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A B S T R A C T   

Contemporary fire dynamics is one of the most complex and least understood land surface phenomena. Global 
fire controls related to climate, vegetation, and anthropogenic activity are usually intertwined, and difficult to 
disentangle in a quantitative way. Here, we leveraged an ensemble of five machine learning (ML) models and 
multiple satellite-based observations to conduct global fire modeling for three fire metrics (burned area, fire 
number, and fire size), and quantified driving mechanisms underlying annual fire changes in a spatially resolved 
manner for the period 2003–2019. Ensemble learning is a meta-approach that combines multiple ML predictions 
to improve accuracy, robustness, and generalization performance. We found that the optimized ensemble ML 
well reproduced annual dynamics of global burned area (R2 = 0.90, P < 0.001), total fire numbers (R2 = 0.86, P 
< 0.001), and averaged fire size (R2 

= 0.70, P < 0.001). Additionally, the ensemble ML captured key spatial 
patterns of multi-year mean magnitudes, annual variabilities, anomalies, and trends for different fire metrics. 
Our ML-based fire attributions further highlighted the dominant role of enhanced anthropogenic activity in 
reducing global burned area (− 1.9 Mha/yr, P < 0.01), followed by climate control (− 1.3 Mha/yr, P < 0.01) and 
insignificant positive vegetation control (0.4 Mha/yr, P = 0.60). Spatially, climate dominated a much larger 
burned area (53.7%) than human (23.4%) or vegetation control (22.9%); however, the counteracting effects 
from regional wetting and drying trends weakened the net climate impacts on global burned area. The fire 
number and fire size exhibited similar spatial control patterns with burned area; globally, however, fire number 
tended to be more affected by climate while fire size more influenced by human activities. Overall, our study 
confirmed the feasibility and efficiency of ensemble ML in global fire modeling and subsequent control attri-
butions, providing a better understanding of contemporary fire regimes and contributing to robust fire pro-
jections in a changing environment.   

1. Introduction 

Global wildfire is an ubiquitous component of the Earth system 
(Archibald et al., 2013; Bowman et al., 2009; Jones et al., 2022). Each 
year, wildfires burn an average of 450 million hectares of land vegeta-
tion (Lizundia-Loiola et al., 2020), a size equivalent to 1.5 times of total 
area of India. Wildfire, as a major disturbance, has the potential to 
rapidly change ecosystem structures and functions (Lasslop et al., 2020; 

McLauchlan et al., 2020), or even permanently reshape ecosystem suc-
cessional trajectories and biodiversity levels (He et al., 2019; Kelly et al., 
2020). As an immediate response, wildfires release significant levels of 
air chemical pollutants (Urbanski et al., 2008), aerosols (May et al., 
2014), and greenhouse gases (Ross et al., 2013), thus affecting regional 
air quality, threatening public health, and even changing short-term and 
long-term climate (Andela et al., 2017). It was estimated that global 
fire-induced carbon emissions were around 2.2 Pg C yr− 1 (Van Der Werf 
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et al., 2017), contributing to about 23% of total fossil fuel emissions 
(Friedlingstein et al., 2022), thus potentially exacerbating climate 
warming (Lasslop et al., 2019). 

Global fire regimes that describe distributions and characteristics of 
fire size, frequency, intensity, and seasonality are heterogeneous due to 
the interplay of fuel resources, fire weather conditions, and effective 
natural or anthropogenic ignitions (Archibald et al., 2013; Krawchuk 
and Moritz, 2011). Broadly, high frequency fires tend to occur in areas of 
intermediate vegetation productivity (e.g., tropical savannah) under 
conditions of abundant fuel loading, dry weather and frequent ignitions 
(Krawchuk and Moritz, 2011); whereas low or moderate frequency fires 
in high-biomass regions are generally limited either by moisture con-
ditions, e.g., for rain forests (Cochrane, 2003) or by ignitions for boreal 
and temperate forests (Veraverbeke et al., 2017). Despite conducive dry 
condition, wildfires in arid and semi-arid regions are often limited by 
fuel availability (Balch et al., 2013). Anthropogenic activities (e.g., 
deforestation, cropland expansion, fire management) also play a key 
role in intensifying or suppressing fires (Andela et al., 2017; Bowman 
et al., 2011). Understanding contemporary fire dynamics and their key 
controls linked to climate, vegetation and human activity is critical for 
detecting and projecting fire-regime trajectories (Kelley et al., 2019), 
thus better serving future climate projection and mitigation (Bowman 
et al., 2020). 

Satellite measurements provide an unrivaled capability for moni-
toring global fire dynamics (Giglio et al., 2013, 2018). Recent research 
based on multiple satellite datasets revealed a 25% decline in global 
burned area between 1998 and 2015, mostly in African tropical savan-
nahs and Asia and Australia semi-arid grasslands (Andela et al., 2017; 
Forkel et al., 2019). However, other regions such as Western United 
States (Balch et al., 2018; Williams et al., 2019) and boreal Canada 
(Hanes et al., 2019) showed considerable increases in total burned area. 
Such global heterogeneous fire changes are expected to be regulated by 
a series of controls from climate, vegetation, and human (Bowman et al., 
2011; Krawchuk and Moritz, 2011). However, satellite observations 
cannot directly quantify the effects of these controls, which can mainly 
be distinguished through wildfire models (Hantson et al., 2016; Kelley 
et al., 2019). 

Currently, two types of wildfire models are widely used for fire 
control attribution: process-based fire-enabled dynamic global vegeta-
tion models (DGVMs) and data-driven statistical models. DGVMs ac-
count for the detailed physical processes of fire formation, including 
ignition, spread, duration, suppression, and extinction (Hantson et al., 
2016; Li et al., 2012), and thus can be used to simulate and assess fire 
dynamics at different spatial and temporal scales. However, bench-
marking evaluation indicated that the state-of-the-art DGVMs from the 
Fire Modeling Intercomparison Project (FireMIP) are largely incapable 
of capturing recent inter-annual variation and declining trend in global 
burned area, despite being able to generally reproduce the spatial 
pattern and seasonality in burned area (Andela et al., 2017; Hantson 
et al., 2020). This modeling deficiency in wildfire simulations may 
suggest incomplete fire functional representation, inaccurate model in-
puts or biased model parameters for these DGVMs (Hantson et al., 2020; 
Riley and Thompson, 2016; Zhu et al., 2022). 

Data-driven statistical models build empirical fire relationships with 
key drivers based on fire observations, and are arguably better at 
reproducing observed fire dynamics albeit with highly simplified 
mechanistic representations of fire processes (Andela et al., 2017; Forkel 
et al., 2017; Kelley et al., 2019). For example, Forkel et al. (2017) 
developed a burned area model of SOFIA (Satellite Observations to 
predict FIre Activity), which accounted for linear effects from climatic, 
environmental, and socioeconomic controls on fire, and showed better 
performance than the process-based DGVM of JSBACH-SPITFIRE. 
Similarly, Kelley et al. (2019) refined the linear combination frame-
work by including fire controls from fuel continuity, fuel moisture, po-
tential ignition, and anthropogenic suppression. This statistical model 
reproduced the spatial extent of annual burning and associated trends 

well and was further used to explore bioclimatic and human controls on 
global fire regimes. 

Despite the feasibility of data-driven statistical models, a modeling 
structure based on assumptions of linear or fixed non-linear forms (e.g., 
logistic model) may violate the dynamic, non-linear characterize of fire 
controls from climate, vegetation, and human activity (Bowman et al., 
2011; Hantson et al., 2016). Machine learning (ML)-based fire modeling 
with the benefit of coping with non-linear fitting might overcome this 
shortage if well guided by expert knowledge (Aldersley et al., 2011; Jain 
et al., 2020; Yu et al., 2022; Zhu et al., 2022). Based on a deep neural 
network, Zhu et al. (2022) developed a surrogate model for a global 
Earth system model and significantly improved the accuracy of burned 
area prediction when compared to the original process-based fire model. 
Yu et al. (2022) corrected future fire carbon emissions simulated by 13 
Earth system models based on historical observations and three ML 
models and highlighted the elevated global socioeconomic risks from 
wildfire. Although these studies demonstrated the promise of ML-based 
fire modeling, only limited fire metrics (mostly burned area) and ML 
approaches were involved. The ensemble learning is a general 
meta-approach to combine multiple ML predictions (Dietterich, 2000) 
and has advantages of improved prediction accuracy and robustness, 
reduced overfitting, and improved model stability (Dong et al., 2020; 
Sagi and Rokach, 2018). However, the ensemble learning also has some 
limitations, such as increased computational complexity, reduced 
interpretability, and increased model complexity (Sagi and Rokach, 
2018). Previous fire modeling studies based on the ensemble learning 
were mainly conducted at local scales (Jain et al., 2020; Tuyen et al., 
2021). The feasibility of the ensemble learning on global fire modeling 
has not been well tested and the relevant global constraints on 
contemporary fire dynamics, particularly at spatial scales, remained 
understudied. 

ML models are commonly regarded as a “black box”, capable of 
representing the behavior of complicated systems but not straightfor-
wardly interpretable by humans (Rudin, 2019). The lack of interpret-
ability makes ML-based fire attribution a challenging task (Jain et al., 
2020; Roscher et al., 2020). One commonly used approach is the per-
mutation feature importance, which measures the change degree of a 
model score (e.g., R2, RMSE) when a single feature is randomly shuffled 
or removed (Breiman, 2001). For example, Aldersley et al. (2011) 
indicated the major roles of high temperature, intermediate annual 
rainfall, and prolonged dry periods in determining global burned area 
frequency based on the feature ranking importance in a random forest. 
Using a spatially resolved permutation approach, (Forkel et al., 2019) 
further highlighted strong fire controls from vegetation properties and 
socio-economic variables (e.g., human population density) that are 
poorly represented in DGVMs. However, fire attribution based on per-
mutation importance only reflects the generic operating rules of a spe-
cific ML model, in most cases, without the local level information (e.g., 
Aldersley et al., 2011), and is unable to quantify the intrinsic predictive 
value (both sign and magnitude) given the change of a feature (e.g., 
Forkel et al., 2019). Recently, some localized explainability techniques 
within ML models have been developed to overcome this shortage, such 
as Shapley Additive exPlanations (SHAP) (Lundberg and Lee, 2017) and 
local interpretable model-agnostic explanations (LIME) (Ribeiro et al., 
2016). However, these new methods are usually kernel-based and not 
effectivity suitable for explaining the ensemble of multiple ML models. 

To address the above-identified knowledge gaps, in this study, we 
performed global fire modeling on three fire metrics, including burned 
area, fire number and fire size, using an ensemble of five advanced MLs 
and multi-source global observations, and further explored global fire 
annual controls related to climate, vegetation, and human changes from 
2003 to 2019 through the ML-based factorial simulations. Our study is 
expected to enhance our understanding of contemporary fire dynamics 
at multiple dimensions, and further to contribute to robust fire pro-
jections in a warming climate. 
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2. Materials and methods 

2.1. Global datasets 

Global-scale fire predictors used in this study include eight climate 
variables (reflecting energy, heat, atmospheric and soil dryness), five 
vegetation variables (relating to fuel amount and vegetation composi-
tion), four human variables (relating to social, economic, and agricul-
tural activities), and two terrain variables (including elevation and 
slope) from 2003 to 2019. These data are either compiled from ground 
observations, or derived from remote sensing measurements, which are 
listed in Table S1. The fire predictors here were identified based on 
previous global fire modeling studies (Forkel et al., 2017; Kelley et al., 
2019; Yu et al., 2022) and assumed to provide multi-dimensional in-
formation on fire controls, which are related to fire weather, fuel dry-
ness, fuel loading, natural or anthropogenic ignitions and human 
suppression (Bowman et al., 2011; Kelly et al., 2020). 

To avoid the carry-over effect from the instantaneous post-fire 
biomass change (e.g., leaf area index [LAI] decreases after fire), we 
chose the past-year averaged LAI to model current year fire metrics 
rather than using the current year LAI. To further account for the effect 
of fuel accumulation in previous years especially in arid/semi-arid areas 
due to rainfall (Abatzoglou et al., 2018; Tang et al., 2021), we also 
included the past two-year LAI as vegetation input. Given the lightning 
data used in our study is seasonal climatology data with no interannual 
dynamics, it was made static during each simulation. Since the global 
population density is five-year interval data, their temporal gaps were 
linearly interpolated. Global GDP data is only available until 2015 
(Kummu et al., 2018), and we treated GDP after 2015 as constant 2015 
values. 

Global fire data (or target data) used in this study included annual 
burned area, fire number and fire size, which are from satellite-based 
ESA-CCI51; this fire product combines MODIS near-infrared band and 
active fire information from thermal channels through a hybrid 
approach (Lizundia-Loiola et al., 2020). Compared to other global fire 
products (e.g., GFEDv4s and FireCCILT11), ESA-CCI51 has better data 
consistency since 2000 and is more sensitive to detecting smaller burned 
patches due to the highest original spatial resolution (i.e., 250 m) (Liz-
undia-Loiola et al., 2020). All the global data were aggregated to a 
standard grid scale of 0.25x0.25◦ for the subsequent ML fire modeling. 
For the original continuous variables (e.g., LAI), we conducted the ag-
gregation based on the spatial averaged method. For those concrete 
variables (i.e., 250 m land cover types from ESA-CCI51), we calculated 
their area fraction at the 0.25-degree pixel using the area-weighted 
method (i.e., actual area/pixel area). All those pre-processed global 
products are used to feed the machine learning-based global fire 
modeling and fire control attributions mentioned below. 

2.2. Machine-learning modeling framework 

We developed global fire models for three fire metrics (burned area, 
fire size and fire number) based on an ensemble learning approach, 
which includes five state-of-the-art machine learning (ML) models. 
Ensemble learning is a widely used meta-approach in machine learning 
by combining predictions from multiple models (Caruana et al., 2004; 
Sagi and Rokach, 2018), and could, theoretically and practically, obtain 
better predictive performance than any of its individual members if the 
base models are accurate and diverse (Dietterich, 2000). Here, we 
incorporated five popular MLs, including Random Forest, CatBoost, 
XgBoost, LightGBM and Neural Network. Among these MLs, Random 
Forest adopts a bootstrap method called bagging to combine randomly 
generated trees to make the target prediction (Breiman, 2001); Cat-
Boost, XgBoost, and LightGBM use gradient boosting method to itera-
tively fit a sequence of decision trees, but substantially differ in 
algorithm details (T. Chen and Guestrin, 2016; Ke et al., 2017; Pro-
khorenkova et al., 2018). For example, CatBoost adopts the symmetric 

trees, or balanced trees while both XGBoost and LightGBM are asym-
metric trees. In the process of constructing trees, LightGBM grows 
leaf-wise (horizontally) while XGBoost grows level-wise (vertically). 
Neural Network (also known as Multi-Layer Perceptron) is a deep ML 
inspired by biological neural networks (Abiodun et al., 2018). Overall, 
selected MLs with different model structures and parameters are ex-
pected to have broad capacity to potentially capture complex in-
terrelations between fire metrics and their relevant drivers. 

To build fire models for three fire metrics based on the ensemble ML, 
we included 19 factors related to climate, vegetation, human and terrain 
as model inputs (Table S1). For each fire metric, we built a global model 
based on all global samples and 14 regional models based on regional 
samples from 14 GFED fire zones (Fig. 1), and then evaluated their 
model performances. To construct the ensemble ML for each fire zone, 
all five single MLs mentioned above would be optimized firstly based on 
the grid search method and their model predictions are then combined 
to yield a final “ensemble” value according to their derived weights: 

ŷ =
∑n

j=1

(
wj ∗ pj,x

)
(1)  

Where ŷ is the estimated ensemble value; n is the number of ML models 
involved (n <= 5 for this study); pj,x is the predicted output value for the 
jth ML model based on the input of x; wj is the weight of the jth model 
prediction. The weights wj are non-negative and sum to 1, reflecting the 
relative importance of each base model in the ensemble. The optimal 
weights can be learned by minimizing a loss function that measures the 
discrepancy between the ensemble’s predictions and the true values of 
the target variable. Here we adopted the root mean squared error 
(RMSE) as the loss function: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − ŷi)

2

n

√
√
√
√
√

(2)  

Where n is the sample size; ŷi and yi are respectively ith estimated 
ensemble value (seen in Eq. (1)) and observed value. 

There are several approaches to calculate the weight of the base 
model for the ensemble, such as averaging, bagging, boosting, and 
stacking (Caruana et al., 2004; Sagi and Rokach, 2018). Here we chose 
the intuitive and computational cost-effective method of averaging. 
Rather than the simple averaging method (assuming the equal weight 
among base models), we adopted the forward stepwise ensemble se-
lection (Caruana et al., 2004), which is a greedy search-based weighted 
averaging method. This method has been approved to be efficient and 
robust, and particularly useful to avoid overfitting issue by imple-
menting selection with replacement, sorted ensemble initialization and 
bagged ensemble selection (Caruana et al., 2004). More details on the 
ensemble model construction and evaluation can be found in the 
following section. 

2.3. Model training and validation 

To develop fire models, we first constructed global fire training and 
testing datasets at the annual scale from 2003 to 2019. To reduce the 
influence of non-burnable surface (e.g., water bodies, desert, and barren 
land), land grids with multi-year mean vegetation fraction less than 5% 
were masked out (25.8% of total land surface; shown by light brown 
color in Fig. 1) according to the CCI51 land cover data. Those vegetated 
areas that did not register any fire signals during the study period 
(2003–2019; 26.5% of the total land surface; shown by gray color in 
Fig. 1) were also excluded in our analysis to prevent potential overfitting 
of non-fires in our fire models. Finally, to balance between data repre-
sentativeness and computing efficiency, we randomly sampled 50% of 
the total burned grids over the vegetated area (i.e., ~60000 grid cells 
accounting for 23.5% of total land surface or 32% of total vegetated 
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area) and obtained ~ 1 million yearly records for the three fire metrics 
and 19 relevant influencing factors. All the data were normalized based 
on their mean and standard deviation. We then randomly split 80% of 
the total data sites in each fire zone as training dataset and 20% as 
testing dataset. 

Based on the training dataset, we then developed one global model 
and 14 regional models for each of three fire metrics (burned area, fire 
number and fire size). During the training process, five-fold cross vali-
dation was adopted to train the selected 5 MLs and their ensemble. Here, 
we optimized each ML and their ensemble by minimizing the cost 
function of RMSE (see Eq. (2)) based on an open source hyperparameter 
optimization framework (i.e., OPTUNA) (Akiba et al., 2019). The final 
ensemble of fire prediction from five trained MLs was created based on 
the weighted averaging approach (see Eq. (1) (Caruana et al., 2004);). 
Please note that if MLs could not increase or even dampen the perfor-
mance of the ensemble, their weights would be set as 0 and excluded in 
the final ensemble. When the optimized hyperparameter ranges were 
identified through cross validation, they would be re-trained based on 
the whole training dataset, and then evaluated based on the testing 
dataset in terms of R2 and RMSE. All the training and testing processes 
were conducted based on the automated machine learning Python 
package mljar (Version 0.11.5; https://github.com/mljar/mljar-s 
upervised) in a Linux environment. 15 clusters with a total of 240 
CPUs were reserved in the high performance and scientific computing 
platform of ISAAC hosted by the University of Tennessee to conduct the 
model optimization and evaluation processes. 

2.4. Global fire simulation and evaluation 

Using the developed global and regional ML models, we ran spatial 
simulations of annual burned area, fire number and fire size from 2003 
to 2019. We then evaluated global ML-based simulations for three fire 
metrics based on the fire product from CCI51 in four aspects: (1) 
Multiple-year mean; (2) Annual variability in terms of standard devia-
tion; (3) Annual anomaly relative to the multiple-year mean (here 
setting the year of 2019 as an example), and (4) Annual trend (quanti-
fied by Theil-Sen’s slope). Global burned area simulated by seven fire 
models from FireMIP (Rabin et al., 2017) during 2003–2013 were also 
collected to compare our ML-based simulations. These models included 
CLM, JULES-INFERNO, CTEM, JSBACH-SPITFIRE, LPJ-GUESS--
GlobFIRM, LPJ-GUESS-SIMFIRE-BLAZE and LPJ-GUESS-SPITFIRE. 

2.5. Fire controls through factorial simulations 

Based on the optimized ensemble ML and model inputs, we quanti-
fied individual fire controls related to climate, vegetation, and human on 
three fire metrics through factorial simulation design (Table 1). Specif-
ically, we first conducted a simulation by allowing all three groups of 

factors to change along the time (i.e., ‘All’). Then, we performed a series 
of simulations by holding one or two groups of factors at the level of the 
initial year of 2003 but allowing the remaining group(s) of factors to 
vary with time. Finally, the direct control of one group or the combined 
control of two groups of factors could be derived from the difference 
between ‘All’ and sub-simulations. For example, ‘All – CLMcontrol’ is the 
direct control from climate, while ‘All – VEG_HUMcontrol’ is the joint 
control from vegetation and human (Table 1). Similar simulations for 17 
model inputs that have the annual dynamic information (bold variables 
in Table S1) were further conducted to quantify their direct control 
effects. 

To derive the spatial pattern of major fire control among three 
groups of drivers (i.e., climate [CLM], vegetation [VEG] and human 
[HUM]), we compared their effects on annual trend in the specific fire 
metric. Here the annual trend was calculated through the non- 
parametric Theil-Sen estimator, which is particularly robust to out-
liers, while the statistical significance level was derived from Kendall’s 
tau-b coefficient (Fernandes and Leblanc, 2005). Six forms of major fire 
controls based on their signs (i.e., positive and negative) were identified: 
positive (CLM+) and negative (CLM-) climate controls, positive (VEG+) 
and negative (VEG-) vegetation controls, positive (HUM+) and negative 
(HUM-) human controls. For each group of the fire control, we further 
identified the specific dominant factor (among all factors for that group 
in Table S17) by performing the similar trend comparison shown above. 

3. Results 

3.1. Grid-level model performance evaluation 

We developed a global model (GlobeModel) and 14 regional models 

Fig. 1. Fire zones used in this study. Masked land 
area is unburnable non-vegetated area. The 14 fire 
zones include: BONA (Boreal North America), TENA 
(Temperate North America), CEAM (Central Amer-
ica), NHSA (Northern Hemisphere South America), 
SHSA (Southern Hemisphere South America), EURO 
(Europe), MIDE (Middle East), NHAF (Northern 
Hemisphere Africa), SHAF (Southern Hemisphere 
Africa), BOAS (Boreal Asia), CEAS (Central Asia), 
SEAS (Southeast Asia), EQAS (Equatorial Asia), and 
AUST (Australia & New Zealand). Non-vegetated area 
is labeled as light brown color, while non-fire regions 
over vegetated area are labeled as gray color. Original 
source: https://globalfiredata.org/pages/data/# 
ancillary.(For interpretation of the references to color  
in this figure legend, the reader is referred to the Web 
version of this article.)   

Table 1 
Factorial design to disaggregate fire controls related to climate, vegetation, and 
human. The symbol ‘+’ indicates that the input variable changes along time, 
while the symbol ‘- indicates that the input variable is fixed as the level in the 
initial year of 2003. The direct fire controls from climate, vegetation and human 
are ‘All – CLMcontrol’, ‘All – VEGcontrol’, and ‘All – HUM0’, respectively. The joint 
fire control between climate and vegetation, vegetation and human, and climate 
and vegetation are ‘All – CLM_VEGcontrol’, ‘All – VEG_HUMcontrol’, and ‘All – 
CLM_VEGcontrol’, respectively.  

Simulations Climate Vegetation Human 

All + + +

CLMcontrol – + +

VEGcontrol + – +

HUMcontrol + + – 
CLM_VEGcontrol – – +

VEG_HUMcontrol + – – 
CLM_HUMcontrol – + –  
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(RegionModel) for three fire metrics, namely burned area, fire number, 
and average fire size. This was based on a random sample of grid-level 
data obtained from global burned area (Fig. 1) using a total of 21 
feature inputs (Table S1). During the training process, we performed 
five-fold cross-validation and evaluated the performance of five 
different machine learning models (Fig. 2). Our analysis revealed that 
LightGBM performed the best, whereas Neural Network exhibited the 
lowest performance with XGBoost, Random Forest and CatBoost falling 
in between (Fig. 2). However, the ensemble ML model that incorporated 
predications from multiple relevant ML models outperformed each in-
dividual model in terms of R2 and RMSE for both GlobeModel and 
RegionModel (Fig. 2). Therefore, this ensemble model strategy was 
chosen for use in our study. 

In GlobeModel, LightGBM contributed the highest weight (0.67) in 
the ensemble ML, followed by XGBoost (0.33), while the remaining 
models were not included (Table 2). However, in RegionModels, the 
weights of individual models exhibited a varied pattern (Table 2). For 
example, over the boreal North America (BONA), RegionModel was 
dominated by XGBoost (0.67) and CatBoost (0.33), while other models 
were excluded. Overall, LightGBM, XGBoost and CatBoost carried the 
most significant weights in the ensemble MLs for RegionModels. The 
ensemble ML demonstrated comparable performance on both the 
training (80%) and testing (20%) datasets, as evidenced by the R2 and 
RMSE values presented in Table 2. This indicates the robustness of our 
fire ML-based modeling framework. However, some fire zones with 
small or moderate fire fractions (such as BONA, TENA and CEAS) 
showed relatively poor performances likely due to the lower frequency 
of fire signals when compared to the higher fire fraction zones (such as 
NHAF and SHAF) (Fig. 2 & Table 2). The grid-level model performance 
for fire number simulation was similar to that for burned area (Fig. S1). 

3.2. Assessment of global level model simulations 

Globally, the ensemble ML for RegionModels effectively reproduced 
the annual dynamics of global burned area (R2 = 0.90, P < 0.001; 
Fig. 3a), total fire numbers (R2 = 0.86, P < 0.001; Fig. 3b), and average 
fire size (R2 = 0.70, P < 0.001; Fig. 3c). RegionModel demonstrated 
slightly better performance than GlobeModel in simulating these fire 
metrics at both global (Fig. 3) and regional scales (Fig. S2). Both 
GlobeModel and RegionModel accurately captured the annual varia-
tions and long-term declining trends observed in global burned area 
(Fig. 3a) and total fire number (Fig. 3b), and insignificant trend in global 
averaged fire size (Fig. 3c), although the magnitudes of these variations 

and trends were somewhat underestimated. In contrast, FireMIP models 
displayed large inter-model variability and significant negative dis-
crepancies when compared to satellite-based observations, particularly 
in simulating global burned area (Fig. 3d and S3). 

Spatially, the ensemble ML (hereafter referred to as RegionModel) 
simulated the magnitude and extent of annual burned area reasonably 
well, especially for the major fire zones in Africa and northern Australia 
(Fig. 4a & b). The negative anomalies of burned areas in 2019 (Fig. 4e & 
f) and long-term declining trends in annual burned areas over those 
major fire zones (Fig. 4g & h) were also captured by the ensemble ML, 
although the magnitudes were slightly underestimated. In terms of the 
annual variability of burned area, the ensemble ML replicated the 
observed overall pattern of spatial gradient but tended to underestimate 
the magnitudes (Fig. 4c & d). Global fire number (Fig. S4) and averaged 
fire size (Fig. S5) simulated by the ensemble ML exhibited similar 
pattern of model performance with burned area. 

3.3. Global fire controls derived from the ensemble ML 

Through factorial simulations based on the optimized regional 
ensemble ML, we fully examined fire controls related to climate, vege-
tation, and human factors on annual fire trends. From 2003 to 2019, 
human control showed significant negative influence on global burned 
area (− 1.9 Mha/yr, P < 0.01), followed by climate control (− 1.3 Mha/ 
yr, P < 0.01), and negligible positive vegetation control (0.4 Mha/yr, P 
= 0.60) (Fig. 5a and b). For global fire number, climate control (− 8792/ 
yr, P < 0.01) contributed slightly more negatively than human control 
(− 5666/yr, P < 0.01), whereas vegetation control was insignificant 
(Fig. 5c and d). For the global averaged fire size, only human control 
showed significant negative influence (− 0.37 ha/fire/yr), while two 
other controls showed insignificant positive influences (Fig. 5e and f). 
Overall, all three control groups together produced significant declining 
trends in global burned area, and total fire number as well as insignifi-
cant trend in global averaged fire size (Fig. 5), which were generally 
consistent with the observed trends from CCI51 (Fig. 3). 

Global fire controls showed heterogeneous spatial patterns for their 
types, signs, and magnitudes (Fig. 6). For global burned area, the major 
control from climate accounted for 53.7% of total burned area, followed 
by vegetation control (23.4%) and human control (22.9%). However, a 
high portion (71.7%) of human control area showed negative effect on 
annual burned area trend, whereas climate and vegetation controls only 
had 53.0% and 42.8%, respectively (Fig. 7a). Across fire zones, human 
controls (mostly negative) were primarily concentrated in northern and 

Fig. 2. Grid-level model evaluation for burned area among one global (GLOBE; left side of the vertical line) and 14 regional (right side of the vertical line) ML models 
based on five-fold cross validation. The abbreviations of fire zones are seen in Fig. 1. 
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southern Africa, Central Asia and North China; the majority of positive 
vegetation controls were distributed in Australia, Middle East, and 
Southeast Asia, while negative vegetation controls were scattered 
throughout northwestern Africa and central Europe; positive climate 
controls were extensively located in Boreal Asia, Boreal North America 
and most of United States; by contrast, negative climate controls were 
mostly found in the long-belt of northern Central Asia, southern South 
America, southern China and northern Australia (Fig. 6a). 

Global fire number showed similar spatial pattern of its controls with 
burned area, except the slightly smaller area (2.9% of total burned area) 
of human control particularly in southern Africa and North China 
(Fig. 6c & 7b). Compared to the burned area, fire size showed less ex-
tents of vegetation control (2.8% of total burned area) and human 
control (2.9% of total burned area), but slightly larger area of climate 
control (3.5% of total burned area). Especially, negative climate controls 

on fire number were more extensive (9.3% of total burned area) than 
that on burned area (Fig. 7c), which were mainly evidenced in eastern 
Europe and southeastern Brazil (Fig. 6e). Regarding to the fire control 
strength, those area with major human controls had substantially larger 
magnitudes than other two controls for all three fire metrics (Fig. 6b, d & 
f). 

The dominant fire controls are represented mechanistically by a se-
ries of proxies from climate, vegetation, and socioeconomic factors. 
Based on the ensemble ML, we identified that the dominant human 
controls on global burned area are primarily related to GDP (13.1% of 
total burned area), followed by population density (5.5%), urban frac-
tion (2.1%) and cropland fraction (1.1%); for global vegetation controls, 
three leading factors are past one-year LAI (13.7%), past two-year LAI 
(5.9%), and forest fraction (1.2%); global climate controls are mainly 
related to annual VPD (12.5%), solar radiation (12.4%) and 

Table 2 
Model weights and performance of the ensemble MLs for burned area simulation. The abbreviations of fire 
zones are seen in Fig. 1. The weights of the ML model are represented using a color scheme, with darker 
shades of green indicating higher weight values, and the highest weight values being denoted in bold. The 
model performance was based on the training (80%) and testing (20%) datasets. 

0.67 
0.67 

0.5 
0.5 

0.4 0.4 
0.6 

0.5 
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Fig. 3. Evaluations of global fire simulations from the ensemble MLs (GlobeModel & RegionModel) and FireMIP based on the satellite-based fire product from CCI51. 
‘FireMIP_Mean’ in (d) are the mean of seven fire models from FireMIP. 
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precipitation (11.6%), respectively (Fig. 8a). Reginal socioeconomic 
developments reflected by increasing GDP, population density and 
urban expansion are mainly responsible for the negative human control 
on burned area, especially in northern and southern Africa, North China, 
and Southeast Asia (Fig. S6). Accumulated fuel loadings from the 
enhanced vegetation growth are the main driver for positive vegetation 
control, notably in Australia and India (Fig. S7). Although wide-spread 
warming and drying trends are associated with positive climate con-
trol, regional wetting trend is responsible for negative climate control (e. 
g., in central China and southeastern United States) (Fig. S8). Global 
controls for fire number and fire size share similar dominant factors with 
that for burned area in most areas (Fig. 8b and c). However, fire number 
showed smaller fraction that linking with GDP (10.4%), whereas fire 
size showed slightly larger fraction that linking with VPD (14.2%). Over 
the major fire zones in Africa, fire number intends to be controlled by 
climate and vegetation, which differs from fire size being mainly 
controlled by human factors (Fig. 8b and c). In other words, human 
management of burned areas in Africa has primarily relied on containing 
the size of fires rather than the number of fires. 

4. Discussion 

4.1. Global fire dynamics modeling based on ML 

Global fire dynamics are one of the most complex land surface 
phenomena (Bowman et al., 2009; Hantson et al., 2016). Our ensemble 
ML optimized based on satellite and climate observations well repro-
duced annual dynamics of global burned area (R2 = 0.90, P < 0.001; 
Fig. 3a), which serves the basis of our fire control attribution. In 
contrast, the process-based fire-enabled DGVMs from FireMIP poorly 
simulated inter-annual variations and trends in global burned area 
(Fig. 3d and S3), reflecting the need in fire process optimization or 
parameterization and input improvements, e.g., by integrating more 
effective observation-constrained fire controls and their interactions in 
the process models (Andela et al., 2017; Hantson et al., 2020). Some 
empirical fire models, e.g., based on linear regression (Andela et al., 
2017) or logistic curve (Forkel et al., 2017; Kelley et al., 2019) could 
reasonably simulate the decline trend in global burned area by ac-
counting for the key fire drivers particularly from the human suppres-
sion. However, most of these models adopted globally invariant 

Fig. 4. Evaluation of the ensemble ML (RegionModel) in simulating global patterns of burned area in terms of multi-year amplitude, annual variability, annual 
anomaly in 2019 and long-term annual trend. The unit here is ha/yr. 
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parameters during the model calibration process. Our evaluation for the 
two ML-based global and regional modeling strategies showed that 
regional models could better represent fire dynamics in the regional 
scale than the global model (Fig. S2). In addition, the empirical models 
rely on the assumption that the burned area is a linear combination of its 
key drivers, which may simplify or ignore the likely non-linear and 
interactive effects among fire drivers that ML-based models are capable 
of (Abiodun et al., 2018; Jain et al., 2020). 

Based on a deep neural network and regional modeling strategy, Zhu 
et al. (2022) built a global surrogate fire model, which substantially 
improved the original process-based fire model within the land 
component of Department of Energy Earth system model. Depending on 
the selected inputs, Forkel et al. (2017) showed the random forest pro-
duced a slightly more realistic prediction of global burned area when 
compared to the data-driven model of SOFIA. In this study, our cross 
validation (Fig. 2) identified gradient boosting MLs as better models for 
predicting burned area than previously adopted random forest or deep 
neural network. Among the gradient boosting MLs, LightGBM developed 
by Microsoft outperformed all other models (Fig. 2) likely due to the 
novel algorithm integration of Gradient-based One-Side Sampling and 
Exclusive Feature Bundling (Ke et al., 2017). By combing all MLs 
together, the ensemble ML showed the best model performance in terms 
of R2 and RMSE over all fire zones (Fig. 2), suggesting an alternative but 
highly efficient approach for global and regional fire modeling (Jain 
et al., 2020; Van Breugel et al., 2016). 

Besides burned area, the ensemble ML also reproduced annual dy-
namics in global fire number and fire size, two fire metrics that were 
rarely involved in previous fire modeling studies (Hantson et al., 2016, 
2020). During the study period, global fire number showed a significant 
decline trend while global averaged fire size demonstrated insignificant 
changes (Fig. 3), suggesting the fire number being as the primary driver 

of global decline in burned area (Andela et al., 2017). The ensemble ML 
based on the unified modeling framework reasonably captured such 
temporal co-influence patterns among three fire matrices. Spatially, the 
ensemble ML further reproduced the major patterns of annual magni-
tude, variability, specific year anomaly and long-term trend for all three 
fire metrics (Fig. 4, S2, S4 & S5), highlighting the advantage of the 
ensemble ML as an effective spatial-temporal diagnostic simulation tool 
(Abiodun et al., 2018; Jain et al., 2020). 

4.2. Global fire controls revealed by ML 

Global fire controls relating to climate, vegetation, and anthropo-
genic activity are typically entangled, and hard to separate (Forkel et al., 
2017; Rabin et al., 2017). Based on the optimized ensemble ML and 
factorial sensitivity simulations, we fully quantified fire controls from 
climate, vegetation, and human on three fire metrics in a spatially 
resolved wall-to-wall manner. The proposed fire attribution framework 
based on the optimized ML and classical factor simulations could well 
avoid the drawbacks of commonly used explainability approaches (such 
as the permutation feature importance; Breiman, 2001) by providing 
local level information on the magnitude and sign of the prediction (or 
target change) given the change of a particular feature input. In addi-
tion, this framework is particularly useful for the ensemble of multiple 
MLs, among which the model-based feature importance scores derived 
from the same or varying explainability approaches (Ribeiro et al., 2016; 
Lundberg and Lee, 2017) are theoretically incomparable. 

Overall, our ML-based fire attribution highlighted the dominant role 
of enhanced anthropogenic activity in reducing global burned area 
(− 1.9 Mha/yr, P < 0.01; Fig. 5), which is generally consistent with 
earlier research (Andela et al., 2017; Kelley et al., 2019; Wu et al., 2021). 
However, our study indicated that human control over burned area was 

Fig. 5. Effects of climate, vegetation and human controls on annual global burned area, total fire number and averaged fire size. Scenario simulations are seen in 
Table 1. CLM, VEG, HUM are direct fire controls from climate, vegetation, and human, respectively. ALL is the simulated total controls. VEG-HUM, CLM-HUM and 
CLM-VEG in (b), (d) and (f) are joint controls from vegetation and human, climate and human, and climate and vegetation, respectively. *p < 0.05; **p < 0.01. 
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mainly established through suppressing fire size rather than fire num-
ber, particularly in southern Africa (Fig. 6). Additionally, our study 
showed that socioeconomic factors of GDP and population density 
served as better proxies for human controls on burned area when 
compared with cropland (Fig. 8a), suggesting a more integrated mech-
anism for human fire control, e.g., via increasing landscape fragmenta-
tion, enhancing artificial fire suppression or land management (Forkel 
et al., 2019; Kelley et al., 2019). Besides northern and southern Africa, 
China showed relatively higher fraction of negative human control 
(Fig. 6), likely due to the stringent national policy on reducing air 
pollution and preventing wildfires (Wang, 2021). 

Climate control dominated a substantially larger burned area 
(53.7%) than that for human control (23.4%) (Fig. 6a). However, 
climate control showed a relatively weaker influence on global burned 
area (− 1.3 Mha/yr, P < 0.01; Fig. 5) largely due to the counteraction of 
negative and positive influences (Figs. 6 and 7) related to reginal wetting 
and drying trends (Forkel et al., 2019). Although a lesser negative in-
fluence, climate control largely regulated inter-annual variation of 
global burned area (Fig. 5), suggesting the strong perturbation of climate 
variability in enabling annual fire activity (Abatzoglou et al., 2018; 
Barbero et al., 2020; Tang et al., 2021). Previous studies indicated 
lightning as a major driver of recent large fire years in boreal forests 
(Felsberg et al., 2018; Veraverbeke et al., 2017). However, due to the 
lack of inter-annual information in the lightning climatology, climate 
controls in boreal regions may be underestimated in our study. That 
being said, our ML-based simulation indicated a wide-spread positive 
control from a drier and hotter climate in boreal North America and 
Eurasia (Figs. 6 and 7), implying the enhanced fire risk in these 
climate-warming sensitive areas (Coogan et al., 2020; Descals et al., 
2022; Jones et al., 2022; Veraverbeke et al., 2017). Conversely, the 

regional wetting trend resulted in decreased burned area, especially in 
southeastern China and U.S., and southern Brazil (Fig. 6), suggesting the 
negative feedback of climate on fire (Kelley et al., 2019). 

Global wide-spread vegetation greening occurred during the study 
period (Piao et al., 2020; Zhang et al., 2017). However, only 23.4% of 
total burned area was dominated by vegetation growth and mainly 
located in the fuel-limited arid and semi-arid regions, such as southern 
Australia, and middle east (Fig. 6). Most parts of India with a tropical 
climate also exhibited major vegetation controls (Fig. 6). A recent study 
indicated the greening of India was mainly caused by intensive culti-
vation of crops (Chen et al., 2019), which can be well captured by 
satellite-based LAI. Therefore, the positive vegetation control in India 
may be further related to the fuel loading accumulation as well as 
intentional ignitions associated with agricultural practices. Drier and 
hotter climate resulted in less burned area in certain sparsely vegetated 
areas, such as northern Australia and Kazakhstan (Fig. 6), which may be 
potentially linked to the reduced fuel loadings caused by the 
climate-vegetation interaction (Abatzoglou et al., 2018; Kelley et al., 
2019). 

4.3. Limitations and implications 

Although the promising aspects of the ensemble ML for global fire 
modeling and analysis, several uncertainties and limitations need to be 
noted here. First, the ensemble ML tended to underestimate global 
burned area in the initial period (i.e., before 2008), but overestimate in 
the late period (i.e., after 2012) (Fig. 3a); such a tendency further 
resulted in an underestimation in annual trend and variability in global 
burned area (Fig. 4). This global tendency appears not to be dominated 
by specific major fire zones but resulted from an accumulative effect 

Fig. 6. Spatial patterns of major fire control types and magnitudes for burned area, fire number and fire size. Six fire control types in (a), (c) and (e) are: CLM+

(positive climate control), CLM- (negative climate control), VEG+ (positive vegetation control), VEG- (negative vegetation control), HUM+ (positive human control) 
and HUM- (negative human control). 
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from them (Figs. S9–S12). Secondly, compared to the fire size, fire 
number showed larger underestimation in its annual variability, thus 
annual trend (Fig. 3, S4 & S5), and this underestimation further led to 
the underestimation of annual burned area, particularly in the major fire 
zones in Africa and Australia (Fig. 4). The weakened fire variability in 
the ensemble ML is probably due to the lack of effective and heteroge-
nous within-grid information for anthropogenic and natural ignitions 
(Hantson et al., 2020). Such precise information is still difficult to obtain 
at high spatial resolution, although socioeconomic factors can roughly 
represent them (Bowman et al., 2020; Hantson et al., 2016). Thirdly, 
data uncertainties in forcing and satellite-based fire observations were 
both involved in the ML training and spatial upscaling, which may be 
further propagated to the uncertainties in control attributions. For 
example, the missing interannual variability information for lightning 
may be responsible for the relatively poor performance of fire simula-
tions in boreal regions (Fig. 2), while incomplete records of GDP after 
2015 may underestimate human controls in major fire zones (e.g., Af-
rica), thus overestimate global burned area. In addition, the original 
satellite-based fire product (i.e., CCI51) may still miss some small fires 
that cannot be effectively detected by the 250-m sensor (Ramo et al., 
2021). The fire modeling capacity of the ensemble ML and relevant 
quantification of fire controls may need to be further evaluated based on 
future released global high-quality data (e.g., Sentinel-based 20 m fire 
product (Roteta et al., 2019);). 

Despite the limitations mentioned above, our ML-based global fire 
modeling and analysis framework does have important implications. 
Firstly, our study confirmed that the optimized ensemble ML is capable 
of reconstructing annual fire dynamics that current process-based fire- 
enabled DGVMs generally failed to reproduce, suggesting an effective 

alternative to develop ML-based surrogate fire model for Earth system 
model (Yu et al., 2022; Zhu et al., 2022). Although our study was 
focused on the annual scale, similar framework could be readily 
expanded to seasonal or even smaller temporal scales when input and 
training data are available. Secondly, through factorial simulations, our 
study sufficiently quantified and disentangled global fire controls 
related to climate, vegetation, and human for three fire metrics, which 
are the key components of global integral fire regime. Our efforts in 
understanding the modern fire dynamics could help better depict the 
pattern and mechanism of the contemporary global fire regime, which is 
still challenging and debatable (Archibald et al., 2013; Bowman et al., 
2020). Thirdly, our study highlighted the human-induced negative 
control on global declining fire activity, but meanwhile acknowledged 
the more extensive climate and vegetation controls (Jones et al., 2022; 
Kelley et al., 2019), which depicts a complex picture of future fire 
regime change (Descals et al., 2022; Wu et al., 2021), particularly in the 
context of projected enhanced human activities and climate change 
(Andela et al., 2017; Bowman et al., 2020). 

5. Conclusion 

In this study, we developed a global model and 14 regional models 
for three fire metrics using an ensemble of five cutting-edge MLs and 
multiple satellite-based observations from 2003 to 2019. Overall, the 
ensemble ML from regional models well reproduced annual dynamics of 
global burned area (R2 = 0.90, P < 0.001), total fire numbers (R2 = 0.86, 
P < 0.001) and averaged fire size (R2 = 0.70, P < 0.001), and further 
captured key patterns of their multi-year mean magnitudes, yearly 
variabilities, yearly anomalies, and long-term trends. Factorial 

Fig. 7. Comparisons of major fire control areas for burned area, fire number and fire size. Relative areas are the percentage area relative to global burned area (for 
GLOBE) or total burned area in each fire zone. Six fire control types are seen in Fig. 6. 
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simulations based on the optimized ensemble ML provided the basis for 
spatial and temporal fire attributions related to climate, vegetation, and 
human factors. During the study period, human control substantially 
negatively influenced the global burned area (− 1.9 Mha/yr, P < 0.01), 
followed by climate control (− 1.3 Mha/yr, P < 0.01), and insignificant 
positive vegetation control (0.4 Mha/yr, P = 0.60). However, spatially, 
climate control dominated a much larger burned area (53.7%) than that 
for human control (23.4%) and vegetation control (22.9%). The coun-
teracting effect of regional wetting and drying trends was primarily 
responsible for the weaker climate control on global burned area. 
Although similar with burned area, global fire number tended to be 
more influenced by climate, but fire size was more influenced by human 
factors. Overall, this study provides an efficient approach for global fire 
modeling and subsequent control attribution based on the ensemble ML 
and factor simulations; and the revealed heterogeneous fire controls 
would enhance our understanding of modern fire regimes at multiple 
aspects, further leading to robust fire projections in a warming climate. 
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Kelly, L.T., Giljohann, K.M., Duane, A., Aquilué, N., Archibald, S., Batllori, E., Bennett, A. 
F., Buckland, S.T., Canelles, Q., Clarke, M.F., 2020. Fire and biodiversity in the 
anthropocene. Science 370 (6519) eabb0355.  

Krawchuk, M.A., Moritz, M.A., 2011. Constraints on global fire activity vary across a 
resource gradient. Ecology 92 (1), 121–132. 

Kummu, M., Taka, M., Guillaume, J.H., 2018. Gridded global datasets for gross domestic 
product and Human Development Index over 1990–2015. Sci. Data 5 (1), 1–15. 

Lasslop, G., Coppola, A.I., Voulgarakis, A., Yue, C., Veraverbeke, S., 2019. Influence of 
fire on the carbon cycle and climate. Curr. Clim. Change Rep. 5 (2), 112–123. 
https://doi.org/10.1007/s40641-019-00128-9. 

Lasslop, G., Hantson, S., Harrison, S.P., Bachelet, D., Burton, C., Forkel, M., Forrest, M., 
Li, F., Melton, J.R., Yue, C., Archibald, S., Scheiter, S., Arneth, A., Hickler, T., 
Sitch, S., 2020. Global ecosystems and fire: multi-model assessment of fire-induced 
tree-cover and carbon storage reduction. Global Change Biol. 26 (9), 5027–5041. 
https://doi.org/10.1111/gcb.15160. 

Li, F., Zeng, X., Levis, S., 2012. A process-based fire parameterization of intermediate 
complexity in a Dynamic Global Vegetation Model. Biogeosciences 9 (7), 
2761–2780. 

Lizundia-Loiola, J., Otón, G., Ramo, R., Chuvieco, E., 2020. A spatio-temporal active-fire 
clustering approach for global burned area mapping at 250 m from MODIS data. 
Rem. Sens. Environ. 236, 111493 https://doi.org/10.1016/j.rse.2019.111493. 

Lundberg, S.M., Lee, S.-I., 2017. A unified approach to interpreting model predictions. 
Adv. Neural Inf. Process. Syst. 30. 

May, A., McMeeking, G., Lee, T., Taylor, J., Craven, J., Burling, I., Sullivan, A.P., 
Akagi, S., Collett Jr., J., Flynn, M., 2014. Aerosol emissions from prescribed fires in 
the United States: a synthesis of laboratory and aircraft measurements. J. Geophys. 
Res. Atmos. 119 (20), 11–826. 

McLauchlan, K.K., Higuera, P.E., Miesel, J., Rogers, B.M., Schweitzer, J., Shuman, J.K., 
Tepley, A.J., Varner, J.M., Veblen, T.T., Adalsteinsson, S.A., Balch, J.K., Baker, P., 
Batllori, E., Bigio, E., Brando, P., Cattau, M., Chipman, M.L., Coen, J., Crandall, R., 
et al., 2020. Fire as a fundamental ecological process: research advances and 
frontiers. J. Ecol. 108 (5), 2047–2069. https://doi.org/10.1111/1365-2745.13403. 

Piao, S., Wang, X., Park, T., Chen, C., Lian, X., He, Y., Bjerke, J.W., Chen, A., Ciais, P., 
Tømmervik, H., Nemani, R.R., Myneni, R.B., 2020. Characteristics, drivers and 
feedbacks of global greening. Nat. Rev. Earth Environ. 1 (1), 14–27. https://doi.org/ 
10.1038/s43017-019-0001-x. 

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A., 2018. CatBoost: 
unbiased boosting with categorical features. Adv. Neural Inf. Process. Syst. 31. 

Rabin, S.S., Melton, J.R., Lasslop, G., Bachelet, D., Forrest, M., Hantson, S., Kaplan, J.O., 
Li, F., Mangeon, S., Ward, D.S., Yue, C., Arora, V.K., Hickler, T., Kloster, S., 
Knorr, W., Nieradzik, L., Spessa, A., Folberth, G.A., Sheehan, T., et al., 2017. The Fire 

Y. Zhang et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.srs.2023.100088
https://doi.org/10.1016/j.srs.2023.100088
https://doi.org/10.1111/gcb.14405
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref2
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref2
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref2
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref3
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref3
https://doi.org/10.1016/j.scitotenv.2011.05.032
https://doi.org/10.1016/j.scitotenv.2011.05.032
https://doi.org/10.1126/science.aal4108
https://doi.org/10.1073/pnas.1211466110
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref7
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref7
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref7
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref8
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref8
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref8
https://doi.org/10.3389/feart.2020.00104
https://doi.org/10.1111/j.1365-2699.2011.02595.x
https://doi.org/10.1111/j.1365-2699.2011.02595.x
https://doi.org/10.1126/science.1163886
https://doi.org/10.1038/s43017-020-0085-3
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref13
https://doi.org/10.1145/1015330.1015432
https://doi.org/10.1038/s41893-019-0220-7
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref16
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref17
https://doi.org/10.1071/WF19129
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref19
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref19
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref19
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref20
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref21
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref21
https://doi.org/10.1002/2017JG004080
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref23
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref23
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref23
https://doi.org/10.5194/bg-16-57-2019
https://doi.org/10.5194/gmd-10-4443-2017
https://doi.org/10.5194/gmd-10-4443-2017
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref27
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref27
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref27
https://doi.org/10.1016/j.rse.2018.08.005
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref29
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref29
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref29
https://doi.org/10.1139/cjfr-2018-0293
https://doi.org/10.5194/bg-13-3359-2016
https://doi.org/10.5194/gmd-13-3299-2020
https://doi.org/10.5194/gmd-13-3299-2020
https://doi.org/10.1111/brv.12544
https://doi.org/10.1139/er-2020-0019
https://doi.org/10.1139/er-2020-0019
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref35
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref35
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref35
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref36
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref36
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref36
https://doi.org/10.1038/s41558-019-0540-7
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref38
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref38
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref38
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref39
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref39
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref40
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref40
https://doi.org/10.1007/s40641-019-00128-9
https://doi.org/10.1111/gcb.15160
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref43
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref43
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref43
https://doi.org/10.1016/j.rse.2019.111493
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref45
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref45
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref46
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref46
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref46
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref46
https://doi.org/10.1111/1365-2745.13403
https://doi.org/10.1038/s43017-019-0001-x
https://doi.org/10.1038/s43017-019-0001-x
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref49
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref49


Science of Remote Sensing 7 (2023) 100088

13

Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical 
protocols with detailed model descriptions. Geosci. Model Dev. (GMD) 10 (3), 
1175–1197. https://doi.org/10.5194/gmd-10-1175-2017. 

Ramo, R., Roteta, E., Bistinas, I., Van Wees, D., Bastarrika, A., Chuvieco, E., Van der 
Werf, G.R., 2021. African burned area and fire carbon emissions are strongly 
impacted by small fires undetected by coarse resolution satellite data. Proc. Natl. 
Acad. Sci. USA 118 (9), e2011160118. 

Ribeiro, M.T., Singh, S., Guestrin, C., 2016. Why should i trust you?”. Explaining the 
predictions of any classifier 1135–1144. 

Riley, K., Thompson, M., 2016. An uncertainty analysis of wildfire modeling. Natural 
hazard uncertainty assessment: modeling and decision support. Geophys. Monogr. 
223, 193–213. 

Roscher, R., Bohn, B., Duarte, M.F., Garcke, J., 2020. Explainable machine learning for 
scientific insights and discoveries. IEEE Access 8, 42200–42216. 

Ross, A.N., Wooster, M.J., Boesch, H., Parker, R., 2013. First satellite measurements of 
carbon dioxide and methane emission ratios in wildfire plumes. Geophys. Res. Lett. 
40 (15), 4098–4102. 

Roteta, E., Bastarrika, A., Padilla, M., Storm, T., Chuvieco, E., 2019. Development of a 
Sentinel-2 burned area algorithm: generation of a small fire database for sub- 
Saharan Africa. Rem. Sens. Environ. 222, 1–17. https://doi.org/10.1016/j. 
rse.2018.12.011. 

Rudin, C., 2019. Stop explaining black box machine learning models for high stakes 
decisions and use interpretable models instead. Nat. Mach. Intell. 1 (5), 206–215. 

Sagi, O., Rokach, L., 2018. Ensemble learning: a survey. Wiley Interdiscipl. Rev.: Data 
Min. Knowl. Discov. 8 (4), e1249. 

Tang, R., Mao, J., Jin, M., Chen, A., Yu, Y., Shi, X., Zhang, Y., Hoffman, F.M., Xu, M., 
Wang, Y., 2021. Interannual variability and climatic sensitivity of global wildfire 
activity. Adv. Clim. Change Res. 12 (5), 686–695. 

Tuyen, T.T., Jaafari, A., Yen, H.P.H., Nguyen-Thoi, T., Van Phong, T., Nguyen, H.D., Van 
Le, H., Phuong, T.T.M., Nguyen, S.H., Prakash, I., 2021. Mapping forest fire 
susceptibility using spatially explicit ensemble models based on the locally weighted 
learning algorithm. Ecol. Inf. 63, 101292. 

Urbanski, S.P., Hao, W.M., Baker, S., 2008. Chemical composition of wildland fire 
emissions. Dev. Environ. Sci. 8, 79–107. 

Van Breugel, P., Friis, I., Demissew, S., Lillesø, J.-P.B., Kindt, R., 2016. Current and future 
fire regimes and their influence on natural vegetation in Ethiopia. Ecosystems 19 (2), 
369–386. 

Van Der Werf, G.R., Randerson, J.T., Giglio, L., Van Leeuwen, T.T., Chen, Y., Rogers, B. 
M., Mu, M., Van Marle, M.J., Morton, D.C., Collatz, G.J., 2017. Global fire emissions 
estimates during 1997–2016. Earth Syst. Sci. Data 9 (2), 697–720. 

Veraverbeke, S., Rogers, B.M., Goulden, M.L., Jandt, R.R., Miller, C.E., Wiggins, E.B., 
Randerson, J.T., 2017. Lightning as a major driver of recent large fire years in North 
American boreal forests. Nat. Clim. Change 7, 9. 

Wang, P., 2021. China’s air pollution policies: progress and challenges. Current Opin. 
Environ. Sci. & Health 19, 100227. 

Williams, A.P., Abatzoglou, J.T., Gershunov, A., Guzman-Morales, J., Bishop, D.A., 
Balch, J.K., Lettenmaier, D.P., 2019. Observed impacts of anthropogenic climate 
change on wildfire in California. Earth’s Future 7 (8), 892–910. https://doi.org/ 
10.1029/2019EF001210. 

Wu, C., Venevsky, S., Sitch, S., Mercado, L.M., Huntingford, C., Staver, A.C., 2021. 
Historical and future global burned area with changing climate and human 
demography. One Earth 4 (4), 517–530. 

Yu, Y., Mao, J., Wullschleger, S.D., Chen, A., Shi, X., Wang, Y., Hoffman, F.M., Zhang, Y., 
Pierce, E., 2022. Machine learning–based observation-constrained projections reveal 
elevated global socioeconomic risks from wildfire. Nat. Commun. 13 (1), 1250. 
https://doi.org/10.1038/s41467-022-28853-0. 

Zhang, Y., Song, C., Band, L.E., Sun, G., Li, J., 2017. Reanalysis of global terrestrial 
vegetation trends from MODIS products: browning or greening? Rem. Sens. Environ. 
191, 145–155. https://doi.org/10.1016/j.rse.2016.12.018. 

Zhu, Q., Li, F., Riley, W.J., Xu, L., Zhao, L., Yuan, K., Wu, H., Gong, J., Randerson, J., 
2022. Building a machine learning surrogate model for wildfire activities within a 
global Earth system model. Geosci. Model Dev. (GMD) 15 (5), 1899–1911. 

Y. Zhang et al.                                                                                                                                                                                                                                   

https://doi.org/10.5194/gmd-10-1175-2017
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref51
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref51
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref51
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref51
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref52
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref52
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref53
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref53
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref53
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref54
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref54
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref55
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref55
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref55
https://doi.org/10.1016/j.rse.2018.12.011
https://doi.org/10.1016/j.rse.2018.12.011
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref57
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref57
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref58
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref58
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref59
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref59
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref59
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref60
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref60
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref60
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref60
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref61
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref61
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref62
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref62
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref62
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref63
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref63
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref63
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref64
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref64
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref64
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref65
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref65
https://doi.org/10.1029/2019EF001210
https://doi.org/10.1029/2019EF001210
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref67
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref67
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref67
https://doi.org/10.1038/s41467-022-28853-0
https://doi.org/10.1016/j.rse.2016.12.018
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref70
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref70
http://refhub.elsevier.com/S2666-0172(23)00013-5/sref70

	Global fire modelling and control attributions based on the ensemble machine learning and satellite observations
	1 Introduction
	2 Materials and methods
	2.1 Global datasets
	2.2 Machine-learning modeling framework
	2.3 Model training and validation
	2.4 Global fire simulation and evaluation
	2.5 Fire controls through factorial simulations

	3 Results
	3.1 Grid-level model performance evaluation
	3.2 Assessment of global level model simulations
	3.3 Global fire controls derived from the ensemble ML

	4 Discussion
	4.1 Global fire dynamics modeling based on ML
	4.2 Global fire controls revealed by ML
	4.3 Limitations and implications

	5 Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A Supplementary data
	References


