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• Wetland downgrading was accurately
(> 97 %) classified.

• Dominant hydrological mechanisms varied
for different types of wetland downgrading.

• Woody wetlands were most susceptible to
saltwater intrusion.

• Emergent herbaceous wetlands were most
vulnerable to inundation and drought.

• Distances to canals were key to determining
the fates of downgraded woody wetlands.
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Coastal wetlands provide critical ecosystem services but are experiencing disruptions caused by inundation and saltwater
intrusion under intensified climate change, sea-level rise, and anthropogenic activities. Recent studies have shown that
these disturbances downgraded coastal wetlands mainly through affecting their hydrological processes. However, re-
search onwhat is themost critical driver forwetland downgrading andhow it affects coastalwetlands is still in its infancy.
This study examined drivers of three types of wetland downgrading, includingwoodywetland loss, emergent herbaceous
wetland loss, and woody wetlands converting to emergent herbaceous wetlands. By using random forest classification
models for the wetland ecosystems in the Alligator River National Wildlife Refuge, North Carolina, USA, during
1995–2019, we determined the relative importance of different hydrogeomorphic processes and the dominant variables
in driving the wetland downgrading. Results showed that random forest classification models were accurate (> 97 %
overall accuracy) in classifying wetland downgrading. Multiple hydrogeomorphic variables collectively contributed to
the coastal wetland downgrading. However, the dominant control factors varied across different types of wetland
downgrading.Woodywetlandsweremost susceptible to saltwater intrusion andwere likely to downgrade if the saltwater
table was shallower than 0.2m below the land surface. In contrast, emergent herbaceous wetlands were most vulnerable
to inundation and drought. The favorable groundwater table for emergent herbaceous wetlands was between 0.34 m
above the land surface and 0.32 m below the land surface, beyond which the emergent herbaceous wetland tended to
disappear. For downgraded woody wetlands, their distance to canals/ditches played a crucial role in determining their
fates after downgrading. The machine learning approach employed in this study provided critical knowledge about the
thresholds of hydrogeomorphic variables for the downgrading of different types of coastal wetlands. Such information
can help guide effective and targeted coastal wetland conservation, management, and restoration measures.
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1. Introduction

Coastal wetlands provide critical ecosystem services that aid in regulat-
ing andmitigating climate change (MEA, 2005; McLeod et al., 2011). How-
ever, these valuable ecosystems have been experiencing intensified
disruptions from human activities and climate change in recent years.
Sea-level rise (SLR) (Blankespoor et al., 2014; Spencer et al., 2016;
Schuerch et al., 2018), frequent extreme weather events (Tahsin et al.,
2016), and anthropogenic activities (Cloern et al., 2016; Church and
White, 2011; Dangendorf et al., 2017; He and Silliman, 2019) individually
or combined can result in widespread wetland downgrading. In this study,
wetland downgrading is defined as the loss of wetland area or reduction in
wetland vegetation coverage and biomass due to altered environmental
conditions, and the ecosystem cannot recover to its original state if environ-
mental constraints persist (He et al., 2022; Wessels et al., 2016; Grenfell
et al., 2007; Shen et al., 2019; Smart et al., 2020). The former refers to an
area changing from wetland to non-wetland (Wessels et al., 2016), while
the latter indicates the wetland's conversion from a relatively structurally
complex and multi-layered wetland type to a wetland type with simpler
vegetation structure and reduced biomass (e.g., woodywetlands converting
into emergent herbaceous wetlands, i.e., the formation of “ghost forests”)
(Grenfell et al., 2007; Kirwan and Gedan, 2019; Senter, 2003; Shen et al.,
2019; Smart et al., 2020). Substantial wetland downgrading often leads to
a long-term reduction in vegetation coverage, a shift in dominant vegeta-
tion types, and fragmentation of the landscape (Aguilos et al., 2022; He
et al., 2022; Hu et al., 2020; Smart et al., 2020; Ury et al., 2021). Massive
coastal wetland loss and emergences of ghost forests have been observed
and documented along the North Atlantic Coast and the Gulf of Mexico in
recent decades (Kirwan and Gedan, 2019; Smart et al., 2020).

Coastal wetland ecosystems often consist of woody wetlands and emer-
gent herbaceous wetlands (Dewitz, 2021; Zhang et al., 2018, 2019). Due to
their various vegetation composition and structures, different types of wet-
lands have different resilience to external stresses. For example, it was
found that rising sea levels could not only cause emergent herbaceous wet-
land losses by inundatingmarshes but also pose stresses onwoodywetlands
and lead to the formation of ghost forests by elevating saltwater tables
(SWT) along the North American Atlantic and Gulf of Mexico coasts (He
et al., 2022; Kirwan andGedan, 2019; Senter, 2003). Ellison (1999) demon-
strated that hurricanes could lead to the death of mangroves by smothering
their roots with excess sediment on the surface while Morton and Barras
(2011) and Yu et al. (2016) indicated that hurricanes could impact marshes
through prolonged retention of saline storm-surge water and increased
marsh salinization. These studies suggested that climatic disturbances
lead towetland downgradingmainly through changing their hydrogeomor-
phic conditions, making them unfavorable for vegetation survival. They
also implied that the driving factors of wetland destruction vary substan-
tially for different wetland types. However, what are the most crucial hy-
drogeomorphic variables/drivers for different types of coastal wetlands
and what are their critical thresholds have not been systematically and
quantitatively investigated, especially on large scales. Such knowledge is
essential for optimizing wetland conservation and restoration planning.

Most existing studies assessing the drivers of wetland downgrading use
conventional regression models. The majority of these regression models
require prior assumptions about the relationships (such as linear or logistic
relationships) between environmental variables and wetland changes. Fur-
thermore, these studies focused on one single type of downgrading, mostly
the loss of salt marsh (Cui et al., 2014; Kirwan and Megonigal, 2013;
Schieder et al., 2018; Stagg et al., 2020). For example, Stagg et al. (2020)
quantified elevation thresholds on marsh fragmentation in coastal wetlands
of the Chenier Plain along the Northern Gulf of Mexico using a sigmoidal re-
gression model. Based on multivariate logistic regression models, Cui et al.
(2014) analyzed the driving forces causing declines in marsh wetland
landscapes in theHonghe region, northeast China.An issuewith traditional re-
gression models stems from the fact that determining the prior assumptions
about the linkages between environmental variables and wetland changes re-
quires existing knowledge, prior experience, and extensive wetland research
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(Sutula et al., 2006). In addition, the relationships may be too complex and
challenging to be fitted by explicit mathematical functions. To avoid these is-
sues,machine learningmethods have emerged in recent years to detect the re-
lationships between driving factors and coastal wetland changes across
different types of wetlands (Gray et al., 2021; Mutanga et al., 2012).

Unlike conventional regression methods, machine learning models do
not need prior assumptions regarding the relationships between predictors
and the response variable (Belmokre et al., 2019; Carranza et al., 2021;
Gao, 2018; Maxwell et al., 2016). Machine learning methods, such as sup-
port vector machine (SVM), k-nearest neighbors (K-NN), artificial neural
network (ANN), decision tree (DT), and random forest (RF), have been
demonstrated to be more accurate and efficient when applied to high-
dimensional, correlated, and large-volume data spaces (Abbasian et al.,
2022; Maxwell et al., 2016; Zhang et al., 2021a). For example, Wu et al.
(2017) established a RF progression model to study the driving forces of
wetland density changes in the western Liaohe river basin. They found
that among the five influencing factors (elevation, slope, temperature, pre-
cipitation, and population density), precipitation dominated changes in the
wetland density. Using ANN, SVM, and the maximum likelihood method,
Kesikoglu et al. (2019) quantified land use and land cover (LULC) changes
at the Sultan Marshes wetland, Turkey.

Among these machine learning algorithms, the random forest (RF) model
is found to bemore efficient in analyzing the combined effects of disturbances
and identifying the predominant driving factors for LULC changes (Souza
et al., 2020; Wessels et al., 2016; Wu et al., 2017; Zhang et al., 2021a;
Zhang et al., 2021b; Zhu and Woodcock, 2014). For instance, Zhang et al.
(2021a) assessed the performance of fourmachine learningmodels, including
SVM, RF, K-NN, and ANN, in detecting hurricane-caused forest damage.
Their study indicated that the RF has the highest overall accuracy. In addi-
tion, RFmodels possess the capability to effectively assess the relative impor-
tance of each driver in determining the response variable (Flanagan and
Richardson, 2010; Rohmer et al., 2018; Shiroyama and Yoshimura, 2016;
Tesoriero et al., 2017). Furthermore, RF models can elucidate how the re-
sponse variable changes with driving forces by calculating partial depen-
dence between them (Huang et al., 2021; Long et al., 2017). As a result, RF
models have become one of the extensively used machine learning algo-
rithms for LULC analysis (Breiman, 2001; Peltola et al., 2019; Sulova and
Arsanjani, 2021). However, it has been rarely applied to understand the
transformation drivers of wetland ecosystems, especially coastal wetlands.

This study aims to assess the relative importance of various hydrogeo-
morphic forcing factors contributing to the downgrading of coastal wet-
lands, including woody and emergent herbaceous wetlands, and identify
the key factor(s) by using the RF classification models. To the best of our
knowledge, this is the first attempt to thoroughly study the driving factors
of different types of coastal wetland downgrading using RFmodels. In addi-
tion to RF models, a hydrological model, PIHM-Wetland, was also used in
this study (He et al., 2022; Zhang et al., 2018, 2019, 2022a) due to the
lack of extensive and long-term monitoring of key hydrological variables
(e.g., groundwater tables (GWT) and saltwater tables (SWT)). The PIHM-
Wetland model has been proven effective in simulating regional-scale
hydrological processes (e.g., GWT, SWT, and overlandflow) across environ-
mental gradients and has already beenwell-calibrated and validated for the
study domain (He et al., 2022; Zhang et al., 2018, 2019, 2022a). The objec-
tives of this study are to (1) use RFmodels to investigate the relative impor-
tance of different hydrogeomorphic variables on three different types of
wetland downgrading, including woody wetland loss, emergent herba-
ceous wetland loss, and woody wetland downgrading to emergent herba-
ceous wetlands; and (2) quantify the critical threshold of the dominant
hydrogeomorphic factor driving wetland downgrading. By examining the
relationships between hydrogeomorphic variables and coastal wetland
downgrading, we demonstrate how climate change, saltwater intrusion
due to sea-level rise (SLR), and anthropogenic activities (such as wetland
drainage) impact the valuable coastal wetlands. Under intensified climate
change especially accelerating SLR, combining machine learning models
with hydrological modeling provides new opportunities to better assess
the impacts of climate change on coastal wetland ecosystems on regional
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scales (Masson-Delmotte et al., 2021; Oppenheimer et al., 2019; Sallenger
et al., 2012; Wen and Hughes, 2020).

2. Material and methods

2.1. Study area

The study area is located in the southeast part of the Alligator River
National Wildlife Refuge (ARNWR) in Dare County, North Carolina (NC),
USA, with an area of ~400 km2 (Fig. 1a). 96 % of the study area is coastal
wetlands, withmost emergent herbaceous wetlands (15%) along the coast-
line and woody wetlands (81 %) distributed landward (Moorhead and
Cook, 1992). Evergreen forests (50 %) and mixed forests (50 %) make up
the majority of vegetation types in woody wetlands, which include loblolly
pine (Pinus taeda L.), pond pine (Pinus serotina Michx.), sweetbay magnolia
(Magnolia virginiana L.), and red bay (Persea borbonia (L.) Spreng.)
(Richardson, 2012).Marshes (60%) and shrubs (40%) constitute emergent
herbaceous wetlands (He et al., 2022; Moorhead and Brinson, 1995; Zhang
et al., 2019) with typical vegetation communities including sawgrass
(Cladium jamaicense), black needlerush (Juncus roemerianus Scheele), and
panic grasses (Panicum spp.) (U.S. Fish & Wildlife Service, Washington,
DC, U.S.A., https://www.fws.gov/refuge/Alligator_River/). The limited
number of inlets between barrier islands connecting the sounds to the
ocean creates a gradient in salinity from the moderate salinity
(10–18 ppt) in Pamlico Sound in the south to the primarily freshwater (<
5 ppt) in Albemarle Sound in the north (Fig. 1a) (Kemp et al., 2009; Wells
and Kim, 1989). And the tide range is low, which is 10 cm or less through-
out most of the study area (Wells and Kim, 1989).

In the mid-20th century, this area was extensively drained for agricul-
ture and forestry, resulting in a dense network of ditches and canals across
the landscape (approximately 4 kmof drainage length per square-kilometer
area) (Poulter, 2005). Coupled with its low elevation (< 1 m) and gentle
slope (almost flat), the area was found to have little surface/subsurface
freshwater input but significant saltwater intrusion inland through ditches
and canals that connect directly or indirectly to the estuarine shoreline
(Smart et al., 2020; Ury et al., 2021; Wells and Kim, 1989). Increased soil
(a)

Fig. 1. (a) Study area (35.558–35.863°N, 75.693–75.859°W, excluding Open Water) wit
canals/ditches (from the National Hydrography Dataset). The location of Pamlico Soun
shown here. Inset: the location of the study area (black box) in North Carolina (NC), U
(c) Spatial patterns of the distance to canals/ditches (unit: m).
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salinization and inundation have caused changes in land cover. Large
areas of emergent herbaceous wetlands were converting to open water. In
addition, freshwater-dependent coastal woody wetlands were retreating,
leaving behind dead trees surrounded by salt-tolerant shrubs, herbaceous
plant species, and/or open water (Hackney and Yelverton, 1990; He
et al., 2022; Williams et al., 1999). These wetland losses and the formation
of ghost forests are commonly seen along the east coast of the USA in recent
years (Fagherazzi et al., 2019; Kirwan and Gedan, 2019; Senter, 2003;
Smart et al., 2020; Ury et al., 2021; Wasson et al., 2013).

2.2. Methods

To investigate the relative importance of multiple coastal hydrogeomor-
phic variables contributing to coastal wetland downgrading in the ARNWR
and identify the dominant driver, we implemented the random forest (RF)
classification models on wetlands that downgraded during 1995–2019 as
identified by He et al. (2022). Potential driving variables include eleva-
tions, distance to canals/ditches, the maximum seasonal saltwater and
groundwater table (SWTmax and GWTmax), and the percentage of inunda-
tion time (PIT). Due to the density difference between saltwater and fresh-
water, saltwater usually exists beneath fresh groundwater forming a
saltwater-freshwater interface (Gupta, 1985; Polo and Ramis, 1983;
Shamir and Dagan, 1971). Therefore, in this study, the saltwater table
(SWT) refers to the depth from the ground surface to the saltwater-
freshwater interface. In contrast, the groundwater table (GWT) refers to
the depth from the ground surface to the top of the saturated zone. Negative
(positive) GWT/SWT represents the GWT/SWT below (above) ground. In
the RF models, whether or not wetland ecosystems downgraded serves as
the response variable (see Section “2.2.1 Response variables” for details)
and the potential driving variables act as explanatory variables (a.k.a. pre-
dictors, see Section “2.2.2 Predictors” for details).

2.2.1. Response variables
Response variables for RF models in this study are downgraded and non-

downgraded wetlands identified by He et al. (2022). By analyzing fine-scale
and long-term Landsat-derived Normalized Difference Vegetation Index
(b) (c)

h land cover types (adapted from 2019 National Land Cover Database (NLCD)) and
d is shown, while Albemarle Sound is north of the study area and beyond the area
SA. (b) Spatial patterns of elevation (the digital elevation model (DEM), unit: m).

https://www.fws.gov/refuge/Alligator_River/
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(NDVI) time series, He et al. (2022) identified the spatial and temporal pat-
terns (downgrading locations and years) of 3569 ha of wetland downgrading
over the study area during 1995–2019, which includes woody wetland loss,
emergent herbaceous wetland loss, and woody wetlands downgrading to
emergent herbaceous wetlands (Fig. 2). Existing studies suggested that emer-
gent herbaceous wetlands andwoodywetlandsmay have different capacities
to withstand stressful hydrological conditions due to their dissimilar vegeta-
tion composition and structures (He et al., 2022; Kirwan and Gedan, 2019;
Schieder et al., 2018), thus, two RF classification models are needed. One
RF model is used for woody wetlands (RF1) to discriminate downgraded
woody wetlands (DW) from non-downgraded woody wetlands (NDW,
Fig. 2a), and the other for the emergent herbaceous wetlands (RF2) to sepa-
rate downgraded emergent herbaceous wetlands (DH) from non-
downgraded emergent herbaceous wetlands (NDH, Fig. 2b). The binary re-
sponse variable is denoted as “1” if the area is downgraded, i.e., DW and
DH; it is “0” for non-downgraded wetlands, including NDW and NDH (Sup-
plementary Table S1). In addition, because woody wetlands can downgrade
into either emergent herbaceous wetlands or non-vegetated areas (Fig. 2c),
we fit the third RF model, i.e., RF3, to differentiate woody wetlands
downgrading to non-vegetated areas (W2N) from woody wetlands
downgrading to emergent herbaceous wetlands (W2H); in this case, the
response variable is denoted as “11” and “10” for the two types of
downgrading, W2N and W2H, respectively (Supplementary Table S1).

2.2.2. Predictors
Previous research found that disturbances/drivers result in wetland

downgrading mainly through altering their hydrogeomorphic processes
(Conner et al., 2002; Day et al., 2008; Rodríguez-Iturbe and Porporato,
2007; Williams et al., 2003; Winter, 2000; Zhang et al., 2018, 2019,
2022a), we thus chose the following hydrological and topographic
variables (collectively referred to as “hydrogeomorphic variables”) that
control coastal wetland hydrogeomorphic dynamics as predictors: eleva-
tions, distance to canals/ditches, the maximum seasonal saltwater table
(SWTmax), the maximum seasonal groundwater table (GWTmax), and the
percentage of inundation time (PIT).
(a)

Fig. 2. Spatial distribution of (a) downgraded and non-downgraded woody wetlands (DW
(DH and NDH), and (c) woody wetlands downgrading to emergent herbaceous wetland
(2022).
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Stagg et al. (2020) showed that the fragmentation of marshes along the
Northern Gulf of Mexico was primarily controlled by elevation. Thus, we
extracted the elevation variable (the digital elevation model (DEM),
Fig. 1b) from the Coastal National Elevation Database (CoNED) Applica-
tions Project with a spatial resolution of 1 m (Danielson et al., 2016,
2018; Irwin et al., 2021). Fig. 1b illustrates that about 73 % of the study
area is below 1m above sea level, with lower elevations along the coastline
and higher elevations landward.

Besides the DEM, the distance to canals/ditches for each grid (Fig. 1c)
was also calculated because artificial drainage networks can serve as con-
duits for saltwater intrusion if connected to the estuarine shoreline (Smart
et al., 2020; Ury et al., 2021). Here we used the National Hydrography
Dataset ([dataset] U.S. Geological Survey, National Hydrography Dataset,
accessed on 7 May 2021, https://www.usgs.gov/national-hydrography/
national-hydrography-dataset) to identify canals/ditches that were directly
or indirectly (connected via other canals/ditches) connected to the estua-
rine shoreline. Then the Euclidean distance from the center of each grid
to its nearest canal/ditch was calculated.

In addition to topographic variables (DEM and distance to canals/
ditches), three hydrological variables (SWTmax, GWTmax, and PIT) were in-
vestigated to capture the changes in hydrological processes critical to wet-
land downgrading (He et al., 2022; Mitsch and Gosselink, 2015; Rodríguez-
Iturbe and Porporato, 2007; Zhang et al., 2018, 2019, 2022a). The maxi-
mum seasonal saltwater table (SWTmax) quantifies the extent of saltwater
intrusion while the maximum seasonal groundwater table (GWTmax) re-
flects the flooding and drought conditions. The seasonal SWT and GWT
were aggregated from the PIHM-Wetland simulated daily SWT and GWT.
Then, we calculated SWTmax and GWTmax for downgraded and non-
downgraded wetland grids. For downgraded grids, we hypothesized that
extreme SWT and GWT in the year of wetland downgrading most likely
contributed to the occurrence of wetland downgrading, therefore, we de-
rived SWTmax and GWTmax as the maximum values of seasonal SWT and
GWT in the year of downgrading; for the grids without experiencing
downgrading, SWTmax and GWTmax were derived as the maximum values
of seasonal SWT and GWT during the entire study period (1995–2019) as
(b) (c)

and NDW), (b) downgraded and non-downgraded emergent herbaceous wetlands
s or non-vegetated areas (W2H or W2N) over the study area identified by He et al.

https://www.usgs.gov/national-hydrography/national-hydrography-dataset
https://www.usgs.gov/national-hydrography/national-hydrography-dataset
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these non-downgradedwetlands are not sensitive to the seasonality and ex-
tremes of SWT and GWT. The percentage of inundation time (PIT) was cal-
culated as Eq. (1) to estimate the inundation's impact:

Percentage of inundation time PITð Þ ¼ NGWT≥0

N
(1)

where NGWT≥0 was the number of days when daily GWT was greater than
or equal to 0, and N was the total number of days in the downgrading
year and the entire study period (1995–2019) for downgraded and
non-downgraded grids, respectively. Given that wetland downgrading
spots (response variables) were identified based on remote sensing grids
with a 30-m spatial resolution (He et al., 2022), all predictors were derived
at or resampled to a spatial resolution of 30 m. The resampling process was
conducted in ArcMap 10.5.1 using the “Resample” function (Resampling
Technique: NEAREST) under the “DataManagement” Tool (ArcGIS, 2016).

Here, we showed an example of deriving three hydrological variables,
SWTmax, GWTmax, and PIT, for a randomly selected grid within ARNWR.
Fig. 3 illustrates the seasonal variations of the NDVI, SWT, and GWT at
the grid from 1995 to 2019. In the summer of 2010, the selected wetland
grid changed from an emergent herbaceous wetland to a non-vegetated
area (please refer to He et al. (2022) for details); thus, SWTmax and GWTmax

were derived as the maximum values of seasonal SWT and GWT in the year
2010, i.e., 0.21 m and 0.35 m, respectively. In addition, PIT was calculated
as the number of inundated days in 2010, i.e., PIT = 1, since GWT was
larger than zero for all 365 days in 2010. Also using different reasonable
time intervals (e.g., a two-year period) to derive these hydrological vari-
ables—SWTmax, GWTmax, and PIT—for the downgraded wetland grids did
not change the overall results of the RF models (not shown).

2.2.3. Random forest classification models
In this study, three RF classification models were fitted to investigate

the relative importance of different driving factors of three types of wetland
downgrading: DW or NDW (RF1), DH or NDH (RF2), and W2N or W2H
(RF3), respectively (Supplementary Table S1). Each RF model includes
many classification trees constructed from bootstrapped training data
samples (Hikouei et al., 2021). The output of the RF classification model
is calculated by plurality votes of the RF's classification trees (Breiman,
Fig. 3.Time series of the seasonal Normalized Difference Vegetation Index (NDVI; green,
orange, right y-axis) for a randomly selected grid within the study area during 1995–201
represents the lower boundary of NDVI value for the emergent herbaceous wetland, bel
happened in 2010 (red box, i.e., NDVI dropped from0.18 in 1995 to 0.09 in 2010 and ne
groundwater table (SWTmax and GWTmax) were thus calculated as themaximum values o
0.35 m for SWTmax and GWTmax, respectively. The percentage of inundation time (PIT) w
grid.
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2001). As a result, the RF method employs the bootstrap aggregation (bag-
ging) technique and fully exploits ensembles to reduce classification errors
(Breiman, 2001). Furthermore, the predictors (i.e., the five hydrogeomor-
phic variables) used in split nodes are chosen from a random sample of
all predictors tominimize the probable correlation across trees in the forest
and reduce the potential of over-fitting (Breiman, 2001; Hikouei et al.,
2021; Peltola et al., 2019). See Section S2 in the supplementary for details
on the hyperparameter values used in each random forest model.

The RF classification model can quantitatively assess each explanatory
variable's contribution to the classification results (Sulova and Arsanjani,
2021). Based on the values of the contribution (Gini importance), we quan-
tified and ranked the relative importance of the forcing variables on wet-
land downgrading. The variable with the highest Gini importance value
was considered “the dominant driver”. Furthermore, the RF algorithm
can explicitly mine the relationships between explanatory variables and
the response variables by computing the partial dependence between
them (see Section “2.2.6 Partial dependence”; Peng et al., 2020; Strobl
et al., 2008), which allows us to not only distinguish the dominant driver
key to the wetland downgrading but also quantify the relationships be-
tween the key hydrogeomorphic variable and the response variable (DW
or NDW, DH or NDH, and W2N or W2H).

2.2.4. Training and testing dataset preparation
To test the performance of the RFmodels, the popular machine learning

validation method, train and test, was adopted. However, before splitting
the data into training and testing datasets, we noticed that the data were
highly imbalanced. Specifically, the number of non-downgraded/slight-
downgraded grids, including NDW (413,913), NDH (11,640), and W2H
(13,219) (with the response variable denoted as “0” or “10”, Supplemen-
tary Table S1), is about 20 times greater than the number of
downgraded/severe-downgraded grids—DW (15,404), DH (3888) or
W2N (2185) (with the response variable denoted as “1” or “11”, Supple-
mentary Table S1). The imbalanced numbers of downgraded/severe-
downgraded and non-downgraded/slight-downgraded grids may result in
poor classification performance of the RF models (Shearman et al., 2019).
The poor performance is because the RF models can achieve high overall
accuracy scores by simply labeling each grid as the majority class (NDW
or NDH or W2H with the response variable denoted as “0” or “10”,
left y-axis), saltwater tables (SWT; blue, right y-axis), and groundwater tables (GWT;
9. The horizontal black dashed line delineates the land surface; The yellow dash line
ow which means the wetland has converted to a non-vegetated area. Downgrading
ver came back, seeHe et al. (2022) for details). Themaximum seasonal saltwater and
f seasonal SWT and GWT in 2010 for the downgraded wetland grid, i.e., 0.21 m and
as calculated as the number of inundated days (GWT≥ 0) in the year 2010 for the
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Supplementary Table S1). However, the model fails to capture the minority
class (DWor DH orW2Nwith the response variable denoted as “1” or “11”,
Supplementary Table S1). This problem is common inmachine learning, es-
pecially in classifications (Feng et al., 2020; Robinson et al., 2018;Wen and
Hughes, 2020). To address this issue, before splitting the paired data into
the training and testing datasets, we over-sampled the minority category
(Mohammed et al., 2020). Specifically, we first separated the samples of
each category into two different data frames based on their response
variables (“0” versus “1” or “10” versus “11”). Next, we used the replace-
ment sampling method (Raj and Khamis, 1958) to resample the minority
category so that the number of samples could equal the number of samples
in the majority category. Finally, we merged the over-sampled minority-
category data frame with the original majority-category data frame. The
new merged data frame has the same number of datasets labeled as “0”
and “1” or “10” and “11” and can be utilized for creating the training and
testing datasets (Supplementary Table S1). The new data frame was split
with a ratio of 75/25 for training and testing purposes, respectively
(Bayley and Falessi, 2018; Santoso et al., 2017). Consequently, RF1 was
trained using a 75 % training dataset including 620,869 samples, which
contained 310,550 NDW grids and 310,319 DW grids. The training dataset
for RF2 had 17,460 samples, including 8733 NDHgrids and 8727DH grids.
For RF3, 19,828 samples consisting of 9885 W2H grids and 9943 W2N
grids were used for training (Supplementary Table S1).

2.2.5. Model evaluations
To assess the performance of the trained RF models, we fed the explan-

atory variables of the testing datasets (25 % of the total data) into trained
RF models. Then, results from the RF classification models were compared
with the corresponding response variables of the testing datasets. Five
metrics were employed to quantify the accuracy of the models: confusion
matrix, overall accuracy, omission and commission errors, and the kappa
statistic.

The confusion matrix summarizes classification results for a category in
which the number of correct and incorrect classifications are counted by
category (Stehman, 1997). The percentage of correctly classified results in
the confusion matrix is referred to as overall accuracy (Stehman, 1997),
which can be calculated in percentages as stated in Eq. (2):

Overall Accuracy ¼ TPþ TN
TPþ TNþ FNþ FP

� 100% (2)

where TP and TN are the grid number of true positive and negative classi-
fications, separately; FP and FN represent numbers of false positive and
negative classifications, respectively (Stehman, 1997). For each class i,
the percentage of reference grids that were left out (or omitted) from the
correct class i in the classification out of the total number of reference
grids in class i and the percentage of grids that were incorrectly classified
as class i out of the total number of classified grids in class i are referred
to as the omission and commission errors, separately (Ackoff, 1994).

Kappa statistic, another widely used accuracy assessment metric, re-
veals as a more effective evaluator because of taking into account the
prior probability of the response variable (Cohen, 1960). It compares an ob-
served accuracy with a random chance and can be calculated as

kappa kð Þ ¼ Po � Pe

1 � Pe
(3)

where Po is the overall accuracy, and Pe is the theoretical probability of
chance agreement, using the observed data to calculate the probabilities
of randomly seeing each category (Cohen, 1960).

2.2.6. Partial dependence
The partial dependence between the dominant driver and the response

variable was calculated to investigate how the most critical predictor influ-
enced coastal wetland ecosystems. Defined as the dependence of the
downgrading probability on a predictor after averaging out the effects of
the other predictors in the RF model (Cutler et al., 2007; Friedman, 2001;
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Hastie et al., 2001), high (low) partial dependence suggests a high (low)
probability of DW/DH/W2N occurring (Zeng et al., 2017). As the calcula-
tion of the partial dependence requires variables to be independent of one
another, Pearson correlations between each explanatory variable were cal-
culated first tofilter independent predictors (Supplementary Fig. S1). Then,
the Partial Dependence Plot (PDP) was made to understand changes in the
probability of coastal wetland downgrading in response to the critical
driver. The formula of the PDP is given in Eq. (4):

f Xið Þ ¼ 1
n

∑
n

k¼1
RF xk1 , . . . , xi, . . . , x

k
m

� �
(4)

where xki represents the kth sample of the ith independent predictor,m rep-
resents the number of predictors, n represents the number of samples, and
RF(·) represents the re-trained RF models only based on independent pre-
dictors (see Supplementary Tables S3 and S4, Fig. S1) (Friedman, 2001;
Hastie et al., 2001).

3. Results

3.1. Accuracy assessment of the random forest classification models

Evaluation metrics calculated on the testing datasets demonstrate that
the RF1 and RF2 models can well distinguish downgraded wetlands from
non-downgraded wetlands and that RF3 accurately classifies W2N from
W2H (Table 1). The overall accuracy of the three RF models is 99.7 %
(RF1), 97.1% (RF2), and 97.6% (RF3), respectively. The errors of omission
and commission are 0% and 0.5 % for the DW class (RF1), 1.3 % and 3.5%
for the DH class (RF2), and 0.5 % and 5.1 % for the W2N class (RF3), sep-
arately. The three RF models' kappa statistics had similar patterns to the
overall accuracy, with the RF1 model achieving the highest kappa statistic
(0.99) and the RF2 model having the lowest kappa statistic (0.94).

The confusion matrix also reveals that the three RF models classified
well as the numbers of TP and TN were far more than those of FP and FN
(Table 1). The RF1 model correctly classified all the downgrading samples
in the testing dataset (103,594 of 103,594, 100 %). 99.5 % of samples of
NDW (102,812) were properly classified with the omission error only
being 0.5 % and the commission error being 0 %. The RF2 model success-
fully labeled 96.4 % of NDH testing samples (2802 of 2907). It also accu-
rately allocated 98.7 % of DH testing samples (2876 of 2913) and only
omitted 37 (the omission error being 1.3 %) DH testing samples. The RF3
model also performed well with the correct classification of 94.7 % W2H
testing samples (3158 of 3334) and 99.5 % W2N testing samples (3259 of
3276).

The stability of RF models was also validated. The train/test split ap-
proach with a ratio of 75/25 was utilized in this study as the most frequent
form of validation (Moon et al., 2018; Pawluszek-Filipiak and Borkowski,
2020). Other commonly used train/test split ratios (e.g., 80/20 or 70/30)
did not significantly affect the performance of the RF models (not
shown). Furthermore, the training/testing samples were generated at ran-
dom, which should mitigate the risk of sampling bias and assure the results
be meaningful (Perry and Dickson, 2018).

3.2. Key variables contributing to wetland downgrading

Fig. 4 shows the importance analysis of predictors in the three coastal
wetland downgrading scenarios. The analysis suggests that several disrup-
tions/changes in hydrogeomorphic processes collectively contribute to
the loss/downgrading of coastal wetland ecosystems. However, Fig. 4 also
suggests that the dominant driver varies for different types of wetland
downgrading. Specifically, the most crucial variable for the woody wetland
downgrading was SWTmax (Fig. 4a), with a Gini importance value of 0.3,
higher than the Gini importance values of other predictors. The distance
to canals/ditches emerges as the predominant factor in determining the
final fates of downgraded woody wetlands (Fig. 4c): either the woody wet-
land downgraded to the emergent herbaceous wetland (W2H) or lost the
vegetation (W2N). Fig. 4b shows that elevation (DEM) played an essential



Table 1
Overall statistics of the accuracy assessment results of the three RF models.

RF models Categories Confusion Matrix Overall
Accuracy
(%)

Omission
error (%)

Commission
error (%)

Kappa

Classified grids
without
downgrading or
W2H

Classified grids
experiencing
downgrading or W2N

RF1: Downgraded and Non-downgraded Woody Wetlands Observed NDW grids 102,812 551 99.7 0.5 0 0.995
Observed DW grids 0 103,594 0 0.5

RF2: Downgraded and Non-downgraded Emergent
Herbaceous Wetlands

Observed NDH grids 2802 105 97.6 3.6 1.3 0.951
Observed DH grids 37 2876 1.3 3.5

RF3: Downgraded Woody Wetlands Observed W2H grids 3158 176 97.1 5.3 0.5 0.942
Observed W2N grids 17 3259 0.5 5.1
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role in emergent herbaceous wetland downgrading. Interestingly, PIT was
the least important variable in the three RF models (Fig. 4).

Fig. 5 shows the partial dependence plot (PDP) of the most important
predictors for the three RF models. A sigmoidal response of downgrading
probability to SWTmax exists in the coastal woody wetlands, with −0.8
and− 0.2 m being the lower and upper thresholds, respectively (Fig. 5a).
This result indicates that SWTmax below the land surface by 0.2–0.8 m is
critical to woody wetlands, where a miniature rise of SWTmax would
cause a disproportionate increase in the probability of woody wetland
downgrading. When SWTmax reaches 0.2 m below the surface or higher,
the woody wetlands have a high probability of downgrading.
(a)

(c)

Fig. 4. The variable importance analysis in the three random forest (RF) models. (a) RF1
the digital elevation model. SWTmax and GWTmax stand for the maximum seasonal saltw
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Fig. 5b demonstrates a non-linear relationship between DEM and the
likelihood of emergent herbaceous wetland downgrading. DEM higher
than 0.7 m or lower than 0 m significantly increased the probability of
downgrading for the emergent herbaceous wetlands. In this coastal area,
GWTmax was significantly negatively correlated with DEM (Fig. 6; R2 =
0.81, p < 0.0001), suggesting that emergent herbaceous wetlands with
high DEM were associated with low GWTmax and thus more vulnerable to
droughts, while those with low DEM were found to have high GWTmax

and therefore were more susceptible to floods. Quantitatively, the relation-
ship between DEM and GWTmax could be well fitted linearly as GWTmax =
−0.95 × DEM + 0.34 (Fig. 6). Thus, 0.34 m above the land surface
(b)

: DW and NDW, (b) RF2: DH and NDH, and (c) RF3: W2N andW2H. DEM represents
ater and groundwater tables, respectively.



(a) (b)

(c)

Fig. 5.Partial dependence plot (PDP) of the key driver for (a) DWandNDW, (b) DHandNDH, and (c)W2N andW2H. X-axes are SWTmax (unit:m) in (a), DEM (unit: m) in (b),
and distance to canals/ditches (unit: m) in (c), and y-axes are estimated (a) DW, (b) DH, and (c) W2N probability, respectively.
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(corresponding to DEM= 0m, Fig. 5b) and 0.32 m below the land surface
(corresponding to DEM = 0.7 m, Fig. 5b) were critical upper and lower
bounds of GWTmax for the maintenance of emergent herbaceous wetlands,
respectively. Once GWTmax is beyond this range, emergent herbaceous
wetland downgrading is more likely to occur.

Fig. 4a suggests that SWTmax largely affected woody wetland
downgrading, however, the key factor in determining the fate of the
downgraded woody wetlands (W2N versus W2H) is their distances to ca-
nals/ditches (Fig. 4c). Fig. 5c shows that downgraded woody wetlands
were more likely to convert to emergent herbaceous wetlands (W2H) if
they were within 1000 m of canals/ditches. When the downgraded
woody wetlands were far away from the canals/ditches, i.e., > 1000 m
from the canals/ditches, they tended to disappear (W2N).

Among the five predictors, PIT was the least important variable in the
three RF models (Fig. 4). To understand the PIT's impacts on wetland
downgrading, we plotted the PDP of PIT for all three wetland downgrading
cases (Fig. 7). Fig. 7a and b show that the PDP reached its maximum when
PIT ≈ 1 (inundation sustained year-round) or PIT ≈ 0 (the groundwater
level was never above the land surface during the analysis period). This
finding suggests that wetland downgrading happened only during ex-
tremely prolonged inundations (PIT ≈ 1) or during periods when the
groundwater level never rises to the land surface (PIT ≈ 0). In the study
area, we found that these extreme conditions accounted for only about
12.7 % (RF1) and 12.0 % (RF2) of cases during 1995–2019. In RF3, the
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estimated W2N probability did not change with PIT, but fluctuated around
0.32 (Fig. 7c). These may partially explain why PITwas less important than
the other four predictors in the RF classification models.

4. Discussion

4.1. Driving hydrogeomorphic factors of coastal wetland downgrading

Consistent with previous studies (Conner et al., 2002; Day et al., 2008;
He et al., 2022; Rodríguez-Iturbe and Porporato, 2007; Smart et al., 2020;
Stagg et al., 2020; Ury et al., 2021; Williams et al., 2003; Winter, 2000;
Zhang et al., 2018, 2019), this study found that disruption of hydrogeomor-
phic processes can lead to coastal wetland downgrading. Furthermore, we
found that for different types of wetland downgrading, the most important
hydrogeomorphic variable varies: SWTmax is found to be the most para-
mount variable for coastal woody wetland downgrading; emergent herba-
ceous wetlands were susceptible to floods and droughts; and distances to
canals played a dominant role in determining the fates of downgraded
woody wetlands (Fig. 4).

4.1.1. Woody wetlands most susceptible to saltwater intrusion
Our results support previous research that coastal marshes are consid-

ered salt-tolerant while woody wetlands are salt-sensitive (Kirwan and
Gedan, 2019; Kirwan et al., 2007; Schieder et al., 2018). Rising saltwater



Fig. 6. The relationship between GWTmax (y-axis, unit: m) and DEM (x-axis, unit: m) in emergent herbaceous wetlands. The red line represents the fitted linear regression for
GWTmax against DEM (R2 = 0.81, p < 0.0001).

(a) (b)

(c)

Fig. 7. Partial dependence plot of the variable PIT for (a) DW and NDW, (b) DH and NDH, and (c) W2N and W2H.
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tables can negatively impactwoodywetlands by altering the soil conditions
(Conner et al., 1997). As saltwater rises, it can penetrate the soil and lead to
salt accumulation, which can be toxic to many tree species (Pezeshki et al.,
1990; VanMensvoort et al., 1985). This results in the replacement of native
freshwater-dependent woody vegetation with salt-tolerant marshes
(i.e., woody wetlands downgrading to emergent herbaceous wetlands), in
extreme cases, complete conversion of the wetland to non-vegetated areas
(woody wetland loss).

4.1.2. Emergent herbaceous wetlands most vulnerable to drought and inundation
For emergent herbaceous wetlands, droughts and floods are more criti-

cal. When the area experiences below-normal precipitation, meteorological
drought occurs. Drought can increase chronic stress through reduced water
availability and elevated salinity levels, thereby adversely impacting the
coastal wetland ecosystems, especially the coastal marshes with higher
DEM (Hughes et al., 2012; Rodríguez-Iturbe and Porporato, 2007;
Silliman et al., 2005; Zheng et al., 2022). If the drought lasts longer and/
or becomes severe, it finally leads to the dieback of the emergent herba-
ceous wetland (Wetzel and Kitchens, 2007). On the other hand, excessive
heavy rainfall-induced flooding often gives rise to inundations. High
water tables from flooding can impact soil oxygen availability for root aer-
obic respiration and vegetation growth (Fagherazzi et al., 2019; Zhang
et al., 2019), contributing to the fragmentation and loss of coastal herba-
ceous wetlands (Stagg et al., 2020).

4.1.3. Distances to canals key to the fates of downgraded woody wetlands
Variable importance analysis in RF models shows that the distance be-

tween the wetlands and the canals/ditches was the key factor that deter-
mines the final fates of downgraded woody wetlands (W2N versus W2H,
Fig. 4c). Artificial canals and ditches were initially constructed to drain the
wetlands by lowering groundwater for agriculture and forestry from the
1960s through the 1980s (Poulter, 2005; Ury et al., 2021). Because the im-
pact of drainage canals and ditches on groundwater decreases as the distance
increases (Liu et al., 2017), the resulting groundwater table (GWT) becomes
funnel-shaped (Nuruddin and Leng, 2002; Vissers et al., 1999), i.e., GWT is
deeper (shallower) in the areas close to (far from) the canal/ditch. During
the flooding years/seasons, canals/ditches can effectively drain the water
and avoid prolonged inundation. While during drought periods, the low ele-
vation of canals/ditches makes them easier to obtain and retain water. As a
result, emergent herbaceous plants are more likely to survive in the areas
near the canals/ditches compared to those in the areas far away from ca-
nals/ditches where droughts and floods are more likely to occur when pre-
cipitation fluctuates. This finding also implied that, although artificial
drainage networks were widely considered to serve as conduits for saltwater
tomove further inland (Bhattachan et al., 2018; Smart et al., 2020; Ury et al.,
2021), the salinity level near the canals/ditches in our study areamay be still
within the tolerance of marshes; thus, they can survive near canals/ditches.
Obviously, for downgraded woody wetland ecosystems, W2H is better than
W2N as emergent herbaceous wetlands can provide more ecological services
than non-vegetated areas (Zhang et al., 2021b). In addition, results indicated
that the impacts of canals/ditches on woody and emergent herbaceous wet-
land downgrading were minimal (Fig. 4a and b). However, Li et al. (2012)
found that the drainage ditches speed up the wetland downgrading in
Zoige Plateau. The divergence impacts of canals/ditches on wetland
downgrading may be related to the characteristics of canals/ditches
(e.g., width, depth, whether connected to the saltwater) and need further de-
tailed investigations.

4.1.4. Other potential driving hydrogeomorphic factors
This study investigated five potential hydrogeomorphic variables (eleva-

tions (DEM), distance to canals/ditches, the maximum seasonal saltwater
table (SWTmax), the maximum seasonal groundwater table (GWTmax), and
the percentage of inundation time (PIT)) of coastal wetland downgrading.
Some other hydrological variables, such as soil water content, precipitation,
and evapotranspiration, may also contribute to wetland downgrading (Hu
et al., 2020; Li et al., 2020; Melly et al., 2017; Meng et al., 2017; Zhang
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et al., 2018). However, the inclusion of these variables did not improve the
performance of fitted RF models substantially, and their relative importance
was close to zero (not shown). It is not surprising as soil water content, precip-
itation, and evapotranspiration are all highly correlated to the variations of
DEM, GWTmax, and SWTmax. Thus, adding more correlated variables
(e.g., autocorrelation) could not further providemore information to improve
the RF models' classification performances. These results also highlight the
importance of DEM, GWTmax, and SWTmax to wetland downgrading.

4.2. Implications for coastal wetland downgrading predictions and conservation
planning

Saltwater intrusion induced by climate change and sea-level rise (SLR) is
often seen as an “invisible” threat to coastal wetlands (Smart et al., 2020;
Tully et al., 2019). The lack of extensive and long-termmonitoring of ground-
water and saltwater tables prevents us from understanding and predicting
wetland resilience in a warming climate. Our analysis suggests that machine
learning models combined with remote sensing and hydrological modeling
provide a promising way to monitor and predict the dynamics of wetlands
under climate change, SLR, and anthropogenic activities. In this study, we
trained RF models with remote sensing data and simulated hydrological var-
iables from a process-based hydrological model, PIHM-Wetland, to under-
stand how changes in hydrogeomorphic processes contribute to coastal
wetland downgrading. We identified different dominant drivers affecting
coastal wetland downgrading and quantified their critical thresholds among
different types of wetlands. These results are crucial for stakeholders andwet-
landmanagers to plan and implementmore targeted and efficient adaptation
and restoration measures for different types of wetlands as the Intergovern-
mental Panel on Climate Change (IPCC, 2021) projects sea level will increase
faster in the future with the east USA coast as a hotspot (Oppenheimer et al.,
2019; Sweet et al., 2022). Although all the findings in this study are ARNWR-
specific, themachine learning-hydrological model coupledmethod used here
is highly transferable. It can be applied to other regional coastal wetland eco-
systems as long as the climate-forcing data required for driving the hydrolog-
ical model are available.

4.3. Limitations

We acknowledge that there are some levels of uncertainties in the de-
tected locations and timing of wetland downgrading. A detailed discussion
of this can be found inHe et al. (2022). In addition, some uncertainties exist
in simply using the static digital elevationmodel (DEM) for the study period
(1995–2019). The geomorphologic change of coastal marshes may
have some impacts on seawater propagation, thereby affecting coastal
freshwater-saltwater interaction (Zhang et al., 2022b). The RF models
used in this study are exemplary for investigating the combined effects
and relative importance of hydrogeomorphic variables impacting coastal
wetland downgrading, although the models cannot illustrate the detailed
physiological processes behind the downgrading processes. Despite these
limitations, results from the machine learning-hydrological model coupled
method provide insights into the relative importance of different hydrogeo-
morphic processes in different types of wetland downgrading and the criti-
cal thresholds of dominant hydrogeomorphic factors, which could facilitate
more accurate physical model-based and regional-scale assessments of
coastal wetland downgrading. Furthermore, this study acts as an essential
baseline for future prediction of the probability of wetland downgrading.
The knowledge learned from this study can benefit policymakers, land-
owners, and wetland managers in better foreseeing the interventions and
adaptation efforts that will be required in the immediate and/or far future.

5. Conclusions

Our study provides a comprehensive analysis of the combined impacts
and the relative importance of various driving hydrogeomorphic factors, in-
cluding elevations (DEM), distance to canals/ditches, the maximum sea-
sonal saltwater and groundwater table (SWTmax and GWTmax), and the
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percentage of inundation time (PIT), in explaining spatial-temporal varia-
tions of wetland downgrading by using random forest classificationmodels.
We fitted three random forest classifiers for three types of coastal wetland
downgrading detected in the southeast part of the Alligator River National
Wildlife Refuge in Dare County, North Carolina, USA: woody wetland loss,
emergent herbaceous wetland loss, and woody wetlands downgrading to
emergent herbaceous wetlands. High overall accuracies (> 0.97) and
kappa coefficients (> 0.94) and low errors of omission and commission
(< 0.05) indicated that these random forest models could well distinguish
downgradedwetlands from non-downgradedwetlands and accurately clas-
sify woody wetlands downgrading to non-vegetated areas from
downgrading to emergent herbaceous wetlands.

Random forest model results demonstrated that multiple hydrogeomor-
phic variables collectively resulted in coastal wetland downgrading while
the dominant driver affecting the downgrading varied among different
types of wetlands. Woody wetlands were susceptible to saltwater intrusion.
The partial dependence plot revealed a sigmoidal response of woody wet-
land downgrading probability to SWTmax, with SWTmax below the land sur-
face by 0.2–0.8 m critical to woody wetlands. When SWTmax is above 0.8m
below the surface, a miniature rise of SWTmax would cause a considerable
increase in the probability of woody wetland downgrading. Unlike woody
wetlands, emergent herbaceous wetlands were vulnerable to inundation
(low elevations) and droughts (high elevations). GWTmax within the
range of 0.34 m above the land surface and 0.32 m below the land surface
might be suitable for the maintenance of emergent herbaceous wetlands.
For downgraded woody wetlands, their distances to canals/ditches played
a crucial role in determining their fates after downgrading. The
downgraded woody wetlands were more likely to disappear if they were
> 1000 m away from canals/ditches. However, for those close to canals/
ditches (within 1000m of canals/ditches), although they also downgraded,
they were still wetlands (emergent herbaceous wetlands) and could keep
providing wetland-specific services.

This study comprehensively analyzed the driving factors of wetland
downgrading from a hydrogeomorphic aspect by combining machine learn-
ing models and hydrological modeling. The machine learning-hydrological
model coupled method used in this study presents an encouraging way to-
ward better regional understanding and predictions ofwetland downgrading.
The results of this study shed light on the importance of various and targeted
management and/or restoration activities for different types of wetlands.
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