines gradually over several years, it can be 
challenging to accurately map these declines based 
on anything other than aerial flights or very high-
resolution remote sensing.

During early summer 2021, spongy moth 
(Lymantria dispar) caused large patches of tree 
defoliation in Michigan, Pennsylvania, New Jersey, 
New York, Connecticut, New Hampshire, Maine, 
and Ontario, Canada. These show up well on 
figure 4.1 and agree with the raw maps of NDVI 
change and with IDS maps of spongy moth 
defoliation (fig. 4.2). The spongy moth outbreak 
in Michigan was especially notable and follows a 
similar large outbreak there in 2020. Elsewhere in 
the Northeast, extensive patches of eastern spruce 
budworm (Choristoneura fumiferana) defoliation 
were mapped in northeastern Minnesota, and 
Lophodermium needle cast of pines was mapped 
in Cape Cod, MA. Also detected were emerald 
ash borer damage in southeastern Pennsylvania, 
and in the South, winter ice storm damage in 
eastern Kentucky. Other than the spongy moth 
defoliation, none of these other damage agents 
is indicated in the hexagons on figure 4.1. This is 
either because they were of low impact or limited 
extent, or their mapped impacts were relatively 
minor when taken as a percentage of the available 
forest in that hexagon. As shown on figure 4.2, 
MODIS has no problem mapping large patches 
of spongy moth defoliations at 250-m resolution 
(Spruce and others 2011). Detection of smaller 
patches often requires higher resolution imagery, 
such as Sentinel-2 (Norman and Christie 2022).
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Figure 4.2—A comparison of absolute 1-year change in Normalized Difference Vegetation Index (NDVI) at 250 m from the 
Moderate Resolution Imaging Spectroradiometer showing the regional occurrence of insect defoliation, mostly from spongy moth 
(Lymantria dispar) in the Northeast (6/15 to 7/15 composites for 2021 versus 2020). 

Change in NDVI 
■ ≤-38
■ -37– -34
■ -33– -30
■ -29– -26
■ -25– -22
■ -21– -19
■ -18– -16
■ -15– - 13
■ -12– - 10
■ -9– -7
■ -6– -4
■ -3– - 5
■ 6–10
■ 11–25
■ >25.0
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South
As has been observed recurrently, the leading 
cause of forest disturbance in the South has been 
commercial logging operations, and much of the 
NDVI departure seen in the Southeast’s Coastal 
Plain on figure 4.1 reflects this cause (Hansen and 
others 2013; Norman and Christie 2020, 2022). 
It is common for hexagons of the Southeast to 
exhibit 5 to 15 percent of their forest as departed 
from NDVI values of the prior year. 

There are numerous hot spots of disturbance 
activity shown on figure 4.1 that can be attributed 
to other or more complex causes. Damage from 
Hurricane Laura in southwestern Louisiana and 
from Hurricane Sally in southern Alabama are 
evident. A subsequent increase in logging compared 
to the prior baseline year may have also contributed 
to these patterns there. Florida also shows spotty 
NDVI departures; which relates to the variable 
rate of logging in places. The rate of logging may 
have increased in the wake of Hurricane Michael 
in Florida’s panhandle, but most areas shown in 
red for Florida on figure 4.1 are not directly or 
indirectly associated with storm damage. This may 
be a combination of fire and logging operations 
and, in some places, lingering atmospheric 
problems not fully removed by this analysis.

CONCLUSIONS
Remote sensing has a proven record of mapping 
and tracking large patch disturbances at coarse 
scales (Hansen and others 2013, Kennedy and 
others 2018, Spruce and others 2011). The 
patterns shown on figure 4.1 represent those more 
prominent disturbances while contextualizing 
them within the forested landscape in which 
they occur. The research frontier lies with precise 
mapping of disturbances at much finer resolution 
(i.e., with sufficient detail to capture the status 
of individual canopy trees); similar techniques 
have been, and can be, used with 10-m-resolution 
Sentinel-2 imagery or finer using Google Earth 
Engine (Norman and Christie 2022). This finer 
resolution is useful for mapping tree mortality in 
mixed stands, which are common in areas of the 
Eastern United States, in addition to resolving 
cause when multiple drivers of forest change 
co-occur. For example, mapping emerald ash 
borer mortality has been resolved by integrating 
Landsat with Sentinel-2 and lidar height data 
in Minnesota (Host and others 2020). In the 
Southern Appalachians, gradual tree mortality 
from the nonnative hemlock woolly adelgid 
(Adelges tsugae) could be partially distinguished 
from fire regime mortality using Landsat over 
a longer period than the 1-year analysis used in 
this current study (Khodaee and others 2020). 
Regional or national analyses provide a coarse-
filter perspective on forest disturbance, but a full 
understanding requires landscape or site analysis 
that involves multiple years of context and 
regional expertise.
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CHAPTER 5 
Tree Mortality

Mark J. Ambrose
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INTRODUCTION

T ree mortality is a natural process in all 
forest ecosystems. High mortality can be an 
indicator of forest health problems. On a 

regional scale, high mortality levels may indicate 
widespread insect or disease impacts. Regionally 
high mortality may also occur if a large proportion 
of the forest in a particular region is made up of 
older, senescent stands. I present an approach 
that seeks to detect mortality patterns that might 
reflect changes to ecosystem processes at large 
scales. In many cases, the proximate cause of 
mortality may be discernable. Understanding 
proximate causes of mortality may provide insight 
into whether the mortality is within the range 
of natural variation or reflects more fundamental 
changes to ecological processes.

DATA
I used the U.S. Department of Agriculture, Forest 
Service, Forest Inventory and Analysis (FIA) 
Phase 2 (P2) data as the basis of the mortality 
analysis. The FIA P2 data are collected across 
forested land throughout the United States, 
with approximately one plot per 6,000 acres 
of forest, using a rotating panel sample design 
(Bechtold and Patterson 2005). Field plots are 
divided into spatially balanced panels, with one 
panel being measured each year. A single cycle of 
measurements consists of measuring all panels. 
This “annualized” method of inventory was 
adopted, State by State, beginning in 1999. The 
cycle length (i.e., number of years required to 
measure all plot panels) ranges from 5 to 10 years. 

1 For the latest analysis of mortality that includes Western States, see Ambrose and others 2022.

An analysis of mortality requires data collected 
at a minimum of two points in time. Therefore, 
mortality analysis was possible for areas where 
data from repeated plot measurements using 
consistent sampling protocols were available 
(i.e., where one cycle of measurements had been 
completed and at least one panel of the next cycle 
had been measured, and where there had been no 
changes to the protocols affecting measurements 
of trees or saplings). In this analysis, I used the 
most recent cycle of remeasurements for each 
State and omitted ecoregion sections if there were 
not at least 50 remeasured plots in the dataset.

Due to the COVID-19 pandemic, FIA 
data collection slowed during 2020 and 2021. 
Therefore, although mortality analyses were 
possible for all of the conterminous United States, 
no new data were available from any Western 
States (i.e., the available datasets are the same 
as those used for the Forest Health Monitoring: 
National Status, Trends, and Analysis 2021 
report). Therefore, for this report, I limited the 
analysis to States in the Eastern and Central 
United States. Figure 5.1 shows the States 
included in the analysis as well as the forested area 
in those States.1

METHODS
The FIA program calculates tree growth, mortality, 
and removal volume on each plot over the interval 
between repeated measurements. These values are 
stored in the FIA Database (version 9.0.1) (Burrill 
and others 2021). EVALIDator (ver. 1.8.0.01) is 
FIA’s online tool for querying the FIA Database 

https://doi.org/10.2737/SRS-GTR-273-Chap5
https://doi.org/10.2737/SRS-GTR-273-Chap5
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       Ecoregion section boundary
■ Forest cover
■ States included in mortality analysis

Figure 5.1—Forest cover in the States where mortality was analyzed by ecoregion section (Cleland and others 2007).  Forest cover was derived from 
Moderate Resolution Imaging Spectrometer (MODIS) satellite imagery (USDA Forest Service 2008).
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and generating area-based reports on forest 
characteristics (USDA Forest Service FIA 2019). 
EVALIDator was used to obtain net growth 
rates and mortality rates over the most recent 
measurement cycle for each of 113 ecoregion 
sections (Cleland and others 2007, McNab and 
others 2007) covering the Eastern and Central 
United States. For most States, the most recent 
cycle of available data ran through 20202 (e.g., 
data collected from 2014 through 2020). 

To compare mortality across forest types and 
climate zones, I used the ratio of annual mortality 
to gross growth (MRATIO) as a standardized 
mortality indicator (Coulston and others 2005). 
The MRATIO has proven to be a useful indicator 
of forest health, but it can be a problematic 
indicator, especially when growth rates are 
very low. The MRATIO can also be difficult to 
interpret when there is high uncertainty associated 
with growth estimates. 

To identify causal agents for the observed 
mortality, I also used EVALIDator to summarize 
mortality by the reported “cause of death” 
associated with the observed mortality. FIA 
records causes of death as general categories 
(e.g., insects, fire, weather). For each ecoregion 
with a high MRATIO, I used EVALIDator to 
generate a table of annual mortality volume by 
FIA species group (Burrill and others 2018) and 
cause of death. From these tables, it is possible to 
make reasonable assumptions about the particular 
insects or diseases that may be affecting certain 
regions. Care must be used in interpreting these 
causes because tree mortality may actually be 

2 Overall, the most recent data available for any State ranged from 2018 to 2021.

caused by a combination of factors, such as 
drought and insects. Further information about 
the causes of mortality is provided by the aerial 
survey of insects and disease (see ch. 2 in this 
report). It is difficult to directly match aerial 
survey data to mortality observed on FIA plots 
due to both the difference in timing when 
mortality is recorded and difficulty matching plot 
locations with aerial survey mortality polygons. 
However, I have incorporated aerial survey 
information into the discussion by referencing 
State Forest Health Highlights, which reflect in 
large part the results of aerial surveys. 

RESULTS AND DISCUSSION
The MRATIO values are shown in figure 5.2. 
The MRATIO can be large if an overmature 
forest is senescing and losing a cohort of older 
trees. If forests are not naturally senescing, a high 
MRATIO (>0.6) may indicate high mortality 
due to some acute cause (e.g., insects or diseases) 
or due to generally deteriorating forest health 
conditions. The ecoregion sections with the 
highest MRATIOs are labeled on the map in 
figure 5.2. In the discussion that follows, I focus 
on the ecoregion sections having MRATIOs >0.6.

The highest MRATIO occurred in ecoregion 
section M334A–Black Hills (MRATIO = 
1.29). The MRATIO was also extremely high in 
adjacent 331F–Western Great Plains (MRATIO 
= 0.92) in South Dakota and Nebraska. Other 
areas of high mortality relative to growth on 
the Great Plains were in 332A–Northeastern 
Glaciated Plains (MRATIO = 0.64) in North 
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331F

222H

332A

332F

255C
321B

223F

222U

251F

M334A

MRATIO
■ 0.00–0.300
■ 0.301–0.600
■ 0.601–0.900
■ 0.901–1.294
■ No data or insu�icient data

Figure 5.2—Tree mortality expressed as the ratio of annual mortality volume to gross annual growth volume (MRATIO), by ecoregion section 
(Cleland and others 2007). (Data source: U.S. Department of Agriculture, Forest Service Forest Inventory and Analysis program) 
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Dakota. In these Great Plains ecoregion sections 
where mortality is high relative to growth, the 
predominant vegetation is grassland. Although 
the ecoregions are quite large, there was relatively 
little forest land to measure. In the Great Plains, 
tree growth is generally slow because of naturally 
dry conditions. Where the number of sample 
plots is small and tree growth is naturally slow, 
care must be taken in interpreting mortality 
relative to growth. 

In ecoregion section M334A–Black Hills 
(MRATIO = 1.29), the vast majority (94 percent) 
of mortality occurred in the ponderosa and Jeffrey 
pines species group. For the entire ecoregion 
section, 75 percent of mortality was caused by 
insects, while 14 percent was caused by fire  
(table 5.1); for the ponderosa and Jeffrey pine 
species group, insects and fire were responsible for 
78 percent and 14 percent of mortality, respectively. 
Mortality in this ecoregion section is most likely 
related to mountain pine beetle (Dendroctonus 
ponderosae). There had been an ongoing mountain 
pine beetle outbreak in the Black Hills region (Ball 
and others 2015, 2016; South Dakota Department 
of Agriculture 2011, 2012, 2013, 2014). Mountain 
pine beetle activity has declined dramatically 
in the region since 2015 (Ball and others 2017, 
Wyoming State Forestry Division 2017). The pine 
beetle outbreak has ended, but reported mortality 
remains high because results reported, based on the 
most recent cycles of FIA data, reflect mortality 
over the period that includes the peak of the 
outbreak in 2015.

In ecoregion section 331F–Western Great 
Plains (MRATIO = 0.92), fire caused 61 percent 
of mortality; another 20 percent of mortality 

was weather-related (table 5.1). In this ecoregion 
section, most of the mortality (about 87 percent) 
occurred in the ponderosa and Jeffrey pines 
species group. In this species group, 62 percent of 
mortality was due to fire and 22 percent was due 
to adverse weather; only 8 percent of mortality 
was related to insects.

The majority of the mortality in ecoregion 
section 332A–Northeastern Glaciated Plains 
(MRATIO = 0.64) of North Dakota was split 
between the cottonwood and aspen (69 percent) 
and select white oaks (19 percent) species groups. 
About 30 percent of the mortality overall (table 
5.1), 39 percent of mortality in the select white 
oaks species group, and 26 percent of mortality 
in the cottonwood and aspen species group 
was related to adverse weather. North Dakota 
experienced both drought (North Dakota Forest 
Service 2017) and heavy precipitation that 
waterlogged tree root systems (North Dakota 
Forest Service 2020) during the monitoring 
period, both of which severely stressed trees. In 
addition, North Dakota experienced numerous 
storm events over the past several years, including 
435 hail events and 66 tornadoes during the 
2015 and 2016 growing seasons. Damage due to 
hailstorms can make trees susceptible to a number 
of fungal diseases (North Dakota Forest Service 
2015, 2016). Cottonwood canker fungi have 
been identified as a problem throughout North 
Dakota (North Dakota Forest Service 2014, 
2015); these fungi may be contributing to the 
observed mortality in the cottonwood and aspen 
species group. About 18 percent of mortality was 
attributed to animals; almost all of this occurred in 
the cottonwood and aspen species group.
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Table 5.1—Ecoregion sections in the Eastern and Central United States having the highest mortality relative to growth (MRATIO), annual 
mortality and growth rates, species groups having the greatest mortality relative to growth, and associated causes of mortality

Ecoregion section

Average 
annual 

mortality

Average 
annual gross 

growth MRATIO

Species groupsa  
having the  

highest mortality b
Major causes  
of mortality c

 --- cubic feet per year ---
M334A–Black Hills 47,840,846 36,971,471 1.29 Ponderosa and Jeffrey pines (94%) Insects (75%), fire (14%)

332F–South Central and 
Red Bed Plains

18,476,189 19,195,108 0.96 Other eastern soft hardwoods (38%), other eastern 
softwoods (25%), other eastern hard hardwoods (13%)

Fire (54%), disease (23%), weather-
related (23%)

321B–Stockton Plateau 8,830,859 9,587,071 0.92 Western woodland softwoods (92%) Weather-related (68%), fire (30%)

331F–Western Great 
Plains

11,539,479 12,592,299 0.92 Ponderosa and Jeffrey pines (87%) Fire (61%), weather-related (20%)

255C–Oak Woods and 
Prairie

118,181,937 150,755,567 0.78 Oaksd (46%), loblolly and shortleaf pines (13%) Weather-related (64%), disease 
(23%)

223F–Interior Low 
Plateau-Bluegrass

104,017,750 156,580,166 0.66 Ash (59%), other eastern soft hardwoods (15%) Insects (55%), vegetation (13%)e

222U–Lake Whittlesey 
Glaciolacustrine Plain

44,342,544 67,606,692 0.66 Ash (65%), other eastern soft hardwoods (13%) Insects (66%)

332A–Northeastern 
Glaciated Plains

5,877,224 9,133,469 0.64 Cottonwood and aspen (69%), select white oaks 
(19%)

Weather-related (30%), animals 
(18%)

251F–Flint Hills 11,607,118 18,076,691 0.64 Oaksd (44%), other eastern soft hardwoods (33%) Weather-related (39%), insects (14%), 
disease (14%)

222H–Central Till Plains-
Beech-Maple

111,213,566 175,798,966 0.63 Ash (57%), other eastern soft hardwoods (16%) Insects (55%)

a For the species included in each species group, see Appendices E and F in Burrill and others 2018.
b The value in parentheses is the proportion of average annual mortality volume in the ecoregion section occurring in the species group.
c The value in parentheses is the proportion of average annual mortality volume in the ecoregion section attributed to the causal agent.
d Overall mortality has been combined for the Forest Inventory and Analysis select red oaks, select white oaks, other red oaks, and other white oaks species groups.	
e Mortality caused by suppression, Competition, vines/kudzu (Burrill and others 2018).
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Ecoregion section 332F–South Central and 
Red Bed Plains in Kansas and Oklahoma had 
the second highest observed MRATIO (0.96). 
Fifty-four percent of mortality was due to fire, 
while 23 percent of mortality was attributed 
to disease and another 23 percent to adverse 
weather (table 5.1). The region was affected by 
a severe drought in 2011 as well as additional 
droughty periods in years that followed (Kansas 
Forest Service 2012, 2013, 2014; Oklahoma 
Forestry Services 2014, 2015, 2016, 2020). The 
species groups in which most of the mortality 
occurred (other eastern soft hardwoods, other 
eastern softwoods, and other eastern hard 
hardwoods) include a large number of unrelated 
species. Thus, understanding the specific impacts 
of weather and disease on particular species in 
this ecoregion would require a more detailed 
analysis beyond the scope of this report.

In ecoregion section 251F–Flint Hills 
(MRATIO = 0.64), also in Kansas and Oklahoma, 
39 percent of mortality was weather-related, while 
insects and disease were each responsible for about 
14 percent of mortality (table 5.1). The region 
frequently experiences adverse weather events. In 
addition to drought, these include hail, tornadoes, 
high winds, and ice storms (Kansas Forest Service 
2020). The highest mortality occurred in the 
combined oaks species groups (44 percent of the 
ecoregion section’s mortality). Eighty-two percent 
of mortality in this species group was attributed to 
adverse weather.

Ecoregion section 255C–Oak Woods and 
Prairie in Texas also had relatively high mortality 
(MRATIO = 0.78). About 46 percent of the 
mortality occurred in the combined oaks species 

groups, and another 13 percent occurred in 
the loblolly and shortleaf pines species group. 
The majority (64 percent) of mortality in this 
ecoregion section was identified as weather-
related (table 5.1). Weather was responsible 
for 60 and 36 percent of mortality in the 
combined oaks and loblolly and shortleaf pines 
species groups, respectively. A record-setting 
drought in 2011 affected Oklahoma and Texas, 
and additional droughty periods occurred in 
following years (Oklahoma Forestry Services 
2014, 2015, 2016, 2020). Drought was reported 
as weakening both pines (Pinus spp.) and 
hardwoods in Texas, making them susceptible 
to a variety of pests and pathogens (Smith 2013, 
2014). Disease was the reported cause of another 
23 percent of mortality (table 5.1). Disease 
was reported as responsible for 36 percent of 
mortality in the combined oaks species groups; 
fire was responsible for 57 percent of pine 
mortality. Oak wilt has been a major problem 
in oak woodlands in central Texas (Smith 2014; 
Texas A&M Forest Service 2015, 2016, 2019) 
and probably contributed to the red and white 
oak (Quercus spp.) mortality in the combined oak 
species group. Pine engraver beetle (Ips spp.) has 
been a problem in Texas’ pine forests and may 
have contributed to mortality in the loblolly and 
shortleaf pines species group (Smith 2014; Texas 
A&M Forest Service 2015, 2016, 2017).

Ecoregion section 321B–Stockton Plateau 
(MRATIO = 0.92) is a region of extremely low 
forest cover (fig. 5.1). There, about 68 percent 
of mortality was related to adverse weather and 
another 30 percent was due to fire (table 5.1). 
About 92 percent of mortality occurred in the 
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western woodland softwoods species group; about 
70 percent of mortality in this species group was 
due to weather and 29 percent was due to fire. 
Most of this mortality probably was related to the 
previously discussed drought that affected Texas 
beginning in 2011.

Mortality relative to growth was also rather 
high (MRATIO = 0.66) in ecoregion section 
222U–Lake Whittlesey Glaciolacustrine Plain. 
There, the majority of the mortality (65 percent) 
was in the ash species group. About 66 percent of 
mortality in that ecoregion section was caused by 
insects (table 5.1), and insects were responsible 
for 98 percent of ash (Fraxinus spp.) mortality. 
Most of this mortality was due to emerald ash 
borer (Agrilus planipennis), which has produced 
extremely high ash mortality throughout Ohio 
and Michigan (Michigan Department of 
Natural Resources 2014, 2015, 2016, 2017; Ohio 
Department of Natural Resources, Division of 
Forestry 2014, 2015, 2020). Indeed, emerald ash 
borer has been “the most devastating forest pest 
in Ohio in recent years” (Ohio Department of 
Natural Resources, Division of Forestry 2020) 
and has caused the death of the “vast majority” 
of native ash in northwestern Ohio (Ohio 
Department of Natural Resources, Division of 
Forestry 2016, 2017). 

3 Personal communication. 2022. Philip Marshall, Forest Health Specialist and Director of the Division of Entomology & Plant 
Pathology, Indiana Division of Forestry, 402 W. Washington St., Indianapolis, IN 46204; Tom Macy, Forest Health Program 
Manager, Ohio Division of Forestry, 2045 Morse Road Building H1, Columbus, OH 43229.
4 Personal communication. 2022. Philip Marshall, Forest Health Specialist and Director of the Division of Entomology & Plant 
Pathology, Indiana Division of Forestry, 402 W. Washington St., Indianapolis, IN 46204; Tom Macy, Forest Health Program 
Manager, Ohio Division of Forestry, 2045 Morse Road Building H1, Columbus, OH 43229; Alexandra Blevins, Forest Health 
Specialist, Kentucky Division of Forestry, 300 Sower Blvd, Frankfort, KY 40601.

Similarly, in the adjacent ecoregion section 
222H–Central Till Plains-Beech-Maple 
(MRATIO = 0.63) in Ohio and Indiana, much of 
the mortality (57 percent) was in the ash species 
group and 97 percent of ash mortality was due to 
emerald ash borer3 (table 5.1). Indeed, emerald 
ash borer has been confirmed throughout the 
ecoregion as well as throughout Indiana (Marshall 
2017, 2018, 2020; Ohio Department of Natural 
Resources, Division of Forestry 2016, 2017). 

The situation is similar in ecoregion section 
223F–Interior Low Plateau-Bluegrass (MRATIO 
= 0.66) in southern Indiana and Ohio and north-
central Kentucky. There, about 54 percent of 
mortality was in the ash species group. Fifty-five 
percent of overall mortality in the ecoregion 
section was attributed to insects, but almost all 
(94 percent) of ash mortality was due to emerald 
ash borer.4 Emerald ash borer has been confirmed 
throughout the portion of the ecoregion section 
that is in Kentucky at least since 2016 (Kentucky 
Division of Forestry 2016).

CONCLUSIONS
This analysis shows that in most of the Eastern 
and Central United States, mortality is low 
relative to tree growth. The areas of highest 
mortality occur in the forests and woodlands 
of the Great Plains ecoregions. A common 
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characteristic of most of the ecoregions having 
high mortality is that they are on the margins of 
land suitable for forest growth, being very dry. 
Thus, they tend to be extremely vulnerable to 
changes in weather patterns that might produce 
prolonged and/or extreme drought. Drought, 
combined with a variety of other biotic and/or 
abiotic stressors, is responsible for much of the 
mortality observed.

One insect pest issue, however, does stand out 
in the East. In ecoregion sections 222H–Central 
Till Plains-Beech-Maple, 222U–Lake Whittlesey 
Glaciolacustrine Plain, and 223F–Interior Low 
Plateau-Bluegrass, ash mortality due to emerald 
ash borer is extremely high. 

It is also important to realize that the analyses 
presented in this chapter alone cannot tell 
the complete story regarding tree mortality. 
Mortality concentrated in highly fragmented 
forest or nonforest areas adjacent to human 
development may not be detected because the 
available FIA data do not cover most urban areas 
or other places not defined as forest by FIA. 
Also, these analyses are unlikely to detect a pest 
or pathogen attacking a particular tree species 
in a mixed-species forest where other species 
are growing vigorously. This is especially true 
of species (e.g., ash) that make up a relatively 
small proportion of many eastern forests. For 
example, it is known that emerald ash borer has 
been causing very high ash mortality in many 
Eastern and Central States in recent years (Ohio 
Department of Natural Resources, Division of 
Forestry 2016; USDA APHIS 2018). Yet, this 
mortality stands out only in ecoregion sections 
222H–Central Till Plains-Beech-Maple, 

222U–Lake Whittlesey Glaciolacustrine Plain, 
and 223F–Interior Low Plateau-Bluegrass. 
Elsewhere in the East, though ash mortality 
is known to be extremely high, the mortality 
currently is masked because ash is a relatively 
minor component of the forest.

To gain a more complete understanding of 
mortality, it is important to consider the results 
of this analysis together with other indicators of 
forest health. Forest Inventory and Analysis tree 
damage data (Burrill and others 2021), as well 
as Evaluation Monitoring projects that focus on 
particular mortality-causing agents (ch. 8, 10, 
and 11), can provide insight into smaller scale 
or species-specific mortality issues. Large-scale 
analyses of forest-damaging events, including 
insect and disease activity (ch. 2) and fire (ch. 3), 
are also important for understanding mortality 
patterns. This can be especially important in the 
West, where mortality data are limited. 
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INTRODUCTION

The Forest Inventory and Analysis (FIA) 
program of the Forest Service, U.S. 
Department of Agriculture, visually assesses 

tree crown conditions as an indicator of forest 
health. These assessments are useful because 
individual tree photosynthetic capacity is 
dependent upon the size and condition of the 
crown. In general, trees with full, vigorous crowns 
are associated with more vigorous growth rates 
(Zarnoch and others 2004); when trees undergo 
stress, e.g., from an insect attack or extreme 
weather event, the first symptoms are often visible 
in the crown. Furthermore, tree crowns form 
the overstory structure of the forest and directly 
influence the composition and structure of the 
understory thereby making them an integral 
component of the forest ecosystem.

Initially implemented by the Forest Health 
Monitoring (FHM) program, crown conditions 
have been measured in the United States since 
1990 (Randolph 2013). After a series of field 
tests and reviews in the early 1990s, the crown 
condition indicator was formalized to include a 
set of eight variables: vigor class, uncompacted live 
crown ratio, crown light exposure, crown position, 
crown density, crown dieback, foliage transparency, 
and crown diameter (Schomaker and others 
2007). When the FHM detection monitoring 
plots were incorporated into FIA in the year 2000, 
assessment of these variables was continued by 
FIA (Woodall and others 2011). Over time, the 
crown assessment protocols have been refined to 
address client needs, field logistics, and budgetary 
demands (USDA Forest Service 2016). Presently, 

FIA assesses uncompacted live crown ratio and 
crown dieback as the primary crown condition 
metrics.

This chapter represents the fourth national 
summary of crown condition in the United 
States. Previous summaries were included in 
Forest Health Monitoring: 2006 National 
Technical Report (Randolph 2009), Forest 
Health Monitoring: National Status, Trends, 
and Analysis 2013 (Randolph 2015), and Forest 
Health Monitoring: National Status, Trends, and 
Analysis 2017 (Randolph 2018). In like manner, 
the objective of this report is to summarize current 
crown dieback, current crown-damaging agents, 
and 20-year crown dieback trends for the most 
common genera and species (“species groups”) in 
the Eastern United States (fig. 6.1) with the goal 
of identifying species in decline and geographical 
areas of concern, e.g., Randolph and others (2012). 

■ Northern: North Central
■ Northern: Northeast
■ Southern

Figure 6.1—Regional breakdown of the Eastern 
United States for the crown condition analysis. 

https://doi.org/10.2737/SRS-GTR-273-Chap6
https://doi.org/10.2737/SRS-GTR-273-Chap6
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METHODS
Data
The FIA program assesses crown dieback and 
damage on live trees with diameter at breast 
height (d.b.h.) ≥12.7 cm on its network of 
nationwide plots (Bechtold and Patterson 2005). 
Crown dieback is defined as the recent mortality 
of branches with fine twigs, which begins at 
the terminal portion of a branch and proceeds 
toward the trunk (Schomaker and others 2007). 
Crown dieback is measured by means of ocular 
estimation and coded as 0, 05, 10, … 95, 99, where 
the code represents the upper limit of the class, 
e.g., 1–5-percent crown dieback is code 05. Crown 
dieback for live trees with complete defoliation, 
i.e., 100-percent crown dieback, is coded as 99. 
Biotic and abiotic agents causing tree damage 
above specific thresholds are observed by means of 
visual inspection successively from the bottom of 
the tree to the top, i.e., roots, bole, branches, and 
foliage. Up to three damage agents can be recorded 
per tree. Damage agents fall into one of 23 classes 
and may be recorded generally, e.g., abiotic agent, 
or specifically, e.g., wind. Typically, damage to 
the crown must meet or exceed 20 percent of the 
branches, stems, or foliage in order for a damage 
agent to be noted. However, any damage to the 
terminal leader or any evidence of a successful 
attack is sufficient for other agents (USDA Forest 
Service 2015). When trees have died or been 
cut since the previous inventory, FIA field crews 
assign a single cause of death from a list of eight 
possible agents: insect, disease, fire, animal, weather, 
vegetation (suppression, competition, vines), 
silvicultural or land clearing activity, and unknown. 

The FIA plot network consists of permanently 
monumented plots located at a sampling intensity 
of approximately one plot per 6,000 acres 
(2428 ha) across the country. Plots are divided 
into spatially balanced panels and one panel of 
plots is measured each year on a rotating and 
ongoing basis. The time it takes to measure all 
panels within a State is referred to as a cycle. The 
majority of States in the Eastern United States are 
on 5- or 7-year cycles. Exceptions are Oklahoma 
and Texas, which have 5-year cycles in their 
eastern regions and 10-year cycles in their central 
and western regions. The FIA program dates its 
inventories according to the year of the most 
recently collected panel of plots. For example, the 
2021 inventory for Arkansas, which is on a 5-year 
cycle, includes data collected in FIA inventory 
years 2017 through 2021. 

To summarize current crown conditions in the 
Eastern United States, I utilized various subsets 
of the crown dieback, damage agent, and cause 
of death data collected by FIA in the Northern 
and Southern regions (fig. 6.1, table 6.1) (Burrill 
and others 2021). Data collection during 2020 
and 2021 was sporadic and imbalanced across 
the country due to the COVID-19 pandemic. 
Therefore, the most recent data included in this 
summary were from the 2019 inventory for 
most States (table 6.1). I calculated changes in 
crown dieback over time by pairing the most 
recent observations with those made on the same 
trees in the previous measurement cycle. I also 
incorporated crown dieback estimates for prior 
years as reported previously by Randolph (2006, 
2018) and Randolph and others (2010a, 2010b). 
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Table 6.1—Most recent Forest Inventory and Analysis inventory year for data included in the crown condition 
summary, by region and State 

Region Inventory 
year State

Northern 2019
Connecticut, Delaware, Illinois, Indiana, Iowa, Kansas, Maine, Maryland, Massachusetts, Michigan, 
Minnesota, Missouri, Nebraska, New Hampshire, New Jersey, New York, North Dakota, Ohio, 
Pennsylvania, Rhode Island, South Dakota, Vermont, West Virginia, Wisconsin

Southern 2018 Florida, Louisiana, Kentucky, Tennessee, Texas

Southern 2019 Alabama, Arkansas, Georgia, Mississippi, North Carolina, Oklahoma, South Carolina, Virginia

Analyses
Survivorship—I evaluated the relationship 
between past crown dieback and current tree status, 
i.e., survivorship, by matching individual tree 
observations made with the most recent data, i.e., 
the 2018 or 2019 inventory year (table 6.1) (current 
assessment) with those made in the immediately 
preceding inventory. Measurement intervals for 
individual trees assessed during these time periods 
ranged from 4.2 to 7.4 years (mean = 5.6, SD = 0.7) 
in the Northern region and from 3.0 to 12.2 years 
(mean = 6.1, SD = 1.5) in the Southern region; 
however, to reduce variation, I only included trees 
with a remeasurement period within one standard 
deviation of their respective regional mean in the 
survivorship analysis. I calculated the proportion 
of trees by previous crown dieback class (0 percent, 
>0–10 percent, >11–20 percent, and >20 percent) 
and current tree status (live or dead) for each 
region. In addition, I calculated the proportion of 
mortality, i.e., trees with current tree status = dead, 
among trees with 0-percent crown dieback at the 
previous inventory for each species group by region. 
This calculation exposed species groups potentially 
affected by the occurrence of acute stressors 
between the previous and current assessments. 

The FIA damage collection protocol is 
crafted in such a way that damage agents are 
recorded only when symptoms exceed predefined 
thresholds that indicate the tree is likely to (1) die 
within 1 to 2 years, (2) have reduced growth in the 
near term, or (3) have diminished marketability 
(USDA Forest Service 2015). Therefore, to 
identify damage agents that may contribute 
to imminent tree mortality, I calculated the 
frequency of each general damage agent by region 
and species class (softwood, hardwood) for trees in 
the >20-percent dieback class.

Current crown dieback and damage—I 
summarized current crown dieback conditions 
by region for all trees combined, species class 
(softwood, hardwood), and species groups 
measured on at least 100 plots by region. I 
calculated mean crown dieback using the ratio of 
means estimator (Cochran 1977, Woodall and 
others 2011). I also calculated the frequency of 
trees in each crown dieback class (0 percent, >0–
10 percent, >10–20 percent, and >20 percent). In 
the past, crown dieback has been more prevalent 
in the Northern region than in the Southern 
region (Randolph 2015, 2018). Therefore, to 
compare species groups present in both regions, 
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I ranked the species groups according to mean 
crown dieback, proportion of trees in the 
0-percent dieback class, and proportion of trees in 
the >20-percent dieback class within each region. 
I based cross-regional comparisons of crown 
condition by species group on the average of the 
three rankings.

To identify geographical areas with excessive 
crown dieback, I calculated the proportion of trees 
with >20-percent crown dieback for each FIA plot 
condition1 by species class, species group, and for 
all species combined. I mapped the proportions 
according to the approximate plot locations 
provided by FIA and examined the proportions 
visually. I only mapped conditions with at least 
three tally trees. For plot locations with multiple 
conditions, the greatest proportion of trees with 
>20-percent crown dieback among the conditions 
was displayed. 

I calculated the frequency of each general 
damage agent by region and species group. For 
each plot condition, I calculated the proportion 
of trees with damage agents considered especially 
injurious to tree crowns by damage agent and 
species class. I mapped the condition-level 
proportions according to the approximate plot 
locations provided by FIA and examined the 
proportions visually. I only mapped conditions 
with at least three tally trees. For plot locations 
with multiple conditions, the greatest proportion 
of damaged trees among the conditions was 
displayed. The damage agents included in the 
spatial analysis were defoliating insects; sucking 

1 An FIA plot is stratified into homogeneous condition classes based on ownership, forest type, stand size, stand density, stand origin, and 
reserved status (USDA Forest Service 2015). 

insects; chewing insects; decline complexes/
dieback/wilts; foliage diseases; wind, snow, and 
ice; and parasitic/epiphytic plants (USDA Forest 
Service 2015). All these agents except wind, snow, 
and ice are general categories and include multiple 
specific agents. 

Crown dieback trends—Using graphs, I 
compared current mean crown dieback to mean 
crown dieback from four prior time periods 
(1996–1999, 2001–2005, 2006–2010, and 2011–
2015), by region, for all species combined and by 
species group. In addition, I compared current 
crown dieback (d2) to previous crown dieback 
(d1) by region and species group for all trees 
measured during both assessments. The hypothesis 
that the average ratio between d2 and d1 equaled 
1 was tested with a paired t-test under a log 
transformation: 

H0: δ = 0 versus HA: δ ≠ 0
where 
δ is the mean of log(dij2 + c) – log(dij1 + c)

where 
c is a constant equal to 0.1
dij2 is current crown dieback on tree i on plot j
dij1 is previous crown dieback on tree i on plot j

The log transformation was necessary to 
accommodate crown dieback’s severely skewed 
distribution and the addition of c was needed 
to adjust 0-percent crown dieback to a log 
transformable value. I used the R package 
SURVEY (Lumley 2004, R Core Team 2022) 
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to accommodate the inventory design in which 
trees are nested on plots. I performed the 
hypothesis test for surviving trees only and 
for surviving trees plus mortality trees. Crown 
dieback is not assessed for dead trees; therefore, 
d2 for mortality trees was set to the maximum 
possible dieback, i.e., 99 percent. I did not 
include harvested trees because it was not known 
if the trees were alive or dead at the time they 
were cut. As with the survivorship analysis, 
I only included trees with a remeasurement 
period within one standard deviation of their 
respective regional mean remeasurement period 
in this analysis. I considered crown dieback 
between the current and previous assessments 
to be statistically significantly different if the 
95-percent confidence interval for δ did not 
include zero. I back transformed results and 
present them under the original hypothesis such 
that 95-percent confidence intervals including 1 
indicate no statistical difference; intervals with an 
upper confidence limit <1 indicate a statistically 
significant decline in crown dieback; and intervals 
with a lower confidence limit >1 indicate a 
statistically significant increase in crown dieback.

RESULTS AND DISCUSSION 
Relationship Between Crown Dieback 
and Survivorship
Crown dieback is strongly correlated with tree 
survivorship such that trees with greater amounts 
of dieback are more likely to die within 5 years 
than those with little or no dieback (Morin 
and others 2015, Steinman 2000). Therefore, 
as expected, the likelihood of mortality tended 

to increase with increasing crown dieback in 
both regions (fig. 6.2). Although high levels of 
crown dieback are a good indicator of impending 
mortality, there are instances when trees with no 
crown dieback die before they are remeasured. 
This is most likely to happen when trees die 
quickly as the result of an acute stressor, e.g., 
wildfire, or when the effects of less acute stressors 
coincide with a lengthy remeasurement period. 
Overall, mortality among the trees with 0-percent 
crown dieback at the previous inventory was low 
(5.2 percent in the Northern region; 7.8 percent in 
the Southern region). Such was the case for most 
individual species groups except ash (Fraxinus 
spp.) and elm (Ulmus spp.) in the Northern 
region and ash, black cherry (Prunus serotina), and 
Virginia pine (Pinus virginiana) in the Southern 
region (fig. 6.3). An inspection of reported 
causes of death indicated that insects, most likely 
emerald ash borer (Agrilus planipennis) (Morin 
and others 2017), and diseases, most likely Dutch 
elm disease (Ophiostoma novo-ulmi) (Karnosky 
1979, USDA Forest Service 2011), were the 
most frequently reported agents for northern ash 
and elm, respectively. Though no single agent 
dominated the causes of death recorded for ash 
and black cherry in the Southern region, insects, 
diseases, weather, and vegetation (suppression, 
competition, vines) were recorded frequently. 
Vegetation was the most frequently reported cause 
of death among the Virginia pines.

Damage agents observed on trees with 
>20-percent crown dieback suggest possible causes 
of death for trees most at risk of mortality. Stem 
decay, defined as rot occurring in the tree bole or 
stems above the roots and stump and recorded by 
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Figure 6.2—Proportion of remeasured trees in the 
(A) Northern and (B) Southern regions of the Eastern 
United States, by previous crown dieback and current 
tree status. The number of trees in each dieback 
class is listed above the column. (Data source: U.S. 
Department of Agriculture, Forest Service, Forest 
Inventory and Analysis program)
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Figure 6.3—Proportion of trees with 0-percent crown dieback during the previous assessment that were dead upon 
remeasurement during the current assessment in the (A) Northern and (B) Southern regions of the Eastern United States, by 
species group. All species groups shown are based on at least 200 observations. (Data source: U.S. Department of Agriculture, 
Forest Service, Forest Inventory and Analysis program)



Fo
re

st 
He

alt
h M

on
ito

rin
g

112

SE
CT

ION
 2  

  C
ha

pt
er

 6

FIA when there is any evidence of rotten wood, 
conks, or fungal fruiting bodies (USDA Forest 
Service 2015), is the most frequently recorded 
damage agent in the Eastern United States 
(Randolph and others 2021). As such, it was no 
surprise that stem decay was the most frequently 
recorded damage agent among trees with 
>20-percent crown dieback in both the Northern 
region (25.7 percent for softwoods; 42.5 percent 
for hardwoods) and Southern region (66.2 percent 
for softwoods; 72.6 percent for hardwoods). 
Other damage agents frequently associated with 
>20-percent crown dieback were boring insects 
in the Northern region and cankers and decline 
complexes/dieback/wilts in the Southern region 
(fig. 6.4). 

Current Crown Dieback and Damage
The expectations that hardwoods typically have 
more crown dieback than softwoods and that 
crown dieback is more prevalent in the Northern 
region than in the Southern region held true 
(tables 6.2 and 6.3). Among the softwood species 
groups, the overall best crown conditions were 
observed for eastern white and red pines (P. strobus, 
P. resinosa) in the Northern region and loblolly 
and shortleaf pines (P. taeda, P. echinata) in the 
Southern region. Likewise, the overall best crown 
conditions among the hardwood species groups 
were observed for tupelo and blackgum (Nyssa 
spp.), basswood (Tilia americana), birch (Betula 
spp.), cottonwood and aspen (Populus spp.) in 
the Northern region, and birch, yellow-poplar 
(Liriodendron tulipifera), beech (Fagus grandifolia), 
and tupelo and blackgum in the Southern region. 
The overall poorest crown conditions in the 

0 5 10 15
Proportion of trees (percent)

Proportion of trees (percent)

(A)

(B)

Abiotic

Boring insects

Cankers

DC/D/W

Fire

Human activities

Root/butt diseases

Sucking insects

Wild animals
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Boring insects

Cankers

DC/D/W

Fire

Human activities

Root/butt diseases

Sucking insects

Wild animals
0 5 10 15

■ Softwood
■ Hardwood

■ Softwood
■ Hardwood

Figure 6.4—Frequency of common damage agents 
among trees with crown dieback >20 percent in 
the (A) Northern and (B) Southern regions of the 
Eastern United States, by species class. DC/D/W = 
decline complexes/dieback/wilts. (Data source: U.S. 
Department of Agriculture, Forest Service, Forest 
Inventory and Analysis program)



Fo
re

st 
He

alt
h M

on
ito

rin
g

113

SE
CT

ION
 2  

  C
ha

pt
er

 6

Table 6.2—Current mean crown dieback and proportion of trees by dieback class for species groups 
in the Northern region

Dieback class

Species group
Number 
of plots

Number 
of trees Mean SEM 0 >0–10 >10–20 >20

percent - - - - - - - - - - - percent - - - - - - - - - - -
Softwood 1,909 26,064 1.4 0.1 84.7 13.1 1.2 1.0

Eastern hemlock 428 3,077 1.0 0.1 90.4 8.1 0.7 0.8
Eastern redcedar 223 1,192 1.8 0.2 71.3 27.1 1.2 0.4
Eastern white and red pines 617 4,442 0.6 0.1 93.2 6.2 0.3 0.3
Northern white-cedar 285 4,092 3.6 0.4 68.4 24.4 4.2 3.1
Spruce and balsam fir 883 9,603 1.1 0.1 87.2 11.4 0.7 0.6
Tamarack 127 741 1.1 0.3 88.3 9.4 1.6 0.7

Hardwood 3,569 60,930 3.3 0.1 65.1 31.0 1.7 2.1
Ash 984 3,811 6.9 0.9 59.1 30.5 3.6 6.8
Basswood 353 1,325 1.7 0.2 77.0 21.7 0.5 0.8
Beech 629 2,700 3.3 0.2 66.8 28.0 2.9 2.3
Birch 1,159 5,159 2.2 0.1 72.8 24.8 1.3 1.2
Black cherry 711 2,206 4.0 0.3 59.5 35.6 2.4 2.5
Cottonwood and aspen 749 4,984 2.2 0.2 80.5 16.6 1.1 1.9
Elm 744 1,907 6.3 0.4 44.0 48.1 2.8 5.0
Hackberry 239 715 3.8 0.4 48.7 48.3 1.1 2.0
Hickory 755 2,619 2.3 0.2 65.0 33.9 0.4 0.6
Maple 2,364 18,581 2.5 0.1 72.8 24.0 1.7 1.6
Red oaka 1,301 5,129 3.6 0.2 53.1 43.6 1.7 1.6
Sassafras 201 616 4.9 0.7 51.5 43.3 2.1 3.1
Tupelo and blackgum 239 559 1.6 0.3 75.5 24.0 0.2 0.4
Walnut 327 740 3.8 0.4 52.3 44.7 1.4 1.6
White oakb 1,023 5,334 3.6 0.2 48.3 49.3 1.1 1.3
Yellow-poplar 250 1,089 2.8 0.4 69.5 28.0 0.9 1.6

SEM = standard error of the mean.
a Quercus section Lobatae.
b Quercus section Quercus.
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Table 6.3—Current mean crown dieback and proportion of trees by dieback class for species groups in 
the Southern region

Dieback class

Species group
Number 
of plots

Number 
of trees Mean SEM 0 >0–10 >10–20 >20

percent - - - - - - - - - - - - - percent - - - - - - - - - - - - - 
Softwood 4,194 57,963 0.9 0.1 94.9 3.6 0.5 1.1

Cypress 138 1,048 0.3 0.1 98.9 0.4 0.2 0.6
Eastern redcedar 589 2,226 0.9 0.2 96.7 1.4 0.6 1.2
Loblolly and shortleaf pines 2,339 37,769 0.1 0.0 99.6 0.3 0.0a 0.1
Longleaf and slash pines 309 3,912 0.3 0.1 98.0 1.4 0.3 0.3
Pinyon-juniper 1,102 11,405 3.7 0.3 77.4 16.3 2.1 4.3
Virginia pine 156 783 0.6 0.3 98.0 1.1 0.4 0.5

Hardwood 6,511 71,206 2.1 0.1 84.8 11.6 1.6 2.0
Ash 662 2,135 3.0 0.5 88.5 6.2 1.6 3.7
Beech 219 468 0.7 0.3 97.9 1.1 0.0 1.1
Birch 137 418 0.4 0.2 97.6 1.9 0.0 0.5
Black cherry 434 829 1.6 0.3 91.6 5.2 1.7 1.6
Elm 1,544 4,521 1.4 0.1 89.5 8.1 0.9 1.4
Hickory 1,066 2,908 1.0 0.1 93.9 4.0 1.0 1.1
Honey mesquite 1,817 10,530 4.6 0.4 61.9 31.4 2.8 3.8
Magnolia 221 629 1.3 0.4 95.5 1.9 0.6 1.9
Maple 1,153 3,976 1.4 0.2 94.1 2.8 1.2 1.9
Red oakb 2,631 10,398 1.4 0.1 91.5 5.9 1.1 1.5
Sourwood 234 655 1.4 0.4 93.1 4.7 0.8 1.4
Sugarberry 486 1,539 1.1 0.2 90.1 8.2 0.6 1.1
Sweetgum 1,750 6,865 1.2 0.1 94.8 2.4 1.4 1.5
Tupelo and blackgum 888 3,001 0.7 0.1 96.3 2.0 0.9 0.8
Walnut 136 288 3.9 1.3 77.4 14.6 4.5 3.5
White oakc 2,531 13,176 2.6 0.2 76.2 19.3 2.4 2.1
Yellow-poplar 556 2,296 0.6 0.1 97.5 1.3 0.6 0.6

SEM = standard error of the mean.
a Value is >0.0 but <0.1.
b Quercus section Lobatae.
c Quercus section Quercus.



Fo
re

st 
He

alt
h M

on
ito

rin
g

115

SE
CT

ION
 2  

  C
ha

pt
er

 6

Northern region were observed for northern 
white-cedar (Thuja occidentalis), elm, ash, and 
sassafras (Sassafras albidum). In the Southern 
region, the overall poorest crown conditions were 
observed for pinyon-juniper,2 honey mesquite 
(Prosopis glandulosa), walnut (Juglans spp.), and ash. 

Potential causes for the poor crown conditions 
varied by species group. Reported damage agents 
on ash and elm support the effect of known 
stressors, i.e., emerald ash borer and Dutch 
elm disease, respectively. Northern white-cedar 
trees often grow in areas inundated by water 
(Boulfroy and others 2012), and pinyon-juniper 
trees typically grow in environments where 
moisture is scarce (Shaw and others 2005). Both 
water-related stresses can lead to crown dieback 
(Bréda and others 2006, Kozlowski 1986). In 
addition, reported damage agents suggest wild 
animals, possibly beaver (Castor canadensis), 
may have contributed to northern white-cedar 
crown dieback and fire may have contributed to 
pinyon-juniper crown dieback. Root/butt and 
other general diseases were commonly reported 
damage agents on honey mesquite and are likely 
contributors to its crown dieback. Similarly, root/
butt diseases and heart rot were common among 
walnut. In addition to stem decay, damage by 
cankers, wild animals, and vines was commonly 
reported for sassafras. 

Though crown dieback was more prevalent in 
the Northern region than in the Southern region, 
most of the species groups found throughout the 
Eastern United States ranked similarly within the 

2 Woodland pinyon pines ( Pinus cembroides, P. edulis, P. remota) and woodland junipers ( Juniperus ashei, J. coahuilensis, J. 
deppeana, J. flaccida, J. monosperma, J. pinchotii, J. scopulorum).

two regions. On average, birch, tupelo/blackgum, 
and hickory (Carya spp.) ranked among the 
species groups with the best crown conditions. 
Ash, black cherry, and eastern redcedar (Juniperus 
virginiana) ranked among the species groups 
with the poorest crown conditions, and maple 
(Acer spp.) and red oak (Quercus section Lobatae) 
ranked in the middle. Crown conditions for beech, 
elm, walnut, white oak (Quercus section Quercus), 
yellow-poplar and two Celtis species, hackberry  
(C. accidentalis) and sugarberry (C. laevigata), 
ranked differently within the two regions. For 
best crown conditions, beech and yellow-poplar 
ranked in the top third among species groups 
in the Southern region and in the middle third 
among species groups in the Northern region. 
Elm ranked in the middle third among species 
groups in the Southern region and in the bottom 
third among species groups in the Northern 
region. Sugarberry ranked in the middle third 
among species groups in the Southern region 
and hackberry ranked in the bottom third among 
species groups in the Northern region. Walnut 
and white oak ranked in the bottom third among 
species groups in the Southern region and in 
the middle third among species groups in the 
Northern region. No species groups ranked in the 
top third in one region and bottom third in the 
other region. 

Spatially, FIA plot locations where >25 percent 
of the trees had >20-percent crown dieback 
were scattered throughout the Northern region, 
whereas in the Southern region, they were 
concentrated primarily in Texas (fig. 6.5). Further 
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Figure 6.5—Proportion of (A) softwood and (B) 
hardwood trees with crown dieback >20 percent, by Forest 
Inventory and Analysis (FIA) plot location. Plot locations 
are approximate. (Data source: U.S. Department of 
Agriculture, Forest Service, FIA program) 

examination indicated that the Texas plots where 
>25 percent of the trees had >20-percent crown 
dieback were composed of Ashe juniper (J. ashei), 
Pinchot juniper (J. pinchotii), honey mesquite, 
and live oak (Q. virginiana) and had evidence 
of weather- and fire-related disturbances. Other 
than ubiquitous stem decay, the most frequently 
recorded damage agents among trees with 
>20-percent crown dieback in Texas were heart rot 
and decline complexes/dieback/wilts.

Four agents stood out among those considered 
especially damaging to tree crowns: defoliators, 
chewing/sucking insects, parasitic/epiphytic plants, 
and wind. Plots with defoliating insect damage to 
>25 percent of the trees were concentrated in the 
Northeast and the Lake States (fig. 6.6). Eastern 
spruce budworm (Choristoneura fumiferana) was 
the most common insect recorded in the Lake 
States, and spongy moth (Lymantria dispar), 
primarily, and eastern tent caterpillar (Malacosoma 
americanum), secondarily, were the predominant 
specific insects recorded in the Northeast. Sucking 
insects and chewing insects were combined 
because only a few instances of chewing insect 
damage were observed. Though some sucking 
insect damage was noted on hardwood trees, e.g., 
beech scale (Cryptococcus fagisuga), the majority of 
sucking insect damage was observed on softwood 
trees throughout Appalachia and New England 
(fig. 6.7) for which balsam woolly adelgid (Adelges 
piceae) and hemlock woolly adelgid (A. tsugae) 
were the most frequently cited culprits. Parasitic/
epiphytic plant damage was scattered across 
the Northern region and consisted primarily of 
vine damage on hardwood trees (fig. 6.8). Vine 
damage was distributed throughout the canopy in 
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Figure 6.6—Forest Inventory and Analysis (FIA) 
plot locations in the (A) Lake States and (B) 
Northeastern regions of the Eastern United States 
where trees were frequently damaged by defoliating 
insects, by proportion of trees affected. Plot locations 
are approximate. (Data source: U.S. Department of 
Agriculture, Forest Service, FIA program) 

Percent
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Figure 6.7—Forest Inventory and Analysis (FIA) 
plot locations in the Eastern United States where 
softwood trees were frequently damaged by chewing 
or sucking insects, by proportion of trees affected. 
Plot locations are approximate. (Data source: U.S. 
Department of Agriculture, Forest Service, FIA 
program) 
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Figure 6.8—Forest Inventory and Analysis (FIA) 
plot locations in the Eastern United States where 
hardwood trees were frequently damaged by vines, 
by proportion of trees affected. Plot locations are 
approximate. (Data source: U.S. Department of 
Agriculture, Forest Service, FIA program) 

a manner consistent with the distribution of trees. 
That is, the majority of trees tallied were in the 
codominant crown class and the majority of all 
vine-damaged trees were in the codominant crown 
class. However, the proportion of vine-damaged 
trees within each crown class was greatest for 
the intermediate crown class. Except for wind 
damage in the Lake States (fig. 6.9), most likely 
due to major storm events in the summer of 2016 
(Minnesota Department of Natural Resources 
2016, Wisconsin Department of Natural 
Resources 2016), there were no concentrations 
of damage from the other agents considered 
especially damaging to tree crowns.

I did not include a comparison of mean crown 
dieback between damaged and undamaged trees 
because up to three damage agents are allowed 
to be recorded for an individual tree, which 
confounds the effect of any particular damage 
agent. Sample sizes of damaged and undamaged 
trees became increasingly imbalanced once the 
subset of trees with only one damage agent was 
further divided by those for which crown dieback 
was assessed, and even more so when trees were 
classed by species group. 

Trends in Crown Dieback
Tree crown dieback may be caused by agents 
acting directly on the crown or by agents affecting 
the movement of water and nutrients to the 
crown, or both. In some cases, crown dieback may 
be ephemeral such that tree growth returns to 
normal once the causal agent is no longer present 
(Smith and Conkling 2004). In other cases, crown 
dieback may continually worsen if the causal 
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Figure 6.9—Forest Inventory and Analysis (FIA) plot locations in the Eastern United States where (A) softwood and (B) hardwood 
trees were frequently damaged by wind, by proportion of trees affected. Plot locations are approximate. (Data source: U.S. Department of 
Agriculture, Forest Service, FIA program) 
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agent persists. Some fluctuation in average crown 
dieback is expected over time; however, increasing 
or ongoing high levels of crown dieback are cause 
for concern, especially for individual species 
groups with no known stressors. 

There has been an overall downward trend in 
mean crown dieback for all species combined in 
both the Northern and Southern regions since 
the late 1990s (fig. 6.10). Yet the degree to which 
average crown dieback changed varied by species 
group. Mean crown dieback for most species 
groups either declined or exhibited no change. 
This was true for all softwood species groups 
examined in the Northern and Southern regions 
(fig. 6.11). The same was also true for almost 
all hardwood species groups considered in the 
Southern region (fig. 6.12). The only hardwood 
species group in the Southern region with a ratio 
of current mean crown dieback to mean crown 
dieback in 1999 that was >1 was ash (ratio = 1.1). 
This is likely due to emerald ash borer, which 
was detected in the Southern region (Fairfax 
County, VA) in 2008 and in all Southern States 
except Florida and Mississippi by the end of 
2020 (Emerald Ash Borer Information Network 
2022). Among the hardwood species groups in 
the Northern region, mean crown dieback during 
the current inventory period was at least 1.2 times 
greater than it was during the earliest inventory 
period for ash, elm, sassafras, walnut, yellow-
poplar, and hackberry (fig. 6.13). Despite the 

overall increases for these groups, current mean 
crown dieback was less than mean crown dieback 
observed during previous years for some species 
groups. For example, mean crown dieback peaked 
for sassafras in 2010 and in 2015 for hackberry. In 
contrast, declines in mean crown dieback in the 
Northern region have been steady since 1999  
(fig. 6.13A). 

The test comparing the ratio of d 2 to d 1 
indicated that, on average, crown dieback on 
surviving trees either declined or remained steady 
for all species groups in the Northern (table 6.4) 
and Southern (table 6.5) regions. This may be 
because trees with crown dieback dropped out 
of the population due to mortality or because 
crown dieback was either not present or no longer 
recordable by definition, i.e., the dieback was 
no longer “recent” and consisting of fine twigs 
(Schomaker and others 2007). Including mortality 
trees in the comparison of d 2 to d 1 indicated 
that most of the species groups with declines in 
mean crown dieback from 2015 to 2019 in the 
Southern region (figs. 6.11B and 6.12) may have 
been due, at least in part, to trees dropping out 
of the inventory because of mortality (table 6.5). 
Likewise in the Northern region, declines in 
mean crown dieback from 2015 to 2019 for birch 
and cottonwood and aspen (Populus spp.) (fig. 
6.13) may also have been due, at least in part, to 
mortality (table 6.4). 
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Figure 6.10—Mean crown dieback for trees ≥5.0 inches 
diameter at breast height in the Eastern United States, by region 
and year. Crown dieback in the 1990s was collected by the Forest 
Service Forest Health Monitoring program and reported by 
Randolph (2006) and Randolph and others (2010a, 2010b). 
NC = North Central; NE = Northeastern. (Additional data 
source: U.S. Department of Agriculture, Forest Service, Forest 
Inventory and Analysis program) 
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Figure 6.11—Mean crown dieback for softwood species groups in the (A) Northern 
and (B) Southern regions of the Eastern United States, by species group and year. 
(Data Source: U.S. Department of Agriculture, Forest Service, Forest Inventory  
and Analysis program) 
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Figure 6.12—Mean crown dieback for hardwood species groups in the Southern 
region of the Eastern United States for which the ratio between current mean 
crown dieback and the earliest mean crown dieback was (A) ≤0.5, (B) >0.5 
and <0.8, and (C) ≥0.8. (Data Source: U.S. Department of Agriculture, Forest 
Service, Forest Inventory and Analysis program)
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Figure 6.13—Mean crown dieback for hardwood species groups in the Northern 
region of the Eastern United States for which the ratio between current mean 
crown dieback and the earliest mean crown dieback was (A) <0.8, (B) ≥0.8 
and <1.2, and (C) ≥1.2. (Data Source: U.S. Department of Agriculture, Forest 
Service, Forest Inventory and Analysis program)
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Table 6.4—Mean ratio between current and previous crown dieback, and 95-percent upper (UCL) and lower (LCL) 
confidence limits, for paired trees in the Northern region, by species group

Species group

Surviving trees and mortality trees Surviving trees only

Number 
of plots

Number 
of trees Mean LCL UCL

Number 
of plots

Number 
of trees Mean LCL UCL

Softwood 888 12,033 1.2 1.1 1.3 866 11,231 0.9 0.8 1.0
Eastern hemlock 190 1,321 1.1 0.9 1.4 188 1,288 0.9 0.8 1.2
Eastern redcedar 86 458 1.2 0.7 1.9 82 431 0.9 0.5 1.5
Eastern white and red pines 266 2,087 1.1 0.9 1.2 264 1,984 0.8 0.7 0.9
Northern white-cedar 155 2,062 0.9 0.7 1.3 154 2,001 0.9 0.6 1.2
Spruce and balsam fir 451 4,487 1.3 1.1 1.6 440 4,088 0.9 0.7 1.0
Tamarack 67 399 1.1 0.6 1.9 66 382 0.8 0.6 1.2

Hardwood 1,644 26,113 1.2 1.1 1.3 1,574 23,652 0.8 0.8 0.9
Ash 459 1,797 2.4 1.8 3.2 394 1,463 1.12 0.9 1.4
Basswood 156 576 0.6 0.4 0.8 152 559 0.5 0.4 0.7
Beech 282 1,137 1.5 1.1 2.1 273 1,030 1.0 0.8 1.3
Birch 534 2,267 1.2 1.0 1.4 515 2,064 0.8 0.7 1.0
Black cherry 294 961 1.4 1.1 1.8 273 858 0.9 0.7 1.2
Cottonwood and aspen 354 2,164 1.5 1.2 1.8 330 1,870 0.8 0.7 1.0
Elm 336 887 2.1 1.6 2.8 288 695 1.0 0.8 1.2
Hackberry 94 250 0.9 0.5 1.6 88 228 0.7 0.4 1.2
Hickory 299 1,040 1.2 0.9 1.5 287 985 0.9 0.7 1.2
Maple 1,056 8,037 0.9 0.8 1.0 1,036 7,579 0.7 0.6 0.8
Red oaka 565 2,234 1.1 0.9 1.4 530 2,032 0.8 0.7 1.0
Sassafras 94 268 1.5 0.8 2.8 82 228 0.9 0.5 1.6
Tupelo and blackgum 107 235 1.1 0.8 1.6 104 230 1.0 0.7 1.4
Walnut 132 292 1.0 0.7 1.6 119 269 0.8 0.5 1.1
White oakb 427 2,298 1.4 1.1 1.9 404 2,111 1.1 0.8 1.4
Yellow-poplar 97 401 1.2 0.8 1.7 92 365 0.9 0.6 1.3

a Quercus Section Lobatae.
b Quercus Section Quercus.
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Table 6.5—Mean ratio between current and previous crown dieback, and 95-percent upper (UCL) and lower (LCL) confidence limits, for 
paired trees in the Southern region, by species group

Species group

Surviving trees and mortality trees Surviving trees only

 Number 
of plots

Number 
of trees Mean LCL UCL

Number 
of plots

Number 
of trees Mean LCL UCL

Softwood 986 12,020 1.6 1.5 1.7 920 11,097 1.0 0.9 1.0

Cypress 59 387 1.1 0.9 1.3 58 378 0.9 0.8 1.0

Eastern redcedar 150 548 1.7 1.3 2.2 140 497 1.0 0.9 1.1

Loblolly and shortleaf pines 668 8,347 1.5 1.4 1.6 630 7,795 1.0 1.0 1.0

Longleaf and slash pines 163 1,697 1.9 1.5 2.6 148 1,518 1.0 0.8 1.2

Virginia pine 95 523 2.1 1.4 3.3 87 444 0.8 0.7 1.0

Hardwood 1,350 17,296 1.5 1.4 1.6 1,202 15,403 0.8 0.8 0.9

Ash 192 575 1.9 1.4 2.6 162 482 0.8 0.6 1.1

Beech 76 176 0.8 0.6 1.1 74 166 0.7 0.5 0.9

Black cherry 196 386 1.5 1.0 2.2 166 322 0.6 0.5 0.9

Elm 287 613 1.5 1.2 1.9 259 534 0.8 0.7 0.9

Hickory 405 1,237 1.2 1.0 1.5 379 1,129 0.8 0.7 0.9

Maple 512 1,889 1.7 1.4 1.9 463 1,665 0.9 0.8 1.0

Red oaka 803 3,041 1.6 1.4 1.8 737 2,664 0.8 0.8 0.9

Sourwood 133 358 1.3 0.9 1.7 118 317 0.8 0.6 1.0

Sugarberry 52 161 1.7 1.0 2.6 48 145 0.9 0.7 1.2

Sweetgum 483 1,801 1.4 1.2 1.7 459 1,638 0.9 0.8 0.9

Tupelo and blackgum 317 1,058 1.2 1.0 1.4 294 989 0.8 0.7 0.9

White oakb 620 2,706 1.0 0.8 1.1 585 2,516 0.7 0.6 0.8

Yellow-poplar 284 1,096 1.3 1.1 1.5 272 1,019 0.9 0.8 1.0
a Quercus Section Lobatae. 
b Quercus Section Quercus.
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CONCLUSIONS
In general, crown conditions were as expected 
for most species groups and overall exemplified 
the presence of known stressors in the Eastern 
United States, such as beech bark disease, emerald 
ash borer, hemlock woolly adelgid, spongy moth, 
and eastern spruce budworm. Damage by wind 
and vines was also common; however, damage 
by foliage diseases, decline complexes/dieback/
wilts, and snow and ice was less frequent. With 
only a few exceptions, average crown dieback 
has remained stable or declined over the last 
20 years. Among the softwood species groups 
included in this summary, crown dieback was 
greatest among northern white-cedar trees in the 
Northern region and pinyon-juniper trees in the 
Southern region. Among the hardwood species 
groups, crown dieback was greatest among ash 
and elm trees in the Northern region and honey 
mesquite trees in the Southern region. Favorably, 
a downward trend in crown dieback was observed 
for northern white-cedar over the last 20 years 
and within the last 10 years for elm; however, 
crown dieback continued to trend upward for ash. 
The first remeasurement of trees in central and 
western Texas is only partially complete; therefore, 
it is unclear if the high levels of crown dieback 
for pinyon-juniper and honey mesquite are 
characteristic for these species groups or trending 
in one direction or the other.
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INTRODUCTION

S ince its inception in 1989 to the present, nearly 
10,000 standardized surveys of epiphytic 
(tree-dwelling) lichen communities have 

been conducted as part of the National Lichen 
Indicator (“Indicator” hereafter), making it the 
single most extensive lichen community monitoring 
program in the world. These surveys, used widely 
by Federal Land Managers (FLMs) and researchers 
alike, provide valuable information on air quality, 
climate, biodiversity, and lichen floristics in U.S. 
forests. Many surveys were conducted on the U.S. 
Department of Agriculture, Forest Service, Forest 
Inventory and Analysis (FIA) plot network and thus 
link to numerous co-located measurements of forest 
structure collected by FIA field crews. Moreover, the 
systematic nature of the data, which also provides 
information about where lichen species do not occur, 
is highly valuable to ecologists, biogeographers, 
and taxonomists seeking to understand species’ 
distributions and habitat preferences.

Three Forest Service programs played central 
roles in collecting Indicator data. The earliest 
surveys collected in the late 1980s were part of 
various pilot studies conducted “off grid” by the 
Forest Health Monitoring (FHM) program 
and the National Forest System’s Air Resource 
Management (ARM) program. In 1993, the 
FHM program initiated large-scale data collection 
on the FIA grid (Stolte and others 1993), with 
the FIA program taking over management of 
the Indicator around 2003. The ARM program, 
using their own funding, field crews, and sampling 
schedule, also conducts many of their surveys on 
the FIA plot network. 

Field and data processing protocols were 
consistent across participating programs. However, 
the format of collected data, its accessibility, 
taxonomic treatment of lichen species, and the 
availability of other co-located datasets, varied 
widely. Thus, our goal was to package together 
Indicator data across parent programs, for the first 
time, using a consistent, user-friendly format. To 
do so, we built a comprehensive database called 
the National FIA Lichen Database (NFLD) 
and used it to create a National Lichen Atlas to 
illustrate the breadth of the combined Indicator 
datasets ( Jovan and others 2020, 2021b). These 
products cover the first 23 years of Indicator data, 
up through 2012 when FIA ceased large-scale 
collection of lichen surveys. Data collection since 
then has been more sporadic and geographically 
targeted, often using the 23 years of data in the 
NFLD as a baseline. 

METHODS
Field
In brief, Indicator data come from timed surveys 
(up to 2 hours) aiming to capture all epiphytic 
noncrustose lichen species encountered within a 
0.94-acre area. A voucher specimen is collected 
and abundance code assigned to every species 
suspected to be unique ( Jovan and others 2020). 
Surveyors are specially trained and certified in 
the Indicator protocol, with their performance 
assessed by professional lichenologists usually 
at least once per season. Voucher specimens are 
identified by lichenologists and later deposited in 
herbaria to make them available for further study. 

https://doi.org/10.2737/SRS-GTR-273-Chap7
https://doi.org/10.2737/SRS-GTR-273-Chap7
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Data
For the NFLD, we built six linkable core tables 
to house all FHM and FIA data using a structure 
similar to the “LICHEN-…” tables in the Forest 
Inventory and Analysis Database (FIADB), one 
of several parent databases to the NFLD. We 
integrated all ARM data collected through 2012 
into a seventh table, [LICHEN_ATLAS], which 
we used to generate the species distribution maps 
for the National Lichen Atlas. The [LICHEN_
ATLAS] table serves as a user-friendly starting 
place for analysts because it integrates all data, 
including relevant geographic and the most 
commonly used environmental variables, into a 
single table. For more information, the NFLD 
version 1.0 is available along with a detailed user 
guide ( Jovan and others 2020) at https://www.fia.
fs.usda.gov/program-features/indicators/lichen/. 

RESULTS AND DISCUSSION
For the comprehensive [LICHEN_ATLAS] 
table, we were able to collate approximately 
115,500 lichen records across the three 
participating Forest Service programs. Records 
represent about 8,300 lichen community surveys 
covering 6,000 unique forested locations from 
1989 to 2012 (fig. 7.1). The NFLD makes 
more than one-third of these Indicator surveys 
available to the public for the first time. The FHM 
program collected 2,311 surveys; FIA collected an 
additional 3,061; ARM added an additional 2,970 
surveys to [LICHEN_ATLAS] over the same 
time period. 

More than 85 percent of all surveys were 
collected on the FIA grid (and are identified 

as such in the NFLD), which means extensive 
co-located forest structure data may be available 
for these plots. The user guide ( Jovan and others 
2020) provides instructions for accessing the 
NFLD’s parent databases to help users obtain 
environmental variables not included in the 
[LICHEN_ATLAS] table. The remaining 
surveys, classified as “off-grid” plots, were located 
in areas of special interest to support specific 
research or management objectives not otherwise 
served by the on-grid dataset. Requests for 
additional data for off-grid sites can be sent to this 
chapter’s authors. 

Indicator surveys detected roughly 440 
distinct taxa as identified under program criteria. 
The evolutionary history of lichens is poorly 
understood compared to vascular plants, making 
the field of lichen taxonomy highly dynamic. Thus, 
to compare “apples to apples,” users of Indicator 
data must first assess the need to reconcile the 
taxonomy of lichen names in their dataset. More 
than 350 taxonomic name changes were adopted 
by the Indicator programs over the course of 
data collection. Each change in name or species 
concept is recorded in the core NFLD table 
named [REF_LICHEN_SPP_COMMENTS]. 
This table provides detailed rationales for each 
name change, along with relevant literature 
citations and suggested actions for users to take 
depending upon the geographic region and 
timespan their dataset covers. Alternatively, we 
have already applied a consistent taxonomic 
treatment to the [LICHEN_ATLAS] table, 
making it a user-friendly starting point with the 
main downside being that we needed to lump 
a few cryptic species and several newer species 

https://www.fia.fs.usda.gov/program-features/indicators/lichen/
https://www.fia.fs.usda.gov/program-features/indicators/lichen/
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Figure 7.1—Map of lichen survey sites in the National Lichen Atlas ( Jovan and others 2021b). Each site was visited one to four times. Site 
locations are approximate. 
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names together due to the long time period 
covered by the dataset. Older specimens are 
not routinely revisited to update species names 
although many are stored in herbaria and thus 
available to interested users for further study. 
This left us with about 400 taxa to feature with 
distribution maps and photos in the Atlas. The 
[LICHEN_ATLAS] table includes both the 
reconciled and original names determined for 
each lichen occurrence, so analysts wishing to 
use the table can make their own decisions about 
when and how to implement suggested actions in 
[REF_LICHEN_SPP_COMMENTS]. 

Atlas Examples: Distributions of Air 
Quality Indicator Species
More than 100 studies to date use the Indicator 
data as a baseline for investigating spatial 
and, increasingly, temporal trends in lichen 
community-based metrics ( Jovan and others 
2020). Many metrics have been developed to 
indicate air quality, climate, and other change 
on forest land in the United States, although air 
quality is by far the most common focus. Lichens 
are highly sensitive to pollution due to their 
reliance on atmospheric sources of water and 
nutrients, leading to the accumulation of many 
pollutants in their tissues as well as predictable 
shifts in species composition. Metrics describing 
these community shifts and assays measuring 
pollutant concentrations in lichen tissue are both 
common, inexpensive ways to better understand 
pollution patterns across the landscape. 

For example, excess nitrogen (N) deposition is 
linked to a wide array of detrimental ecological 

effects in both the Eastern and Western United 
States ( Jovan and others 2021a, Root and 
others 2021, Smith and others 2020). Lichens 
are extremely responsive to N; as levels begin 
exceeding natural background levels, lichen 
communities start to gain “eutrophic” (i.e., 
N-loving) species and lose native “oligotrophic” 
(N-sensitive) species. Eutrophs, like species  
of the brightly colored genera Candelaria  
(figs. 7.2A and 7.3), Xanthoria, and 
Xanthomendoza, tend to be relatively small in size 
with broad geographic distributions. Eutrophs 
occur in naturally N-enriched sites (e.g., under 
bird perches), although anthropogenic N sources 
like fertilizers, livestock enclosures, and motor 
vehicle emissions have allowed them to greatly 
expand their abundance. In contrast, oligotrophs 
may grow quite large, play important ecological 
roles in the forest system, and often have 
geographically restricted distributions even in 
the absence of pollution. One example, the iconic 
witch’s hair lichen (Alectoria sarmentosa; figs. 7.2B, 
7.2C, and fig. 7.4), grows abundantly on tree 
trunks and branches in wet montane forests of the 
Northwest and Alaska where it is used extensively 
by wildlife for forage and nest building. Ecological 
functions like these are thus impacted when 
elevated N reduces the health and abundance 
of A. sarmentosa and other oligotrophic species. 
Community shifts like this, i.e., where sensitive 
species are replaced by tolerant or pollution-
loving species, are the basis of lichen-based 
“critical loads,” a management tool FLMs use to 
determine where pollutant levels may be causing 
ecological harm (Geiser and others 2021). 
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Other pollutants, like heavy metals and 
many air toxics, accumulate in lichens without 
causing observable community-level effects. 
The ARM program, which is most active in the 
Pacific Northwest and Alaska, pairs all Indicator 
community surveys with assays of heavy metals, 
N, and sulphur (S) in lichen tissue collected 
onsite. Witch’s hair lichen (figs. 7.2B and 7.2C) 
grows in long luxurious “beards,” making it a 
favorite target species of ARM surveyors. Tissue 
collection by FIA crews was never a routine part 
of the 23 years of “baseline” data, although most 
recent surveys include some assay data. One 
of the most common target species collected 
on FIA plots in the East, for instance, is the 
common greenshield lichen (Flavoparmelia 
caperata; figs. 7.2D and 7.5), valued for its 
widespread distribution and manageable size 
(Will-Wolf and others 2017).

(A)

(B)

(D)

(C)

Figure 7.2—Photos of common lichens used to 
indicate air quality: (A) Candelaria pacifica, (B, 
C) Alectoria sarmentosa, and (D) Flavoparmelia 
caperata. (A, B, D: Courtesy photos by Richard 
Droker [Creative Commons license: https://
creativecommons.org/licenses/by-nc-nd/2.0/]; C: 
Courtesy photo by Leppyone [Creative Commons 
license: https://creativecommons.org/licenses/by/2.0/])
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Lemon lichen
Candelaria concolor/pacfica (Dicks.) Stein/M. Westb. & Arup 

Plot type
● ARM—o� grid
● ARM—on grid
● FIA—o� grid
● FIA—on grid

Figure 7.3—Map of Indicator surveys where Candelaria concolor and C. pacifica were found on Air Resource Management (ARM) and Forest 
Inventory and Analysis (FIA) plots. These species are mapped together because their sterile forms are difficult to differentiate. Western records are likely  
C. pacifica, while eastern records are likely C. concolor. Plot locations are approximate.
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Plot type
● ARM—o� grid
● ARM—on grid
● FIA—o� grid
● FIA—on grid

Witches hair lichen
Alectoria sarmentosa (Ach.) Ach.

Figure 7.4—Map of Indicator surveys where Alectoria sarmentosa was found on Air Resources Management (ARM) and Forest Inventory and 
Analysis (FIA) plots. Plot locations are approximate. 
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Plot type
● ARM—o� grid
● ARM—on grid
● FIA—o� grid
● FIA—on grid

Common greenshield lichen
Flavoparmelia caperata (L.) Hale

Figure 7.5—Map of Indicator surveys where Flavoparmelia caperata was found on Air Resources 
Management (ARM) and Forest Inventory and Analysis (FIA) plots. Plot locations are approximate. 
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CONCLUSIONS
Publication of the NFLD version 1.0 and 
National Lichen Atlas marks a significant 
milestone, making data from thousands of lichen 
surveys conducted from 1989 to 2012 available 
to the public for the first time. Despite reduced 
data collection since 2012, the ARM and FIA 
programs have maintained their long-term 
partnership to continue serving clients of the 
Indicator, making data more readily available 
and, when possible, supporting additional 
data collection to answer specific research or 
management questions. Future versions of the 
NFLD will incorporate these newer datasets, 
including assay data where available. 
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SECTION 3 
Evaluation Monitoring 
Project Summaries

E ach year, the Forest Health Monitoring 
(FHM) program funds a variety of Evaluation 
Monitoring (EM) projects, which are projects 

to determine the extent, severity, and causes of 
undesirable changes in forest health identified 
through Detection Monitoring (see the FHM 
website: https://www.fs.usda.gov/foresthealth/
protecting-forest/forest-health-monitoring/index.
shtml). In addition, EM projects can produce 
information about forest health improvements. 
The EM projects are submitted, reviewed, and 
selected through an established process. More 
detailed information about how EM projects are 
selected, the most recent call letter, and reporting 
responsibilities are listed on the Forest Health 
Protection Grants website (https://www.fs.usda.
gov/foresthealth/working-with-us/index.shtml). 

Beginning in 2008, each FHM National Status, 
Trends, and Analysis report contains summaries 
of recently completed EM projects. Each 
summary provides an overview of the project 
and results, citations for products and other 
relevant information, and a contact for questions 
or further information. The summaries provide 
an introduction to the kinds of monitoring 
projects supported by FHM and include enough 
information for readers to pursue specific interests. 
Four EM project summaries are included in this 
report.

https://www.fs.usda.gov/foresthealth/protecting-forest/forest-health-monitoring/index.shtml
https://www.fs.usda.gov/foresthealth/protecting-forest/forest-health-monitoring/index.shtml
https://www.fs.usda.gov/foresthealth/protecting-forest/forest-health-monitoring/index.shtml
https://www.fs.usda.gov/foresthealth/working-with-us/index.shtml
https://www.fs.usda.gov/foresthealth/working-with-us/index.shtml




Fo
re

st 
He

alt
h M

on
ito

rin
g

139

SE
CT

ION
 3 

   C
ha

pt
er

 8

CHAPTER 8 
Ash Tree Decline and 
Mortality in Ohio and the 
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INTRODUCTION

The emerald ash borer (Agrilus planipennis) 
(EAB) is a wood-boring beetle from Asia that 
has killed billions of ash (Fraxinus spp.) trees 

in North America since its accidental introduction 
to southeastern Michigan in the mid-1990s. The 
EAB spread rapidly and has become one of the 
most costly/destructive pests in North America 
(Aukema and others 2011). It affects multiple ash 
species, driving several to be listed as endangered 
( Jerome and others 2017). Previous studies have 
shown substantial EAB-caused mortality of larger 
size classes of ash in forests (Flower and others 
2013, Morin and others 2017); however, in some 
sites, ashes have survived as lingering survivor 
trees (Koch and others 2015), small seedlings 
(Klooster and others 2014), or trees from root 
sprouts (Kashian 2016). 

The impacts of invasive pests on host trees 
vary by species and vary across the landscape 
based on geophysical characteristics and forest 
stand conditions (Flower and Gonzalez-Meler 
2015). Earlier research has indicated differences 
in mortality from EAB among ash species 
(Anulewicz and others 2007, Rebek and others 
2008, Tanis and McCullough 2012), which may 
be due to tree resistance to EAB, the preference 
of EAB adults, or both (Koch and others 2015). 
For example, adult EABs have been shown to 
prefer other native ash species over blue ash (F. 
quadrangulata) (Pureswaran and Poland 2009, 
Tanis and McCullough 2012). Understanding 
patterns of ash decline and mortality helps forest 
managers plan for and manage EAB impacts and 
also provides context for identification of lingering 
ash trees to test for EAB resistance.

METHODS
We studied the EAB impacts on ash in two 
very different landscape contexts in Ohio and 
Pennsylvania. The Ohio sites are typically smaller 
forested areas, including Federal and State lands, 
local parks, and privately owned land, completely 
surrounded by agricultural areas or suburban 
housing and retail. In contrast, the Pennsylvania 
sites are in the Allegheny National Forest (ANF), 
a heavily forested landscape with considerable 
geographic relief surrounded by and interspersed 
with forested State and private lands.

In Ohio, we set up three monitoring plots in 
each of 60 sites during 2005–2008 prior to ash 
mortality to include a range of ash densities, stand 
ages, and species: white ash (F. americana), green 
ash (F. pennsylvanica), pumpkin ash (F. profunda), 
black ash (F. nigra), and blue ash. Each of these 
five ash species has different habitat affinities, 
ranging from upland forests for white ash, to 
riparian areas for green ash, to limestone areas 
with high calcium soils for blue ash, to wet forests 
for black, pumpkin, and green ash. We used bark 
and twig morphology to identify blue ash, bark 
and sessile leaflets to identify black ash, and seed 
shape and calyx length to identify white, green, 
and pumpkin ash. We collected voucher specimens 
of ash seeds, leaves, and twigs and preserved 
them at the U.S. Department of Agriculture, 
Forest Service, Northern Research Station lab in 
Delaware, OH. In sites that contained a mix of 
white and green ash and hybrids, or green and 
pumpkin ash, it was difficult to distinguish among 
these tree species and so they were pooled.

https://doi.org/10.2737/SRS-GTR-273-Chap8
https://doi.org/10.2737/SRS-GTR-273-Chap8
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In Ohio, we measured ash trees ≥10 cm 
diameter at breast height (d.b.h.) in three to 
five 11.3-m-radius circular plots per site and 
measured ash saplings and seedlings in smaller 
nested plots (see Knight and others 2014 for 
detailed methods). We tracked >3,000 individual 
trees and recorded ash canopy health condition 
on a 1–5 scale where 1 is healthy, 5 is dead, 
and 2, 3, and 4 are stages of decline. We also 
recorded EAB symptoms, d.b.h., mortality, and 
tree fall. Tree fall was defined as the main trunk 
of the tree on the ground, due to the lower trunk 
snapping or uprooting. We visited plots yearly 
2005–2014 and again in 2019; we visited sites 
with remaining live trees in 2020 and 2021. From 
2008–2021, in nine sites in central Ohio and five 
sites in northwestern Ohio, we measured EAB 
populations. We hung four purple prism traps 
coated with tanglefoot and baited with manuka 
oil lures in ash trees throughout the season when 
EAB adults are active (450–550 growing degree 
days [GDD] to late August) and counted EAB 
adults caught on the traps.

In northwestern Pennsylvania, we set up 190 
monitoring plots in 2010 prior to ash mortality at 
the ANF. In contrast to the Ohio sites, the ANF is 
marked by considerable topography, creating upper 
slope areas where soil base cations may be depleted 
due to leaching and lower slope areas with richer 
soils. These soil differences have led to declines 
in ash health in upper slope areas prior to EAB 
impact (Royo and Knight 2012). We selected ash 
sites by superimposing a 700-ha grid throughout 
the ANF land base and used existing stand 
composition data to identify blocks containing ash 
and to select paired upper and lower slope plots. 

All ash trees in monitoring plots at the ANF are 
white ash, and very few ash saplings and seedlings 
existed in any of our sites. We used basal area factor 
(BAF) 10 prism plots to record ash canopy health 
condition, d.b.h., and mortality of ash trees in 2010, 
2015, and 2018–2021.

RESULTS
Figures 8.1 and 8.2 depict the progression of ash 
mortality across the landscapes of Ohio and the 
ANF, respectively. In most sites, ash trees (≥10 cm 
d.b.h.) were relatively healthy at the beginning 
of the monitoring period and then progressed 
to substantial mortality. At the ANF, white ash 
had experienced 77-percent mortality by 2021. 
Mortality patterns differed markedly by species 
in Ohio (table 8.1), with blue ash exhibiting 
better survival rates than other species. In sites 
containing both white ash and blue ash, the white 
ash was attacked and killed first. Then, the blue 
ash began to decline, with some trees succumbing 
to EAB, but with >70 percent of the trees 
surviving. In contrast, < 5 percent of the white and 
green ash trees ≥10 cm d.b.h. originally present 
in all plots were still alive by 2019. In most sites, 
black ash had 100-percent mortality; however, at a 
few sites where nearby ash trees had been treated 
with systemic insecticide, black ash and pumpkin 
ash had greater survival. Ash trees fell rapidly 
after mortality, with 20 percent of the trees falling 
within 2 years and >80 percent falling within 8 
years (fig. 8.3). 
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(A) (B)

(C) (D)

Mean ash canopy 
health condition

0.00–1.00
1.01–2.00
2.01–3.00
3.01–4.00
4.01–5.00

Figure 8.1—Ash canopy health condition of trees ≥10 cm diameter at breast height in Ohio in (A) 2008, (B) 2011, (C) 
2014, and (D) 2019. Ash canopy health condition is a 1–5 rating, where 1 is a healthy canopy, 5 is a completely dead 
canopy, and 2, 3, and 4 are stages of decline. Sites in northwestern Ohio and central Ohio where emerald ash borer traps 
were used yearly are circled in panel D.
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(A) (B)

(C) (D)

Mean ash canopy 
health condition

0.00–1.00
1.01–2.00
2.01–3.00
3.01–4.00
4.01–5.00
Major road
ANF boundary

Figure 8.2—Ash canopy health condition from prism plots on the Allegheny National Forest (ANF) in (A) 
2010, (B) 2015, (C) 2018, and (D) 2021. 
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Table 8.1—Differences in mortality and canopy health condition for ash trees ≥10 cm 
d.b.h. recorded in the Ohio monitoring plots, 2006–2019 

Species
Number of 

trees
Mean initial 

d.b.h. 

Mean canopy 
health rating, 

2019 a Dead, 2019

cm percent
White ash (Fraxinus americana) 529 24.1 5.0 98.6
Black ash (F. nigra) 80 20.5 4.7 91.8
Green ash (F. pennsylvanica) 391 25.9 4.9 95.8
Pumpkin ash (F. profunda) 50 27.0 4.2 66.7
Blue ash (F. quadrangulata) 60 28.1 2.9 28.3
Green ash/white ashb 308 21.3 5.0 99.1
Green ash/pumpkin ashb 444 24.2 4.9 97.2

a Canopy health is rated on a 1–5 scale where 1 is healthy and 5 is dead. 
b Species were lumped in sites with evidence of a mix of white and green ash and hybrids, or green and pumpkin ash.
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Figure 8.3—Percentage of fallen dead trees from 1,100 
ash trees ≥10 cm diameter at breast height that died during 
2006–2014 in Ohio.



Fo
re

st 
He

alt
h M

on
ito

rin
g

144

SE
CT

ION
 3 

   C
ha

pt
er

 8

In Ohio, the abundance of ash saplings (1.0–9.9 
cm d.b.h.) was quite variable and did not show 
consistent changes in abundance from pre-EAB 
to post-EAB impact (table 8.2). The sapling size 
class is highly dynamic due to mortality and 
recruitment, with some of the larger saplings 
killed by EAB, other saplings dying from other 
causes, and recruitment occurring especially in 
areas where abundant ash seedlings grew rapidly 
as canopy gaps opened. In many Ohio sites, 
ash seedlings are abundant (data not shown). 
However, newly germinated seedlings are not 
present or very rare.

The EAB traps in Ohio showed similar patterns 
in each monitored site. Trap catch numbers 
increased slowly at first and then rapidly in an 
exponential pattern, with peak catches typically 
coinciding with 50-percent mortality of the 
ash trees at a site, then a rapid crash in EAB 
populations as the remaining ash trees died  
(fig. 8.4). However, EAB populations persisted at 
low levels and showed a small resurgence more 
recently in northwestern Ohio (fig. 8.5).

Table 8.2—Presence of live mature ash (≥10 cm d.b.h.) and presence and abundance of ash saplings (1.0–9.9 cm 
d.b.h.) in Ohio monitoring plots prior to emerald ash borer (EAB) impact (2006–2008) and after EAB impact (2019)

pre-EAB post-EAB

Species

Number of 
plots with 

mature trees

Number of 
plots with 
saplings

Mean number 
of saplings 

per plot

Standard 
deviation 

saplings per plot

Mean number 
of saplings 

per plot 

Standard 
deviation 

saplings per plot

White ash (Fraxinus americana) 68 15 1.2 3.9 0.2 0.6
Black ash (F. nigra) 26 12 4.5 10.5 4.0 7.4
Green ash (F. pennsylvanica) 35 12 5.9 18.4 3.2 9.6
Pumpkin ash (F. profunda) 9 0 0.0 0.0 2.0 2.3
Blue ash (F. quadrangulata) 22 12 8.7 20.8 4.1 8.4
Green ash/white asha 36 11 3.7 9.9 1.7 4.6
Green ash/pumpkin asha 39 12 0.9 1.8 1.9 4.2

a Species were lumped in sites with evidence of a mix of white and green ash and hybrids, or green and pumpkin ash.
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Figure 8.4—Emerald ash borer (EAB) 
trap catches and the percentage of live 
ash trees ≥10 cm diameter at breast 
height (d.b.h.) at a site in central Ohio 
showing the typical pattern of ash and 
EAB population dynamics.

Figure 8.5—Emerald ash borer trap 
catches in northwestern and central 
Ohio monitoring sites. Note: Due to the 
COVID-19 pandemic, data were not 
collected from central Ohio sites in 2020.
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CONCLUSIONS
Our data show nearly complete mortality of most 
species of ash ≥10 cm d.b.h. in two very different 
landscapes in Ohio and Pennsylvania. Tracking 
of individual trees on a yearly basis during a rapid 
mortality event allowed us to accurately quantify 
the effect of EAB. Because many trees die and fall 
in <4 years, estimates of mortality from one-time or 
longer interval surveys that only include standing 
trees likely underestimate mortality from EAB. 

The survival of larger ash trees during the initial 
wave of EAB infestation may result from multiple 
mechanisms, including adult EAB feeding and 
landing preference, tree resistance (i.e., the tree’s 
ability to kill the EAB larvae) (Koch and others 
2015), and tree tolerance (i.e., the tree’s ability 
to survive and grow while infested). The small 
percentage of large ash trees that have survived 
EAB infestation in Ohio and at the ANF are of 
considerable interest because they may be useful 
for breeding programs for resistance to EAB. 

Consistent with research in Michigan showing 
blue ash to have generally higher survival than 
other ash species (Tanis and McCullough 2012), 
the survival of blue ash in the Ohio sites was 
much better than other species. This may be 
due to adult EAB having reduced preference 
for blue ash, as shown in feeding and landing 
studies (Pureswaran and Poland 2009). Long-
term monitoring of blue ash sites will determine 
whether this higher survival rate will persist.

While the larger trees exhibit very high 
mortality rates, smaller ash saplings likely have 
less mortality caused by EAB, and seedlings <0.5 
cm d.b.h. are not infested by EAB. We recorded 

abundant regeneration at some of the Ohio 
monitoring sites. The future dynamics of EAB 
populations and the surviving ash populations 
will determine the future of ash in Ohio. At 
the ANF, there is almost no ash regeneration at 
our monitoring sites, and white ash has simply 
disappeared from the landscape in only a decade. 

For more information:  
Kathleen Knight 
kathleen.s.knight@usda.gov
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CHAPTER 9 
Detecting Changes in Forest 
Condition at Landscape 
Scales Using a Landsat-
Based Harmonic Modeling 
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INTRODUCTION

The health and condition of forested ecosystems 
are increasingly affected by a variety of 
disturbances including forest harvests, fires, 

and pests and pathogens (Cohen and others 
2016, Lovett and others 2006). The Insect and 
Disease Survey (IDS), coordinated by the U.S. 
Department of Agriculture, Forest Service, Forest 
Health Protection, has historically used annual 
aerial surveys to map and monitor pest damage 
(Coleman and others 2018). However, remote 
sensing instruments are uniquely poised to 
provide consistent, regularly updated monitoring 
over large areas, and numerous forest disturbance 
detection and condition monitoring approaches 
have been developed (Cohen and others 2017, 
Hall and others 2007, Koltunov and others 
2020, Rullan-Silva and others 2013, Senf and 
others 2017). These automated approaches 
can be combined with field datasets including 
systematic plot measurements from the Forest 
Service’s Forest Inventory and Analysis (FIA) 
program to build an improved understanding 
of how the spatial and temporal distribution of 
disturbances affects forest structure, composition, 
and resilience (Lister and others 2020, Schroeder 
and others 2014, Vogt and Koch 2016). Yet 
monitoring short-duration changes, such as those 
associated with defoliating insect outbreaks, and 
characterizing the longer term effects of defoliator 
outbreaks remain an ongoing challenge.

Detecting changes in forest health and 
condition requires a formally designed baseline 
against which comparisons can be made (Norman 
and Christie 2020). In the context of spectral 

measurements, baselines are typically defined in 
terms of seasonally similar values from different 
years or other aggregate statistics (e.g., Chastain 
and others 2015, Norman and others 2013), but 
comparing individual observations from different 
years and/or times of year can be problematic due 
to potential differences in foliar phenology and 
other confounding factors, such as missed clouds 
and shadows and other uncorrected atmospheric 
effects. Given that forest ecosystems tend to 
have relatively stable and persistent phenological 
signals (Pasquarella and others 2016), cyclic 
patterns in the reflectance of forest ecosystems 
are typically well represented by regression 
models with harmonic terms that characterize 
seasonal variability while remaining robust to 
noisy observations (Wilson 2015; Wilson and 
others 2012, 2018; Zhu and others 2012). Thus, a 
harmonic baseline monitoring approach enables 
more direct comparison of observed and predicted 
values for specific dates.

Previous efforts to map the 2016–2018 forest 
defoliation caused by outbreak populations of 
the spongy moth (Lymantria dispar) in southern 
New England using a Landsat-based harmonic 
monitoring approach (Pasquarella and others 
2017, 2018) relied on a single harmonic model 
to represent long periods of relative stability as 
a baseline for comparison. Although this fixed-
baseline approach facilitated pre- and post-
outbreak comparisons, the designated baseline 
period was highly dependent on the specific study 
area and disturbance of interest, and we found 
notable variations in the magnitude of disturbance 
for vegetation condition scores calculated using 
different baseline years (Pasquarella and others 

https://doi.org/10.2737/SRS-GTR-273-Chap9
https://doi.org/10.2737/SRS-GTR-273-Chap9
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2021). The fixed-baseline approach also posed 
a challenge in terms of generating historic 
assessments (since baseline fitting might overlap 
with monitoring dates) as well as when the 
baseline period is increasingly far into the past 
relative to the period being monitored (since the 
baseline becomes less representative of current 
conditions as time since fitting increases). 

As a key deliverable of our Evaluation 
Monitoring project, we introduce a more flexible 
moving-window approach for Landsat-based 
harmonic condition monitoring (HCM) that 
considers both spatial and temporal variability 
in forest disturbance dynamics and improves our 
ability to estimate uncertainties in both near-
real-time and aggregated seasonal assessments. 
In this summary, we briefly describe our method 
and efforts to operationalize our workflow for 
the northern portion of Forest Service Region 9 
(Eastern Region) using the Google Earth Engine 
platform. We compare results generated using the 
new moving-window workflow with comparable 
fixed-baseline results for a set of field sites in 
central Massachusetts. We then tested the utility 
of HCM-generated vegetation condition scores 
for assessing relationships between defoliation and 
growth and mortality rates of oaks (Quercus spp.) 
in Pennsylvania using FIA plot measurements, 
building on previous work by Morin and Liebhold 
(2016) that relied on aerial survey data.

METHODS
Our HCM approach is based on the assumption 
that univariate time series of reflectance 
observations for a band or index of interest can 

be relatively well characterized by a harmonic 
regression model (Sellers and others 1996). This 
approach is particularly suited for condition 
monitoring using vegetation indices in regions/
ecosystems with strong phenological signals. 
Although our methods could be adapted to other 
sensors, we currently rely on Landsat time series 
due to the length of the Landsat observation 
record (1985 to present) as well as moderate 
spatial (30-m) and temporal (8- to 16-day) 
resolutions. We use the following model to 
estimate baseline reflectance:

y (x) = a + bx + ∑
jєn

 (cj cos(2πj x) + dj sin(2πj x)) + ε

where
y = the predicted vegetation index, e.g., Tasseled 
Cap Greenness (TCG) (Crist 1985; Crist and 
Kauth 1986)
x = the ordinal date of each observation
a = the modeled intercept
b = the modeled slope
N = a set of integers specifying the frequency, 
j, of the Fourier series harmonics (e.g., N = {1, 
3}, corresponding to 12-month and 4-month 
harmonics)
cj = the cosine coefficients 
dj = the sine coefficients estimated at each 
frequency
T = the number of days in a year (T = 365.25)
ε = the residual error term for each observation 

The use of a 4-month harmonic was preferred 
over a 6-month harmonic to characterize higher 

T T
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frequency asymmetry in the seasonal reflectance 
profile without adding an additional set of 
harmonic terms.

Once baseline reflectance models have been 
estimated, vegetation condition scores are 
calculated as the difference between the observed 
and predicted reflectance values for a given 
acquisition date, and are normalized by the root 
mean square error (RMSE) of the baseline model 
used to generate the predicted value, i.e.:

score = y - ypred

Thus, vegetation condition scores are a normalized 
anomaly metric that estimates the magnitude of 
change in reflectance relative to the uncertainty in 
baseline model fit.

Previous implementations of our HCM 
workflow that relied on a single baseline model 
for prediction and monitoring calculated a single 
vegetation condition score for each acquisition 
date during a specified monitoring period. 
However, selection of a suitable baseline period 
may be challenging in frequently disturbed 
landscapes. Furthermore, noise in reflectance 
observations may impact the quality of models 
fit to different time periods. Therefore, the latest 
version of our workflow utilizes an ensemble 
approach that combines vegetation condition 
score estimates from multiple baseline models (see 
Pasquarella 2021 for code). Baseline models are 
fit to Landsat time series using a moving window 
such that each model is fit to a unique time 
period in 1-year increments and the n models 
preceding the specified monitoring period are 
used to generate a set of n vegetation condition 

score estimates for each acquired image during 
the specified monitoring period. These scores 
can then be averaged across all dates within the 
monitoring period to produce a more robust 
estimate of potential condition change for each 
pixel in the specified study area. Although baseline 
length (in years) is an adjustable parameter in 
our workflow, we use a baseline period of 5 years 
(e.g., models are generated for 1985–1989, 1986–
1990, 1987–1991, and so on), which provides 
a sufficient number of observations for fitting 
a six-term harmonic model while remaining 
responsive to temporally localized changes in 
reflectance patterns and approximating the FIA 
remeasurement cycle.

RESULTS AND DISCUSSION
Condition Monitoring Workflow and 
Visualization Tools
To demonstrate our ability to monitor changes 
in vegetation condition over large spatial extents, 
we piloted our improved HCM workflow for 
nine States in the northern portion of Forest 
Service Region 9, specifically Maine, New 
Hampshire, Vermont, New York, Massachusetts, 
Connecticut, Rhode Island, New Jersey, and 
Pennsylvania. We used time series of Landsat 5, 
7, and 8 observations to generate annual maps of 
condition change assessments for the years 1995 
to present using a May 1 through September 
30 monitoring period. We applied the TCG 
coefficients for surface reflectance data (Crist 
1985, Crist and Kauth 1986) to observations 
from all three Landsat sensors, assuming that 
observations are relatively well calibrated across 

RMSE 
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sensors with any differences characterized in the 
error term. We selected the monitoring period 
to generally characterize vegetation change 
during the Northern Hemisphere growing 
season including spongy moth defoliation, which 
typically peaks in June. The monitoring period, 
however, is a user-specified input in our workflow 
and can range from single-date predictions, 
which provide the most precise estimates of 
timing but may include gaps due to masking 
cloud and shadow artifacts, to longer monitoring 
periods that average over multiple observations 
to provide more robust estimates and improve 
spatial coverage. Our final assessment products 
combine results across Landsat orbital paths and 
include per-pixel mean and standard deviation of 
scores, mean and standard deviation of observed 
TCG, and number of observations. The use of 
multiple shorter baselines eliminates the need to 
specify a single longer baseline a priori and enables 
characterization of uncertainty in condition score 
across models.

We developed a Condition Monitoring 
Explorer application (app) to facilitate interactive 
exploration of annual results. The tool displays a 
series of annual vegetation condition assessment 
maps as well as time series of results for clicked 
points (fig. 9.1). Pre-cached results for more 
than 2 decades load quickly, and condition 
change patterns can be compared through time 
at a variety of spatial extents and using different 
disturbance severity thresholds. The app along 
with its code and workflow are publicly available 
(Pasquarella 2021) and can be updated, extended, 
and modified as needed. Users can also request 
access to baseline model and condition assessment 

assets, which are updated periodically to reflect 
changes in Landsat collections and other 
processing improvements.

The mapped results characterize expected 
patterns, such as severe defoliation by spongy 
moth across Rhode Island and eastern 
Connecticut in 2016 (fig. 9.1). Because the 
approach is currently based purely on spectral 
change, we also detect TCG anomalies associated 
with other types of change, such as human 
development (e.g., vegetation clearing for 
construction) and extreme weather events like 
the 2011 tornado in Springfield, MA. Given 
that the series of baseline models are fit to 
observations from years immediately preceding 
the target monitoring year, some baseline periods 
for sites experiencing multiyear disturbances 
will include years with decreased TCG. When 
vegetation does not recover, i.e., in the case of 
permanent clearing or development, we would 
expect baselines to adjust to the new normal, with 
vegetation condition scores returning to near-zero 
values. In cases where post-disturbance regrowth 
or other increases in vegetation cover and vigor 
are observed, we expect to see positive anomalies, 
i.e., above-baseline TCG values, indicating that 
TCG in the monitoring year is higher than 
the predicted values estimated from baselines 
including disturbed states.

Comparisons with Previous 
Implementations
The HCM workflow was initially developed to 
characterize defoliation events, and assessments 
generated using fixed-baseline versions have been 
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Figure 9.1—Severe defoliation by spongy moth across Rhode Island and eastern Connecticut in 2016 as seen in the Condition Monitoring 
Explorer app in Google Earth Engine (https://valeriepasquarella.users.earthengine.app/view/condition-monitoring-explorer). This tool 
allows users to visualize annual condition change estimates for 1995 to present. Adjusting the year slider changes the map year displayed, and 
the change threshold slider adjusts a mask on the magnitude of change ranging from 0 (all changes) to 4 (four or more times the estimated 
baseline root mean square error). Clicking a point on the mapped area displays time series of condition scores, Tasseled Cap Greenness, and 
number of observations for the corresponding 30-m Landsat pixel.

https://valeriepasquarella.users.earthengine.app/view/condition-monitoring-explorer
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used in studies examining the distribution of the 
fungus Entomophaga maimaiga (Elkinton and 
others 2019), spongy moth outbreaks (Pasquarella 
and others 2021), runoff (Smith-Tripp and others 
2021), nonstructural carbohydrates and mortality 
(Barker Plotkin and others 2021), and soil 
nitrogen dynamics (Conrad-Rooney and others 
2020). To place our moving-window ensemble 
results in the context of previous implementations, 
we compared results generated using this new 
version of the workflow with three different 
assessments using the following fixed time period 
baselines: 2000–2010 and 2005–2015 from the 
baseline comparison study (Pasquarella and others 
2021) and 2000–2010 from the 2018 southern 
New England reanalysis study (Pasquarella and 
others 2018). We extracted condition scores from 
each of these assessments for a set of 486 plots 
sampled from six 350-ha “hot spots” representing 
a range of forest types and defoliation severity 
in the Quabbin Reservoir Watershed in central 
Massachusetts. These plots generally experienced 
little if any defoliation during the 2016 spongy 
moth outbreak event with more significant 
impacts in 2017 and were surveyed in late 
summer/early fall of 2017 to characterize post-
defoliation canopy recovery (see MacLean and 
others 2021 for details).

We used a series of scatterplots of results 
for the years 2016 and 2017 to compare scores 
generated using different baseline periods and 
workflows (fig. 9.2). We found that scores for 
the year 2016 generated using a fixed 2005–2015 
baseline were most strongly correlated with 
those generated using our new approach that 
used baseline models fit to data from 5-year 

moving windows across 2005–2015 (R2 = 0.91). 
The HCM-generated vegetation condition 
scores were less comparable across older baseline 
periods, with 2016 results calculated using 
2000–2010 baselines showing weaker correlation 
with the 2016 HCM results calculated using 
moving-window models fit to the 10 years prior, 
with R2 values ranging from 0.62 to 0.70.

As expected, 2017 scores for these sites 
were generally more negative, reflecting more 
widespread and significant defoliation. Again, 
vegetation condition scores generated using the 
2005–2015 fixed baseline were most strongly 
correlated with the HCM approach (R2 = 0.80), 
where models would be fit to observations from 
2006–2016 to generate 2017 results, and less 
correlated with scores generated using older 
2000–2010 baselines (R2 = 0.30 and 0.29). In both 
years, results from the reanalysis products appear 
somewhat less correlated with HCM results 
than the Google Earth Engine implementation 
for the same baseline period. The results of these 
exploratory comparisons are in line with previous 
findings that selection of a baseline period 
has notable effects on condition score values 
(Pasquarella and others 2021). 

Comparisons with Forest Inventory and 
Analysis Plot Data/Mortality
We also use our HCM results to investigate 
relationships between estimated defoliation 
and tree mortality and growth in FIA plots in 
Pennsylvania. Morin and Liebhold (2016) found 
increases in spongy moth host-tree mortality 
rates and decreases in growth rates in areas where 
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Figure 9.2—Comparison of results for 486 plots sampled from six clusters of plots (hot spots) across the Quabbin Reservoir Watershed in 
central Massachusetts for the years 2016 and 2017. Condition monitoring scores based on a new moving-window approach are compared 
with results from previous studies using fixed harmonic baselines, specifically 2005–2015 (left) and 2000–2010 (center) baselines from the 
baseline comparison study (Pasquarella and others 2021) and the southern New England reanalysis product (right) (Pasquarella and others 
2018), which is analogous to the 2000–2010 results generated using Google Earth Engine. All baseline models are fit using Tasseled Cap 
Greenness using annual and 4-month harmonics and all available Landsat 5, 7, and 8 observations. 



Fo
re

st 
He

alt
h M

on
ito

rin
g

156

SE
CT

ION
 3 

   C
ha

pt
er

 9

multiple years of repeated defoliation within the 
previous 10 years were observed through aerial 
sketch-mapping surveys. We conducted a similar 
analysis using vegetation condition scores from 
the newly developed procedure in place of sketch-
map survey data. 

Given FIA plot data must be processed locally, 
we exported series of annual condition score 
rasters for our Pennsylvania study area from 
Google Earth Engine. Although the condition 
monitoring tool displays assessments for a 
monitoring period of May through September 
(05-01 to 10-01), we also tested a more 
constrained period of June through August (06-01 
to 09-01) to better correspond to the expected 
timing of peak spongy moth defoliation. To 
account for spatial coherence in defoliated patches 
and reduce any high-frequency noise, we applied a 
3- x 3-pixel (90- x 90-m) smoothing kernel to our 
outputs.

Following Morin and Liebhold (2016), we 
used Pennsylvania FIA plots remeasured during 
2007–2011 (n = 1,186). For each plot, the 
minimum vegetation condition score from the 
5 years previous to an FIA remeasurement was 
extracted from the smoothed vegetation condition 
score rasters (i.e., for an FIA plot measured in 
2007, the minimum vegetation condition score 
was determined based on assessment results 
from 2002–2006). We used this minimum 
condition score over the 5-year period prior to 
remeasurement as an indicator of the severity 
of peak defoliation, and we also computed the 
number of years where condition scores fell 
below a given threshold, i.e., -1.0 or -2.0, as a 

basic indicator of the frequency/persistence of 
vegetation condition changes.

We estimated plot-level mortality, growth, 
growth/volume ratio, and mortality/volume 
ratio for oak species in plots in the oak-hickory 
forest type group. We fit general linear models 
(GLMs) with oak mortality and oak growth as 
the dependent variables and HCM metrics as 
independent variables with the models weighted 
by live oak volume. Both mortality and growth 
models trended in the expected directions, with 
mortality increasing for more severe and more 
frequent disturbances while growth exhibits a 
decreasing trend (fig. 9.3). Although slope terms 
were found to be significant for all models (p 
<0.01), the relationships with HCM-generated 
vegetation condition scores were quite weak, with 
R2 values around 0.01. When relating growth and 
mortality with frequency of disturbance, i.e., the 
number of years with scores below -1.0 versus 
below -2.0, the slopes tended to be greater for the 
“number of -2 years” metric (fig. 9.4). However, it 
is important to note that the sample size for plots 
that intersected pixels with strong decreases in 
HCM scores was too small to be able to robustly 
test for differences in mortality and growth across 
the range of HCM vegetation condition scores, 
i.e., only 7 plots had 2 or more years <-2 HCM 
in the 5-year window and 43 plots had 1 year <-2 
HCM score.

Although we designed the spatial and temporal 
scope of this exploratory analysis to match 
that of Morin and Liebhold (2016), the results 
suggest a much weaker relationship between 
defoliation and mortality. This difference is likely 
due to differences between the aerial sketch-map 
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Figure 9.3—(A) Oak mortality and (B) growth by volume as a function of 5-year minimum harmonic condition monitoring (HCM) scores with 
error bars corresponding to 95-percent prediction limits (weighted). The model suggests mortality is higher and growth is lower for plots with more 
negative minimum condition scores during the 5-year remeasurement period. Both the slope and intercept terms are significant at p <0.01; however, the 
correlations are very weak.
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Figure 9.4—Oak mortality by volume as a function of the number of years the 5-year minimum harmonic condition monitoring (HCM) scores fell 
below -1.0, i.e., showed a Tasseled Cap Greenness (TCG) anomaly two or more times the estimated root mean square error of the (A) baseline models 
and (B) -2. Error bars correspond to 95-percent prediction limits (weighted). The model suggests increased mortality with increased frequency of 
anomalously negative HCM scores, and both the slope and intercept terms are significant at p <0.01; however, the correlations are very weak, and there 
are relatively few sampled plots that show repeated, high-magnitude changes in TCG.
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polygons used for the original analysis and the 
HCM-based vegetation condition score rasters 
used here, which have a finer resolution and 
increased precision, and are more directly tied 
to objective measures of change in vegetation 
greenness. It is also possible that moving-window 
baselines produce more conservative assessments 
when multiyear decreases in canopy greenness are 
included in baseline modeling. Thus, differences 
observed in this preliminary reanalysis warrant 
further consideration.

SUMMARY AND CONCLUSIONS
In this project, we introduced an HCM approach 
that identifies anomalous canopy conditions by 
fitting a series of harmonic regression models 
to 5-year moving windows of remotely sensed 
observations from the Landsat series of satellites 
rather than relying on a single baseline model 
derived from a fixed set of years. We share our 
HCM code as well as an interactive tool for 
exploring results over a large multistate area 
(Pasquarella 2021). Our workflow and tool are 
expected to be a valuable resource for both historic 
and near-real-time assessments of changes in 
vegetation condition. Key findings:
•	An ensemble of 5-year harmonic baseline 

models fit using a moving-window approach 
allows us to characterize the magnitude of 
spectral change as well as uncertainty in 
predictions given multiple predictions and 
dates of observation, and this improved 
characterization of uncertainty is one of the 
primary benefits of this approach. This HCM 
approach is also more flexible than previous 

fixed-baseline approaches because the baseline 
period adapts dynamically rather than being 
specified a priori.

•	Our comparisons suggest that vegetation 
condition scores estimated with a moving-
window HCM approach are consistent with 
previous fixed-baseline assessments given 
the same baseline and monitoring years, 
though they may diverge more given a greater 
difference between baseline and monitoring 
periods. We recommend the moving-window 
approach for general monitoring over large 
spatial extents where it would be difficult to 
prescribe an ideal baseline, although there may 
be cases where fixing the baseline period to 
a specific reference period may be preferable, 
particularly at more localized scales.

•	The relationship between vegetation condition 
scores and mortality of oak in oak/hickory 
FIA plots in Pennsylvania was difficult to 
assess based on low numbers of samples that 
fell into “high disturbance” areas. However, 
the inconsistency between these results and 
previous investigations using aerial survey 
data warrants further consideration, and a 
larger sample size of impacted plots would be 
particularly helpful.

It is important to note that the current version 
of the HCM workflow characterizes spectral 
anomalies without specific attribution beyond 
the direction of the change (i.e., an observed area 
appears more or less green relative to prior years). 
Future work focusing on combining vegetation 
condition scores with other spectral inputs 
and ancillary datasets to differentiate among 
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different types of disturbance, i.e., defoliation, 
harvest, urban development, is important to 
consider. There are also opportunities to increase 
monitoring frequency by extending the Landsat-
based approach presented here to other remote 
sensing instruments and datasets. For example, 
the Landsat 8 and Sentinel-2 sensors have 
complementary spectral and spatial resolutions 
and the combined constellation can provide at 
least 3- to 4-day revisit time (Li and Roy 2017), 
and the increased spatial resolution of Sentinel-2 
(10- and 20-m bands) could improve detection of 
finer scale patterns of defoliation and mortality. 
Differences in estimates of defoliation location, 
magnitude, and frequency between aerial surveys 
and Landsat-based estimates are important to be 
considered for further investigation in terms of 
both timing and extent of detections. 

For more information: 
Valerie Pasquarella 
vpasquarella@fas.harvard.edu
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CHAPTER 10 
Laurel Wilt Spread, Vector 
Flight Behavior, and Impacts 
in Sassafras Beyond the 
Gulf-Atlantic Coastal Plain
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Stephen W. Fraedrich
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INTRODUCTION

L aurel wilt is a destructive vascular disease of 
woody plants in the family Lauraceae. The 
cause of laurel wilt, the fungus Harringtonia 

lauricola, is an ambrosial symbiont of the redbay 
ambrosia beetle (RAB) (Xyleborus glabratus) 
(de Beer and others 2022, Fraedrich and others 
2008). The beetle and the pathogen are native to 
Asia (Hughes and others 2017, Wuest and others 
2017) and were introduced to North America 
prior to 2002 when RAB was first detected in 
Georgia (Rabaglia and others 2006). Healthy 
plants become diseased when RAB bores into  
host stems and inoculates the xylem with  
H. lauricola. Laurel wilt has killed hundreds of 
millions of redbay (Persea borbonia) and swamp 
bay (P. palustris) and represents a serious threat to 
the plant family Lauraceae in North America and 
other parts of the world (Hughes and others 2017, 
Olatinwo and others 2021). 

Sassafras (Sassafras albidum) is the most widely 
distributed member of the Lauraceae in the 
United States (Griggs 1990) and is susceptible to 
laurel wilt (Cameron and others 2008, Fraedrich 
and others 2008). It is intolerant of shade and 
commonly colonizes old fields, fencerows, burned 
areas, and other disturbed sites. Stems commonly 
occur in clusters due to vegetative reproduction via 
root sprouts (Griggs 1990). Like other members 
of the Lauraceae, sassafras is rich in essential oils 
and has numerous medicinal, culinary, cultural, 
and wildlife uses (Dills 1970, Immel 2016). 

In 2018, the known distribution of laurel wilt 
remained primarily within the Gulf-Atlantic 
Coastal Plain. It was uncertain how quickly and 

with what impact laurel wilt would spread into 
the Piedmont and Mountains of the Eastern 
United States using sassafras as a host. To 
examine the spread and impact of laurel wilt in 
sassafras, we initiated an Evaluation Monitoring 
project in 2018 to establish sentinel sassafras 
plots, both within and ahead of the known laurel 
wilt distribution (Mayfield and others 2022). A 
comprehensive report on this project has been 
published previously (Mayfield and others 2022); 
the present document presents a shorter summary 
of the methods, results, and implications.

METHODS
Site Selection
We selected monitoring sites containing live 
sassafras trees ≥5 cm diameter at breast height 
(d.b.h.) in three regions of the Southeastern 
United States: (1) Gulf-Atlantic Coastal Plain, 
(2) Piedmont (including adjacent Sandhills), and 
(3) Central and Eastern Mountains (including the 
Southern Appalachian Mountains, Cumberland 
Plateau, and Highland Rim/Central Basin)  
(fig. 10.1). In the Coastal Plain, we targeted sites 
that were not known to be affected by laurel wilt 
(or only very recently affected), whereas in the 
Piedmont and Mountain regions, we targeted 
sites near RAB risk of entry points (mills, 
campgrounds, RV parks, etc.). We monitored 
a total of 46 sites, although not every site was 
monitored in every year due to personnel changes, 
COVID 19-related travel restrictions, or stand 
elimination.

https://doi.org/10.2737/SRS-GTR-273-Chap10
https://doi.org/10.2737/SRS-GTR-273-Chap10
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Figure 10.1—Locations of 46 laurel wilt monitoring plots with sassafras in the Southeastern United States, color coded by physiographic 
region. Red outline indicates laurel wilt pathogen detection in 2018–2020. (Map data © 2022 Google, INEGI [from Mayfield and others 
2022])



Fo
re

st 
He

alt
h M

on
ito

rin
g

165

SE
CT

ION
 3 

   C
ha

pt
er

 10

Vegetation Monitoring and Laurel Wilt 
Assessment
We tagged a target of 20 live sassafras trees ≥5 
cm d.b.h. per site (average n = 19, range 6–32) 
for annual monitoring of crown health and 
survival during the leaf-on season. We determined 
sassafras crown health by visually estimating the 
percentages of the entire tree crown represented 
by healthy, wilted/discolored, and missing foliage. 
Trees with no healthy foliage were considered 
dead. We sampled xylem from suspected diseased 
trees with a chisel, and then bagged and shipped 
the samples overnight to a U.S. Department of 
Agriculture, Forest Service, Southern Research 
Station plant pathology lab in Athens, GA, or 
Pineville, LA, for confirmation of H. lauricola 
(Dreaden and others 2014, Fraedrich and others 
2008, Harrington and others 2008). 

Redbay Ambrosia Beetle Monitoring
We monitored RAB flight activity at a subset of 
sites with suspected laurel wilt activity or that 
were of particular interest. At each trapping site, 
we baited two traps with a 50-percent α-copaene 
lure (product #3302, Synergy Semiochemical 
Corp., Burnaby, BC, Canada). One trap in each 
pair was a black 8-unit Lindgren funnel trap and 
the other was a black triple-vane multipanel trap 
(products #4072 and #4057, respectively, Synergy 
Semiochemical Corp.). Traps were deployed and 
checked biweekly for a total of 8 weeks between 
early June and October. We conducted trapping 
for an extended duration (3 to 24 months, 
depending on site) at select sites in each region 
where laurel wilt was suspected or confirmed. 

Data Analysis
We used analysis of variance to evaluate all 
factorial combinations of Region, Pathogen, and 
Year as fixed effects and Site(Region*Pathogen) 
as a random effect, on percentage of sassafras 
mortality (square-root transformed). We evaluated 
the effect of trap type (funnel versus panel) on 
mean RAB per week using a Wilcoxon signed-
rank test and by limiting the dataset to the “site 
x date” combinations on which at least one RAB 
was collected in a trap. We analyzed RAB flight 
activity graphically over time, and identified and 
counted all species of ambrosia beetles at two sites 
in Kentucky. See Mayfield and others (2022) for 
full methods and analysis. 

RESULTS
Vegetation Monitoring and Laurel Wilt 
Assessment
Laurel wilt was detected at 28 percent of the 
monitoring sites during the 3-year project period 
(2018–2020), including six sites in the Coastal 
Plain, three in the Piedmont, and four in the 
Mountains (fig. 10.1). Four of these detections were 
previously unreported county records for laurel wilt 
(Chilton County, AL; Bibb County, AL; Columbia 
County, AR; Worth County, GA), generating 
new range information for the national Laurel 
Wilt Distribution Map (https://www.fs.usda.gov/
Internet/FSE_DOCUMENTS/fseprd669956.
pdf ). In 2018, mean percentage of mortality of 
tagged sassafras trees at all disease-free sites did 
not differ significantly from the mean mortality 
at sites where laurel wilt would ultimately become 
detected between 2018 and 2020 (fig. 10.2). In 

https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd669956.pdf
https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd669956.pdf
https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd669956.pdf
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Figure 10.2—Mean percentage of mortality of tagged sassafras 
monitoring trees from 2018 through 2020 at sites where the 
laurel wilt pathogen was confirmed versus sites where it was not 
detected. Vertical bars denote standard error of the mean. Means 
labeled with the same letter are not significantly different  
(α = 0.05). (From Mayfield and others 2022)

2019 and 2020, however, mean sassafras mortality 
at diseased sites increased to 30 percent and 60 
percent, respectively, whereas mortality in disease-
free stands remained below 5 percent (fig. 10.2). 
Elevated sassafras mortality in diseased stands was 
evident in all diameter classes monitored. Sassafras 
mortality was notably rapid in a number of stands, 
progressing to 100 percent within 3 years at four 
sites (Mayfield and others 2022).

Redbay Ambrosia Beetle Monitoring
Redbay ambrosia beetles were captured in traps at 
a total of 11 sites including 5 sites in the Coastal 
Plain, 2 in the Piedmont, and 4 in the Mountains. 
Detection of the laurel wilt pathogen through 
sampling of host material usually preceded RAB 
detection or occurred in the same year. There 
was no significant difference between the mean 
number of RABs per week captured in panel traps 
versus paired funnel traps in any year, although 
statistical significance was marginal in 2019 when 
slightly more RABs were captured in panel traps. 
In the Coastal Plain of Louisiana, RAB captures 
occurred throughout the calendar year (including 
January) with modest peaks in late August and 
early December. At two Piedmont/Sandhill sites 
in South Carolina, RAB flight began as early as 
February, with two periods of peak capture in 
April and August through November. A similar 
pattern occurred in the Mountain region of 
Alabama where captures began in February with 
peaks in April and late summer (Mayfield and 
others 2022).

In western Kentucky, RAB flight activity began 
in April, peaked in June (with a lesser peak in 
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August), and persisted at low levels until November. 
A nearly tenfold decrease in peak RAB captures 
corresponded with an elimination of fresh sassafras 
host material from one summer to the next. Trap 
captures of the two most abundant ambrosia beetle 
species, the granulate ambrosia beetle (Xylosandrus 
crassiusculus) and the fruit-tree pinhole borer 
(Xyleborinus saxesenii), exhibited strong peak 
captures in early April or May at much higher 
abundances than RAB. Redbay ambrosia beetles 
were present in <9 percent of all the ambrosia 
beetle specimens captured, and >98 percent of all 
ambrosia beetle specimens comprised eight species, 
all of which were nonnative to North America 
(Mayfield and others 2022).

DISCUSSION
This project demonstrated the movement of laurel 
wilt beyond the Coastal Plain and into portions 
of the Piedmont/Sandhills and Mountain regions 
in Alabama, Georgia, South Carolina, Tennessee, 
and Kentucky. Four previously unreported county-
level infestations were added to the national 
Laurel Wilt Distribution Map, demonstrating 
that supplemental Evaluation Monitoring projects 
can enhance State forestry agencies’ baseline laurel 
wilt monitoring efforts. The impact of laurel wilt 
in sassafras in Piedmont and Mountain sites was 
substantial and rapid, with mortality progressions 
similar to those observed in redbay and sassafras 
in the Coastal Plain (Cameron and others 
2015, Fraedrich and others 2008). Although we 
did not target sassafras stems <5 cm d.b.h. for 
monitoring, we documented mortality of stems 
of this size when they were occasionally tagged or 
observed informally. The likelihood of attack by 

RAB increases with stem diameter due to more 
apparent visual cues (Mayfield and Brownie 2013), 
which may allow small-diameter stems to escape 
inoculation by the insect. The clonal growth habit 
of sassafras, however, provides opportunity for 
even small sprouts to become infected with laurel 
wilt via root transmission, leading to the potential 
for accelerated sassafras mortality even when RAB 
populations are low. 

Our results strongly suggest that deploying 
α-copaene-baited flight traps in the vicinity of 
sassafras trees, while useful for monitoring known 
RAB populations, may not substantially improve 
early-detection efforts for laurel wilt (compared to 
visually monitoring for symptoms). Detection and 
confirmation of the pathogen from symptomatic 
host material either preceded or coincided with the 
first trap catch of RAB at 92 percent of our laurel 
wilt-positive sites. Still, placing α-copaene-baited 
traps in stands with sassafras could help State 
surveyors evaluate the potential presence of RAB in 
certain situations, particularly if laurel wilt has been 
present and undetected for several years. 

Similar to data from Florida reported by Brar 
and others (2012), we observed two peaks of 
RAB flight activity in this study in the Piedmont/
Sandhills of South Carolina and the southern 
limit of the Mountain region in Alabama, 
suggesting two RAB generations annually, which 
peak in early spring, and then late summer/fall, 
respectively. However, farther north in Kentucky, 
RAB captures peaked slightly later ( June), 
seasonal RAB flight activity was only weakly 
bimodal, and no flight activity was observed from 
December through March. These differences 
in RAB flight seasonality may be due to the 
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colder climate of interior Kentucky compared to 
warmer sites in the Piedmont and Coastal Plain. 
Furthermore, the notable reduction in beetle 
abundance in traps between 2020 and 2021 in 
Kentucky was likely due to the elimination of 
fresh sassafras host material for brood production.

Although traps in this study were baited with 
a primary host volatile attractant of the RAB 
(α-copaene) and thus were intended to mimic 
lauraceous trees, <9 percent of the all the ambrosia 
beetle specimens captured in Kentucky comprised 
RAB. This suggests that numerous other generalist 
ambrosia beetle species, many of which are 
nonnative to North America, may be attracted 
to α-copaene or are at least passively captured in 
traps deployed in diseased sassafras stands. Thus, 
the degree to which other ambrosia beetle species 
compete with the RAB for potential host material, 
or have a role as potential vectors, is worthy of 
additional investigation. 

CONCLUSIONS
Laurel wilt has spread from the Coastal Plain of 
the Southeastern United States into the Piedmont 
and Mountain regions using sassafras as a primary 
host. Impact to sassafras populations is substantial 

and rapid, with the disease killing up to 100 
percent of the sassafras stems ≥5 cm d.b.h. and the 
pathogen spreading via root transmission. There 
was no substantial difference in RAB trapping 
efficacy between the 8-unit Lindgren funnel trap 
and the triple-vane multipanel trap. Trapping with 
α-copaene lures in stands with sassafras was useful 
for monitoring known RAB populations but did 
not enhance early detection of latent laurel wilt 
infections. Seasonal flight activity of the RAB was 
bimodal in stands with sassafras in the Piedmont, 
with peak captures in April and a secondary 
peak between August and November. In western 
Kentucky, RAB flight was not observed from 
December through March, peaked in June, and 
declined markedly as fresh sassafras host material 
was eliminated from the stand. The georeferenced 
network of sassafras plots established during 
this project provides baseline data for future 
monitoring efforts and could be revisited in the 
future for possible evidence of trees that display 
resistance to, or tolerance of, laurel wilt.

For more information: 
Albert E. Mayfield III 
albert.e.mayfield@usda.gov
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CHAPTER 11 
Effects of Spruce 
Beetle (Dendroctonus 
rufipennis) Outbreaks on 
Rocky Mountain Spruce-
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273-Chap11.

INTRODUCTION

The recent impacts of climate change have 
threatened the health and functioning of 
forested ecosystems on a global scale. Due 

to the shifting global climate, the frequency and 
severity of disturbances are increasing, inevitably 
causing an increase in disturbances overlapping 
in time and space (Abatzoglou and Williams 
2016, Hart and others 2014, Schoennagel and 
others 2017). Widespread tree mortality from 
altered disturbance regimes creates significant 
uncertainty about stand dynamics and recovery 
in many systems. Bark beetle epidemics and 
wildfires have historically shaped the disturbance 
regimes of western North American forests. The 
interactive effects of multiple disturbances are 
often inadequately studied, especially in high-
elevation, often difficult to access forests, such 
as those dominated by Engelmann spruce (Picea 
engelmannii) and subalpine fir (Abies lasiocarpa); 
understanding these interactions is imperative 
to the management and health of forested 
ecosystems. This study focuses on the effects of 
epidemic spruce beetle (Dendroctonus rufipennis) 
outbreaks, high-severity fires, and the subsequent 
species and structural diversity of subalpine forest 
regeneration and structure in northern Colorado 
and southern Wyoming. 

This project collected data across 80 sites 
(fig. 11.1) to address three main objectives: (1) 
quantify fuels structure and regeneration across 
a chronosequence of spruce beetle outbreaks 
in addition to areas impacted by outbreaks and 
wildfires, (2) age seedlings to understand tree 
regeneration and recruitment in relation to the 
disturbances and long-term climate, and (3) 

quantify fuels after spruce beetle disturbance for 
better assessment of fuel complexity in the event of 
wildfires. 

METHODS AND RESULTS
To address objective 1, we collected fuels, stand 
structure, and tree regeneration data and modeled 
our plot design after Ott and others (2018), 
establishing 0.08-ha circular fixed area plots. 
Full methods can be found in Schapira and 
others (2021a). Analyses indicated a significant 
increase in fuel loading over time since outbreak, 
as aerial fuels were transferred to the forest floor 
following high tree mortality (fig. 11.2A). Tree 
seedling densities among outbreak and control 
sites differed significantly from burned areas, 
indicating that wildfires overrode the effects of 
spruce beetle disturbances on regeneration (fig. 
11.2B). There was consistent Engelmann spruce 
seedling survival following beetle outbreaks, 
providing evidence for stable forest recovery 
following a single disturbance. We did not 
observe any life cycle changes in beetle phenology 
though we focused primarily on forest structural 
characteristics. However, fire was a dominant 
force in determining post-disturbance species 
composition, indicating continued prevalence of 
high-severity fire may prove detrimental for the 
persistence of spruce-fir species, while promoting 
shifts toward more drought- and fire-tolerant tree 
species (e.g., lodgepole pine [Pinus contorta]).

To address objective 2, we destructively sampled 
and aged 229 Engelmann spruce and subalpine 
fir seedlings on 30 of these original 80 sites. Here, 
we aged seedlings to understand age structure 
of understory trees within spruce beetle- and 

https://doi.org/10.2737/SRS-GTR-273-Chap11
https://doi.org/10.2737/SRS-GTR-273-Chap11
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■ Spruce beetle outbreaks 1996–2017      ■ Wildfires in subalpine forests

Plot locations
 ▲ High-seventy fire

 Control
 ● Spruce beetle outbreak

 Post outbreak fire

Figure 11.1—Study sites located in southern Wyoming and northern Colorado, across a chronosequence of spruce beetle outbreaks and area impacted by 
spruce beetle outbreaks and wildfires.
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Figure 11.2—(A) Boxplots of total fuel loading by group; (B) boxplots of total tree seedling densities (all species) in each 
disturbance group. Bark beetle disturbances were pinned by year since outbreak, control sites were those with endemic levels of 
bark beetle activity and wildfire sites burned in 2002 and 2005, and “outbreak and fire” sites experienced a bark beetle outbreak 
prior to wildfires of these same years. Horizontal bars represent mean fuel loading of each disturbance group; height of boxes 
represents spread of 75 percent of data. Different letters indicate statistically significant differences between groups from a 
Tukey’s honestly statistical difference (HSD) analysis. As shown on (B), analyses were conducted on log-transformed seedling 
densities; raw densities are graphically displayed. Units are in log transformed trees per hectare.



Fo
re

st 
He

alt
h M

on
ito

rin
g

174

SE
CT

ION
 3 

   C
ha

pt
er

 11

wildfire-affected stands. Full methods can be found 
in Schapira and others (2021b). We compared 
climatic conditions between years with high tree 
seedling establishment and nonestablishment 
years to ascertain regional drivers of tree seedling 
recruitment in subalpine forest. Both height and 
terminal bud scar counts were significant predictors 
of seedling age, although correlations were weaker 
in older seedlings that exhibited suppressed 
growth (tables 11.1 and 11.2). Growing season 
precipitation had a significant positive relationship 
with spruce-fir establishment, while minimum 
temperatures, annual vapor pressure, and climatic 
water deficits had significant negative correlations 
with subalpine tree establishment. Height and 
terminal bud scar counts did not accurately predict 
precise ages of subalpine tree establishment from 
beetle-affected stands but provided more accuracy 
in post-fire tree establishment. Average climate 
conditions compared to long-term climate may 
provide suitable conditions for low levels of tree 
establishment in spruce-fir stands. However, large 
spruce-fir establishment pulses occurred in cooler 
and wetter growing years compared to the long-
term average. 

To address objective 3, we created a post-
outbreak fuels photo series and modeled it after 
the natural fuels photo series, which includes six 
volumes that represent different forest types across 
the United States (Ottmar and others 2000). This 
post-outbreak fuels photo series represents spruce-
fir forests in different stages of spruce beetle 
outbreak recovery and spruce-fir stands unaffected 
by spruce beetles for comparison. This project was 
published through the Southern Rockies Fire 
Science Network (Schapira and others 2021c).

Table 11.1—Generalized linear models for predicting Engelmann 
spruce seedlings (R2 = 0.8158)

Engelmann spruce Estimate
Standard 

error t-value p-value a

(intercept) -6.62 2.36 -2.81 0.006
Height (cm) 0.19 0.05 3.96 0.0001
Bud scar count 1.42 0.13 11.00 <0.0001
Disturbance type: burnb -6.24 2.70 -2.31 0.023

a Significance indicated in italics, and p-values indicate significance of predictor variables 
on Engelmann spruce age. 
b Outbreak sites are the baseline category for “disturbance type.” 

Table 11.2—Generalized linear models for predicting subalpine fir 
seedlings (R2 = 0.7992)

Subalpine fir Estimate
Standard 

error t-value p-value a

(intercept) -4.69 2.34 -2.00 0.048
Height (cm) 0.095 0.04 2.41 0.018
Bud scar count 1.45 0.12 12.49 <0.0001
Disturbance type: burnb -7.49 2.94 -2.55 0.012

a Significance indicated in italics, and p-values indicate significance of predictor variables 
on subalpine fir age. 
b Outbreak sites are the baseline category for “disturbance type.” 
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DISCUSSION AND CONCLUSIONS
This study demonstrates that subalpine forests 
are impacted differently by different disturbances. 
Tree regeneration was abundant following spruce 
beetle outbreak, but post-fire seedlings were less 
common and were predominantly lodgepole pine 
and aspen (Populus spp.), rather than Engelmann 
spruce and subalpine fir that previously dominated 
these landscapes. However, unlike concerns at lower 
elevation forests (Chambers and others 2016), 
all plots had tree seedlings. Climate change will 
likely continue to play a role in tree establishment 
in both burned and bark beetle-affected stands, 
and this pattern is likely more pronounced in 
burned sites due to the lack of canopy cover and 
favorable microsite conditions. Tree regeneration 
and forest recovery in these long-lived systems may 
take many decades or even centuries to recover to 
a similar species dominance, and these processes 
may be driven by current and future climate. In 
spruce beetle outbreak sites, tree regeneration was 
abundant and high fuels loads were common, 
especially at longer times since outbreak. Small 
trees do not necessarily equate to young trees, 
especially in these dense forests that are dominated 
by shade-tolerant species (Hankin and others 
2018, Veblen 1986). We found tree seedlings on 
all 80 study sites; however, spruce beetle outbreak 
sites had a larger proportion of subalpine fir and, 
in some cases, thousand seedlings per hectare, and 
we may see a change in dominance as others have 
hypothesized and observed (DeRose and Long 
2010, Schmid and Frye 1977). Burned sites had 
tree regeneration dominated by lodgepole pine and 
aspen, indicating at least short-term conversions 
in forest dominance, as others have found in 

fire-affected stands (Harvey and others 2014), but 
this may create conditions conducive in the years 
to come for Engelmann spruce and subalpine fir 
regeneration as they are more shade tolerant. Given 
the projections for both more wildfires and hotter 
and drier climatic conditions (Higuera and others 
2021), the future of these forests is uncertain and 
continued monitoring of these complex forests at 
the top of the world is important to consider. 

For more information:  
Camille Stevens-Rumann 
c.stevens-rumann@colostate.edu 
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