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A B S T R A C T   

Large-scale ecological restoration in the arid and semi-arid Loess Plateau region of northern China is challenged 
by the intensifying water stress due to the changes in precipitation regimes. Although the importance of Gross 
Precipitation Partitioning (GRP) has been well recognized in forest hydrology, especially in dry areas, the pro-
cesses are not understood because site- or region-specific factors complicate the accurate quantifications. This 
study integrates meta-analysis and field observation to compare patterns of GRP in forest stands that had 
different origins (plantations vs. native forests) and tree species (deciduous vs. evergreen) compositions. We 
aimed at quantifying the dominant biotic and abiotic factors controlling each of the GRP components to form 
empirical relationships between the GRP components and the influencing factors via the Boosted Regression 
Trees (BRT) model. We found a convergence in the GRP components among the examined stands that have 
diverse tree species and origins. Our results indicated that, unlike stem flow (SF) and canopy interception (Ic), the 
throughfall (TF) did not differ between natural and plantation stands. Meanwhile, from the perspective of species 
composition, the broadleaf forest stands had significantly higher SF rates than the coniferous stands. We found 
that stand structures exerted limited influence on TF, but significantly affected SF and Ic. We hypothesized that 
the residence time of the GRP components was important in explaining the matrix of influencing factors. The 
cumulative influences of stand structure factors played a more important role than species in most conditions. 
Based on the most influential factors (cumulative explanatory power > 70 %) selected from the BRT model, we 
successfully built a general formula to represent the GRP processes across the diverse forest stands in the Loess 
Plateau. Our study provides insights into the underlying mechanism of GRP for developing more realistic forest 
hydrological models. An improved understanding of GRP and better models are important for guiding large scale 
reforestation efforts that account for hydrological processes across stand species and origins.   

1. Introduction 

Afforestation has been adopted as a major ecological restoration 
effort in arid/semiarid areas, raising wide concerns regarding their hy-
drological impact on water resources (Sun et al., 2006; Adane and Gates, 
2015; Lima et al., 2012; Wang et al., 2011). Besides the substantial water 
consumption by tree transpiration, critics also center around the 
reduction of throughfall (TF) through the process of canopy interception 
(Ic) (Magliano et al., 2019). For arid and semi-arid areas, Ic accounts for 
up to 17 %–44 % of the total precipitation across stands of different 
densities and species composition, leading to a variation of TF of 47 %– 

84 % (Sun et al., 2018; Ding et al., 2021; Ma et al., 2019; Skhosana et al., 
2023; Yang et al., 2023). From this perspective, the canopy rainfall 
partitioning directly influences the amount of available soil water to 
sustain vegetation functioning, which is crucial in water-limited re-
gions/periods. Therefore, accurately characterizing the gross rainfall 
partitioning (GRP) processes is important for quantifying water avail-
ability and rainfall-to-runoff hydrological processes under a changing 
climate (Lian et al., 2022). 

Many abiotic and biotic factors control GRP (An et al., 2022; de Lima 
and Tonello, 2023; Rodrigues et al., 2019; Yue et al., 2021; Zhu et al., 
2021). Site-level variances of GRP have been mainly ascribed to (1) 
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hydro-meteorological factors (e.g. vapor pressure deficit (VPD), rainfall 
characteristics, and temperature etc.) (Siegert and Levia, 2014; Tanaka 
et al., 2017; Zhang et al., 2015) which directly influence the canopy 
interception loading and the evaporation rate of the canopy intercep-
tion, and (2) stand attributes, such as crown structure (Brauman et al., 
2010; Pflug et al., 2021; Zhang et al., 2017), height (Sadeghi et al., 2020; 
Li et al., 2016; Yue et al., 2021), stem density and DBH (Shinohara et al., 
2015), and species composition (Cano-Arboleda et al., 2022; Zhang 
et al., 2022). Existing studies have only examined limited aspects of 
variables (Honda et al., 2015; Zabret and Sraj, 2019; Zhang et al., 2017) 
or several related variables (Zabret et al., 2018; Zong et al., 2021) in a 
separate manner. Therefore, the relationship between stand attributes 
and canopy rainfall redistribution remains poorly understood. For 
example, stand structural traits and species identity are usually inter-
twined in the determination of stand GRP (Zhang et al., 2022). However, 
many studies attributed the influences of species identity to their con-
trasting structural traits (Zhang et al., 2022). 

The determinants of GRP fluxes vary with scale. On an individual 
tree scale, the GRP differences are caused by the tree morphological 
structures based on plant taxonomy. However, at forest stand or even 
larger scales, the structural characteristics of different tree species are 
combined to form collective stand characteristics. Therefore, given that 
the GRP rarely involves any physiological process, it is reasonable to 
hypothesize that stand structural characteristics would be more impor-
tant than tree species identity in influencing the GRP as the scale in-
creases. This hypothesis might also explain the inconsistent forest stand 
water balance-species relationship. Trees grow and thus lead to changes 
in forest stand structure, resulting in temporal variability of water bal-
ance relationships in the same area (Dong et al., 2020; Forrester, 2019). 
However, the large variability of background environmental factors may 
hinder testing this hypothesis. For example, precipitation characteristics 
can further increase within-species or between-species variability 
(Zhang et al., 2021), making it difficult to separate the effects of forest 
stand characteristics from species on water cycles. Synchronized on-site 
observations create a consistent environmental condition, and thus 
eliminate the interferences from cross-stand structure factors. 

It is reasonable to hypothesize that stand structural attributes tri-
umph over the tree species identity or diversity in influencing the 
rainfall partitioning processes because (1) rainfall partitioning is more a 
physical process than a physiological process and (2) the evaluation of 
stand level GRP partitioning was influenced by the average structure 
rather than the individuals. Predictive models based on accessible stand 
structure variables would facilitate the assessment of forest water cycles 
for managed forests (Sun et al., 2023). However, only a limited number 
of studies have simultaneously analyzed the full range of influencing 
factors. Such studies are greatly needed to a holistic understanding GRP 
mechanism and lay the foundation for accurate estimation of local 
canopy and stand water balances. Such knowledge would also better 
elucidate the contrasting hydrological responses of different forest types 
for landscape ecological restoration. 

The overarching objective of this study is to unravel the shared dy-
namics and quantitative relationship between stand traits and GRP 
partitioning process across different stand types. Specially, we aim to: (i) 
investigate the GRP partitioning for these common forest types in the 
semi-arid region, (ii) identify stand characteristics that dominate GRP 
partitioning and develop empirical relationships by Boosted Regression 
Trees (BRT) method, and (iii) test the general applicability of the 
structural-GRP relationship across the region. 

2. Method and materials 

2.1. Site description of the field observation 

We integrated on-site field observation (Section 2.1-2.4) and data 
mining (Section 2.5) to better represent the spatial and temporal het-
erogeneity of GRP in the Loess Plateau. We performed our study in 

Caijiachuan watershed (36◦14′–36◦18′ N, 110◦39′–110◦47′ E, 900–1513 
m elevation), Shanxi province, China. The watershed has been a part of 
large-scale of eco-restoration campaign across the Loess Plateau since 
1990s. The site is mainly covered by plantations and in some areas the 
orchards. The site has a warm temperate continental monsoon climate. 
The annual temperature was averaged at 10 ◦C and the annual precip-
itation was concentrated from July to September (based on average 
1956–2021 climate data) at an average value of 580 mm (Feng et al., 
2023). Challenged by severe soil erosion and decreased ecosystem ser-
vices in the Loess Plateau of China (Gao et al., 2016; Yu et al., 2015; 
Zhao et al., 2013), the afforestation campaign has been carried out since 
the 1950s (Jia et al., 2017). This area witnesses a 25 % increase of 
vegetation coverage over the last decade (Feng et al., 2016). 

2.2. Survey of the plots 

We selected 20 plots (Fig. 1, Table 1) to represent all tree species 
adopted in the local eco-restoration project. Therefore, the monoculture 
and mixing stands were considered to enable the comparison among 
species and morphological structures. 

The comprehensive plot survey (Table 1) was conducted in May 
2022. Diameter at breast height (DBH) of different individual was 
measured with a tape measure. The tree height (TH) was measured by 
visual method. TH measurement of all trees were conducted by one 
person to reduce the artificial bias. By assuming the canopy took the 
shape of an ellipse, the canopy area (CA) could be calculated using the 
formula of the area of an ellipse: CA = Π × d1 × d2/4, where d1 and d2 
are east–west and north–south directions diameters through the center 
of canopy, respectively (Su et al., 2016). LAI was observed with SunScan 
canopy analyzer (Delta-T Devices Cambridge, UK) every month to track 
canopy structure changes throughout the growing season. 

2.3. Measurements of the rainfall partitioning components 

All components of rainfall partitioning process were observed and 
recorded from Jun to Sep 2022 with both totalizing and tipping-bucket 
rain gauges. The tipping gauge stored the rainfall event process every 15 
min at the resolution of 0.254 mm (WatchDog 1120 Rain Gauge) and 
stored it in a time-step. The stored data were downloaded using Spec-
Ware 9 Pro software (Spectrum Technologies, Inc., Aurora, IL). Total-
izing gauge were also used to back up the insufficiency of tipping bucket 
rain gauges. The rain was drained into a 25 L barrel and the readings 
were obtained with a measuring cup ranging from 0.1 L to 2.0 L. 

2.3.1. Event selection 
The rainfall events were defined by a break in rainfall of at least 12 h. 

This rainless interval allows the evaporation of previously intercepted 
water and thus the following event would be reset with zero canopy 
interception (Blume et al., 2022; Spencer and Meerveld, 2016). Events 
with measured TF higher than GR by ≥1 mm because of either spatial- 
heterogeneity of canopy input or technical failures were excluded 
from the analysis. 

2.3.2. Measurements of GRP components 
For measuring gross rainfall, tipping bucket gauges were mounted 

atop the 30 m eddy covariance tower within an average 1 km of our 
sampling plots. We also had a tipping bucket installed in the station 
courtyard at the foot of the examined mountainous watershed. The 
readings of the two measurements location presented good agreement 
(R2 = 0.90). 

2.3.2.1. Throughfall (TF). We made 0.3 (width) × 1 (long) × 0.15 m 
(height) metal troughs for TF measurements. Each trough was connected 
with a totalizing gauge. We installed two of such trough units at each 
plot in a transactional fashion to improve the spatial representativeness 
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of through fall and thus saved the number of the tipping buckets. The 
trough units were elevated 20 cm above the ground on the wooden 
stakes to avoid mud splashing or obstruction by other masses from the 
ground. The meshes covered the gauges to prevent fallen leaves and 
debris from clogging the drainage pipe. The intercepted debris atop the 
meshes were cleaned every 3–4 days during the growing season. 
Throughfall was collected after each rain event. We took a few measures 
to reduce the evaporation loss from the troughs to a negligible rate. They 
included: (1) coating the inner side of the troughs with hydrophobic 
paint, (2) setting the troughs in a slightly titled way. Additionally, we 
regularly clean the troughs to avoid litter and dust diminishing or 
absorbing the water flow, (3) using air-tight barrels to collect the water, 
and (4) retrieving the readings as soon as the rainfall events stopped. 

2.3.2.2. Stem flow (SF). SF was measured individually on site-basis. 
DBH can be divided into three classes according to cluster analysis. 

We selected 2 trees per DBH class in each site. The enveloping water 
collection method was used to collect stemflow. We wrapped the tree 
trunk with impermeable material, then stick the hose pipe to the 
impermeable material with nails. Silicone sealant was filled in the fis-
sures between the pipe and the bark. The pipe drained the SF into a 25 L 
barrel. The stemflow containers were cleaned at least once a week to 
prevent clogging and spillage. Some containers overflowed during the 
events of heavy rainfall and thus were excluded from further analysis. SF 
is calculated according to Eq. (1): 

SF =
∑n

i=1

Ci × Mi

S × 103 (1)  

where SF is the stemflow (mm), Ci is the ith-diameter stemflow (ml), n is 
the number of tree trunks, Mi is the number of trees at diameter i, and S 
is the area of the plot (m2). 

Fig. 1. The study site locations and stand characteristics. A: the extent of the Loess Plateau; B: the location of the study watershed on the Loess Plateau, therein the 
orange pentacle is the research site- Caijiachuan watershed, and the purple thumbtack is the location of data mining; C: the locations of the experimental plots in the 
Caijiachuan watershed. Different colored dots represent different stands as illustrated in the lower left corner. The field photos of all stands are below the A and C. 
Qw: Pure forest of Q. wutaishanica; Pd: Pure forest of P. davidiana; Qw-Pd: Mixed forest of Q. wutaishanica and P. davidiana; Rp: Pure forest of R. pseudoacacia; Po: Pure 
forest of P. orientalis; Po-Rp: Mixed forest of P. orientalis and R. pseudoacacia; Pt: Pure forest of P. tabuliformis; Rp-Pt: Mixed forest of R. pseudoacacia and P. tabuliformis. 
Abbreviations are used throughout this article. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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2.3.2.3. Canopy interception (Ic). Ic was derived based on the principle 
of water balance as Eq. (2) since it cannot be observed directly: 

Ic = P − N = P − (TF + SF) (2)  

where Ic stands for the interception (mm), P for the GR depth (mm), N 
for the net rainfall depth (mm), TF for the throughfall depth (mm), and 
SF is the stemflow depth (mm). 

2.4. Environmental factors 

Meteorological variables, including solar radiation, relative humid-
ity, temperature, and gross rainfall, were automatically recorded by the 
monitor stations (AWS, Campbell, Logan, USA) and the eddy covariance 
flux tower nearby within the same watershed. 

2.5. Data mining 

To improve the spatial and temporal representativeness, we sur-
veyed related studies on the Web of Science and China National 
Knowledge Infrastructure (CNKI) to retrieve published GRP data in the 
loess area from 2015 to 2021. We employed the keyword “throughfall”, 
“stemflow”, “interception”, “rainfall partitioning”, “precipitation parti-
tioning”, and “rainfall redistribution” (Zhang et al., 2023c). We screened 
the retrieved paper for further analysis based on the following criteria: 
(a) studies was conducted only on the Loess Plateau; (b) the study pro-
vided field data instead of modeled data on secondary rainfall scale; (c) 
average tree height, average DBH, average crown area and stand den-
sity, as well as rainfall amount and rainfall duration were described or 
could be derived. We retrieved 10 papers (Appendix S1) and extracted 
data by the GetData software (2.22) from the tables in the text or from 
the figures. We finally got 339 valid samples in total, including 121 for 
throughfall, 60 for stemflow, and 158 for canopy interception, and the 
structural data of the corresponding stand (Fig. 2). The literature data 
were mingled with our own observation to form a data pool for further 
Boosted Regression Trees (BRT) analysis. 

2.6. Boosted Regression Trees (BRT) for the identification of the 
influencing factors 

BRT has been widely used in recent studies on Ic (Yu et al., 2022; 
Zabret and Sraj, 2021; Zhang et al., 2023c). Boosted model combines 
multiple simple models to enhance the predictive performance. This 
approach integrates the advantages of regression trees with that of the 
boosted model, and thus improve the accuracy and reduces overfitting 
by introducing randomness into a boosted model (Elith et al., 2008). 

We adopted BRT to evaluate the influences of individual stand 
structural and environmental factors on TF, SF, and Ic. The predicting 
variables included (1) rainfall characteristic, namely the amount, in-
tensity, maximum rainfall intensity in 30 min, event duration, number of 
non-rainy days before the rainfall event and rainless interval within a 
single event, (2) meteorological variables, including ambient tempera-
ture, net radiation, relative humidity (RH), wind speed (WS) and vapor 
pressure deficit (VPD), (3) stand structural features, i.e., diameter at 
breast height (DBH), tree height (TH), canopy area, stand density, and 
leaf area index (LAI), (4) biotic factors, i.e., forest type, phenology 

Table 1 
Descriptive statistics of the stands.  

Stand DBH 
(cm) 

Tree 
height 
(m) 

Canopy 
area 
(m2) 

Stand 
Density 
(trees⋅ha¡1) 

LAI 
(m2/ 
m2) 

Origin Leaf type Plot number from 
our field study 

References 

Qw 11.5 ±
3.4 

8.9 ±
1.9 

9.2 ±
10.2 

1193 ± 256  5.8 Natural Broadleaf 2 Wang et al., 2022; Cheng, 2020 

Qw- 
Pd 

10.9 ±
3.6 

9.2 ±
2.4 

6.9 ± 4.6 1575 ± 200  5.3 Natural Broadleaf 2 —— 

Pd 11.1 ±
3.1 

7.7 ±
0.7 

5.6 ± 4.5 1162 ± 12  5.6 Natural Broadleaf 2 —— 

Rp 13.5 ±
5.3 

12.0 ±
2.7 

12.7 ±
9.2 

1992 ± 800  4.9 Plantation Broadleaf 3 Li et al., 2022; Wang et al., 2022; Cheng, 2020; Gao, 
2019 

Po-Rp 12.2 ±
4.2 

9.0 ±
2.7 

15.2 ±
8.8 

1225 ± 425  5.5 Plantation Mixed 2 —— 

Pt 13.7 ±
3.3 

7.5 ±
1.6 

13.9 ±
9.1 

1224 ± 578  4.1 Plantation Coniferous 3 Li et al., 2022; Ma et al., 2022; Gao, 2019; Yang 
et al., 2019; Jian et al., 2015; Zhang, 2020; Dong 
et al., 2020 

Rp-Pt 11.5 ±
3.9 

8.6 ±
1.8 

15.8 ±
10.6 

2067 ± 155  5.9 Plantation Mixed 3 —— 

Po 10.6 ±
3.3 

6.2 ±
1.6 

7.8 ± 4.7 1256 ± 282  3.9 Plantation Coniferous 3 Gao, 2019 

Bp 17.4 ±
9.2 

11.3 ±
4.8 

7.3 ± 6.0 3191 ± 944  3.1 Plantation Broadleaf 0 Huang et al., 2018 

Note: Data sources include our field observations and data mining. Field observations cover all types of the stand and references involving the same tree species as our 
field observation are listed at the end. 
All the plots involved in our field observations are 400 m2. 

Table 2 
Abbreviations and units for factors used in the BRT analysis.  

Factors Variables Abbreviation Unit 

Biotic Diameter at breast height DBH cm  
Tree height TH m  
Canopy area CA m2  

Forest type Species NA  
Stand density TD trees⋅ha− 1  

Leaf area index LAI m2/m2  

Phenology(deciduous, evergreen, 
mixed) 

Phenology NA  

Leaf type Leaf NA  

Environmental Precipitation P mm  
Average rainfall intensity I mm/h  
Maximum rainfall intensity in 30 
min 

I30 mm/h  

Rainfall duration D h  
Number of non-rainy days before 
the rainfall event 

ADP day  

Rainless interval within a single 
event 

IEI h  

Ambient temperature T ℃  
Net radiation Rn W/m2  

Wind speed WS m/s  
Relative humidity RH %  
Vapor pressure deficit VPD KPa  
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(deciduous, evergreen and mixed) and leaf type. 
We used 75 % of the data pool to establish our predictive BRT model 

and the rest 25 % of the data served as the test dataset which was used to 
test the performance of the BRT model. We fitted BRT using the Gaussian 
response. We set the learning rate, the tree complexity and the bag 
fraction at 0.005, 5 and 0.5, respectively. A model with at least 1000 
trees was regarded qualified based on a rule of thumb (Elith et al., 2008). 
Relative influence value (RI) of predictor variable on the response var-
iable was calculated as a function of the number of times the variable 
was split. A weighted average of RIs was evaluated by dividing the 
squared improvement to model by the number of splits (Elith et al., 
2008). Each variable’s RI was scaled to 100. Response variables were 
influenced more strongly by higher values. We used partial dependence 
plots (PDP) to demonstrate the impact of individual predictor on RI for 
the factors with cumulative explanatory power over 70 %. The means of 
500 bootstrap replicates were estimated with 95 % confidence intervals. 
We run BRT models with the package “gbm” (Ridgeway, 2015) in R 
studio. 

2.7. Statistical analysis 

The threshold rainfall for throughfall and stemflow initiation was 
determined by regression equations between individual precipitation 
depth and individual throughfall or stemflow, respectively (Yuan et al., 
2016; Zhang et al., 2015). One-way ANOVA was used to test the sig-
nificant differences of the percentages of TF, SF, and Ic under different 
stands and the significant differences of the threshold values of the TF 
and SF. The quantity regression analysis was conducted between 
different GRP components and rainfall characteristics (rainfall amount, 
rainfall intensity and rainfall duration). Hierarchical multiple regression 
analysis was used to evaluate the key indicators affecting the rainfall 
redistribution process. Relationships among structural variables was 
represented by correlation matrix plot in R “PerformanceAnalytics” 
package (Peterson and Carl, 2019). The performances of the BRT model 
and other research model were compared using the slope, the RMSE, and 
Nash–Sutcliffe model efficiency (NSE). All statistical analysis and plot-
ting were conducted in R version 4.2.2 (R core team, 2022). Statistical 
significance was confirmed with p < 0.05 for all analyses. 

3. Results 

3.1. Hydrological dynamics of the rainfall redistribution processes 

The event-based gross precipitation ranged from 4.2 to 140.4 mm 
(Fig. 3A) with an average duration of 16.6 ± 22.8 h and average in-
tensity of 7.6 ± 15.3 mm/h. 

On an event base, the site-specific TF varied from 2.4 mm to 56.1 
mm, accounting for 24.5–95.7 % of the corresponding incident rainfall 
(Fig. 3B, Fig. S1). SF contributed below 13.6 % of net precipitation 
(Fig. 3C, Fig. S1). Interception contributed 0.7 % to 86.2 % of gross 
precipitation (Fig. 3D, Fig. S1). The pure stand and the mixed stand that 
shared same species demonstrated similar ratios of TF, SF and Ic (p >
0.05), such as in the stand-pairs of Pt-RpPt (Fig. 3). 

Consistent across all stands, TF was significantly influenced by 
stemflow and canopy interception (Fig. 4 B and C). The increase of 
canopy interception significantly reduced the ratio of throughfall (R2 =

0.87) and stemflow (R2 = 0.32). TF varied in consistency with the 
stemflow (R2 = 0.13), but the TF ratio stayed at a relatively saturated 
status as the stem flow increased. 

3.2. Variations of rainfall redistribution components across different 
stands 

From the perspective of stand origin, the natural forests demon-
strated significantly higher Ic and lower SF than plantations. No signif-
icant differences were observed in TF between these two types of stands 
(Table 3). Meanwhile, the GRP components demonstrated no significant 
differences when compared among groups of varied species composi-
tions (Table 3). 

Significant differences were found between the thresholds of TF and 
SF initiation on an event basis (Table 4). Plantations demonstrated 
significantly higher initiation threshold of TF in comparison with nat-
ural forests (p < 0.05). The coniferous stands showed significantly 
higher TF than the broadleaf stands (p < 0.05) but not than the mixed 
stands (p > 0.05). Meanwhile, no significant differences of SF initiation 
values were found among different types of stands (p > 0.05). 

Fig. 2. Basic information of vegetation of study sites. Stand basic information includes DBH, TH, CA, TD and LAI. (A) and (B) represent Natural and Plantation forest; 
(C) and (D) represent Broad-leaved, Coniferous and Mixed forest. Abbreviations in the figure can be found in Table 2. Significant differences of indicators between 
different types of stands were represented by different lowercase letters in corresponding colors (One-way ANOVA, P < 0.05). On-site observations and extracted data 
from data mining are represented. 
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Fig. 3. Characteristics of event size, event intensity and event duration in the study area (A). Distribution of the percentages of TF(B), SF(C), and Ic (D) of different 
types of stands. Box plots represent the kernel density distribution. Significant differences were indicated by different lowercase letters. At the bottom of the figures 
represent the total number of rainfall events in different stands for observation and data mining. Bp: Betula platyphylla. Data are from our field observation and data 
mining. Field observation are presented in colors and mined data in gray. 

Fig. 4. Regression among the percentages of TF (A), SF (B) and Ic (C). Data sources include field observations and data mining from literatures.  

Table 3 
Comparison of TF, SF, Ic and its percentages of GR in different types of stands.  

Classification Criteria Groups TF (mm) SF (mm) Ic(mm) TF/GR(%) SF/GR(%) Ic/GR(%) 

Origin Plantation 187.5 ± 12.6 a 9.7 ± 4.1 a 24.8 ± 8.1b 79.7 ± 5.3 a 4.1 ± 1.6 a 10.6 ± 5.5 a 
Natural 191.0 ± 6.1 a 7.5 ± 2.2b 33.2 ± 6.8 a 81.2 ± 2.6 a 4.5 ± 1.8 a 12.8 ± 4.2 a 

Species composition Coniferous 187.0 ± 14.8 a 7.7 ± 2.6 a 28.1 ± 16.3 a 79.5 ± 6.3 a 3.3 ± 1.1b 11.9 ± 6.9 a 
Broad-leaved 190.6 ± 5.3 a 9.9 ± 4.3 a 27.5 ± 9.9 a 81.1 ± 2.3 a 5.1 ± 1.8 a 10.8 ± 4.4 a 
Mixed 186.7 ± 13.1 a 8.8 ± 1.8 a 26.0 ± 9.6 a 79.4 ± 5.6 a 3.7 ± 0.8 ab 11.0 ± 4.1 a 

Note: Values are given as mean ± standard error. Significant differences were indicated by different lowercase letters. The same below. Data were obtained from field 
observations and data mining. 
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3.3. Influential factors on the rainfall partitioning components 

Despite of the similarities in the hydrological dynamics across 
stands, significant influences of the stand features were found in the 
amount of the GRP components. 

Hierarchical multiple regression analysis showed that R2 of model 
improved effectively when DBH, TH, CA and other structural factors 
were included in each rainfall partitioning component (TF, SF and Ic) 
model. Species identity was not statistically significant in any GPR 
component (Table 5). 

TF was universally dominated by the environmental factors, espe-
cially by P, D and IEI which explained a total of 88.9 % and 93.7 % TF 
variation in natural forests and plantations (Fig. 5A &D), respectively. 
The dominance of P was also found in SF in both forest types (Fig. 5B 
&E). Compared to TF, SF was increasingly influenced by the biotic 
factors. TH and TD accounted 26.4 % and 13.5 % of SF variations in 
natural forest and plantation stands, respectively. Moreover, stand at-
tributes, such as CA, DBH and species, were comparatively more 
important in plantations (Fig. 5E) than in the natural forests (Fig. 5B). 

Drastic differences were found in the influencing factors on Ic be-
tween the two types of the stands (Fig. 5C &F). Stand attributes com-
bined to explain 62.3 % of Ic in plantations (Fig. 5F), while only 36.5 % 
of Ic in natural forest stands (Fig. 5C). Among different stand attributes, 
species identity was the most influential factor for plantation Ic but only 
counted 22.2 % of Ic variation. In both type of forests, structural factors 
weighed over species variances in influencing Ic. 

In the comparison from the perspective of stand species composition 
(Fig. 6), environmental factors were still found to dominate TF of all 
types of stands. The importance of stand attributes grew in their influ-
ence on SF (Fig. 6B, E &H), especially in the broadleaf forest (Fig. 6E). 
When it came to the influence on Ic, the influences of stand attributes 
increased substantially across all stand types with an accumulative 
relative influence over 46.0 %, especially in the coniferous stands 
(accumulative relative influence = 71.5 %). Species identity ranked the 
second in its importance in explaining Ic in coniferous and mixed stands 
(Fig. 6C & I). When compared with the environmental factors in terms of 
relative importance, the total influences of stand attributes became 
increasingly important following the order of on TF, SF and Ic, irre-
spective of forest types and species (Table 5 and Fig. S2). Stand struc-
tural factors triumph species identity in their explanatory power except 
for the mixed stands (Fig. 6I). 

The partial dependence plots derived from BRT analysis revealed the 
positive stepwise relationship of Ic with both rainfall amount and canopy 
area (Fig. 7G and Fig. 7H). By contrast, tree height, DBH and stand 
density were found to have negative relationships with Ic. The highest Ic 
would be reached in the stands with the tipping point of TH = 7.5 m 
(Fig. 7F), DBH = 11.6 cm (Fig. 7I) and TD = 1250 trees⋅ha− 1 (Fig. 7J). To 
further test these tipping points, we compared the correlation variations 
of the relevant stand structures between the contrasting conditions of 
the tipping points (Fig. 8). The positive correlation of TH with both LAI 
and CA changed to negative and non-significant, respectively as TH 
surpassed 7.5 m (Fig. 8A and B). The DBH-CA correlation changed from 
positive to negative as DBH exceeded 11.6 cm (Fig. 8C and D). Similarly, 
TD was negatively correlated with CA and none-correlated with LAI 

Table 4 
The rainfall thresholds (mm) of TF and SF in different types of stands.  

Classification criteria Groups TF SF 

Origin Plantation 2.2 ± 0.4 a 3.9 ± 2.5 a 
Natural 1.8 ± 0.5b 2.8 ± 2.0 a  

Species composition Conifers 2.6 ± 1.1 a 3.5 ± 2.6 a 
Broad-leaved 1.8 ± 0.5b 3.7 ± 1.8 a 
Mixed 3.0 ± 1.0 a 5.0 ± 1.7 a 

Note: Data sources include our field observations and data mining. 
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when TD <1250 trees⋅ha− 1. By contrast, TD demonstrated positive 
relationship with both CA and LAI when TD >1250 trees⋅ha− 1 (Fig. 8E 
and F). 

3.4. General predictive models of GRP components for the Loess area 

Based on the BRT results, predictive models of rainfall partition 
components were built based on the most influential factors with the 
cumulative explanatory power over 70 % (Table 6). The comparison 
between our BRT formulas and other studies showed that our formula 
captured well the observatory GRP budgets (Fig. 9, Table S4). The 
performance of the BRT predictive model is improved compared with 
other linear and power functions (Table S4). 

4. Discussion 

Identification of the driving factors of the GRP fluxes is of great 
importance for estimating hydrological budget in diverse vegetated 
ecosystems. We have the advantage of exploring the effects of structural 
traits in forests of different stand attributes under similar driving forces, 
including the geographic vicinity and hydrometeorological background. 
Meanwhile, we also included other studies that encompass large spatial 
and temporal variability. Therefore, our results would be robust in 
analyzing the structural traits across stands. Except for the mixed stands 
(Fig. 6I), the cumulative influences of structural factors still triumph 
over that of the species identity. Therefore, it would be reasonable to say 
that our hypothesis applies in most circumstances. Based on this un-
derstanding, we build effective quantitative relationships between GRP 

Fig. 5. Relative contribution of individual biotic (pink) and environmental (blue) factors to TF, SF, and Ic in the natural forests (A-C) and plantations (D-F), 
respectively. Abbreviations of the influencing factors were given in Table 2. Cumulative influences of environmental, species, and structural factors were embedded 
in the lower right corner of the corresponding subfigures. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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Fig. 6. Relative contribution of individual biotic (pink) and environmental (blue) factors to TF, SF, and Ic in coniferous (A-C), broad-leaved (D-F), and mixed (G-I) 
forests, respectively. Abbreviations of the influencing factors are given in Table 2. Cumulative influences of environmental, species, and structural factors were 
embedded in the lower right corner of the corresponding subfigures. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 

X. Hu et al.                                                                                                                                                                                                                                       



Journal of Hydrology 631 (2024) 130671

10

Fig. 7. BRT-model-derived partial dependence of TF (black), SF (darkblue), and Ic (crimson) on influential factors (exceeding a cumulative RI of 70%). Gray rug plots 
at the top x-axis demonstrate the percentile distribution of the response variables. The shaded zones represent the 95% confidence intervals based on 500 bootstrap 
replicates. The vertical black broken line in F、I and J represents the tipping points for TH、DBH and TD, respectively. RI scores are given in the x-axis for each 
variable. Refer to Table 2 for variable abbreviations in the figure. 

Fig. 8. Correlation matrix of structural factors under the conditions of tipping points of TH (A & B), DBH (C & D) and density (E & F).  
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components and the influential factors in the same region. 

4.1. Residence of rainfall on trees determine the relative importance of 
precipitation vs. structure attributes on rainfall partitioning 

Previous studies have observed greater influences of the meteoro-
logical variables, such as rainfall amount/duration/intensity, VPD etc. 
on rainfall partitioning compared with tree structure traits (Del Campo 
et al., 2018; Yang et al., 2019; Zhang et al., 2023b). Similarly, we found 
that rainfall attributes were influential for all GRP components. How-
ever, we discovered a clear pattern that the explanatory power of the 
rainfall attributes gradually decreases in the sequence of TF, SF and Ic 
(Figs. 5 & 6). Canopy serves as the interface of rainfall interactions and 
thus intercept rainfall throughout the event. Therefore, canopy attri-
butes, such as height, leaf morphology, branch angles and canopy hy-
drophobicity etc. determine the canopy capacity in holding rainfall and 
thus have great influences on the amount of Ic. Another source of 
intercepted rainfall is from tree trunks where barks and branches can 
absorb and hold rainwater. Significant differences were observed be-
tween bark types in other field studies (Van Stan et al., 2016; Zhang 
et al., 2020). The variation in hydro-physical properties of bark (Ilek 
et al., 2019) was also found between organs of individual trees (Ilek 
et al., 2021). Therefore, the heterogeneity of stand structures presides 
over the variation of Ic across different stands even under same rainfall 
input background. 

Different from Ic, TF generation can be divided into two phases. 
Before the point of reaching full canopy capacity, TF mainly either 
directly pass through the canopy gaps as free throughfall or indirectly 
through the formation of some preferential dripping points (Fathizadeh 
et al., 2021) and drops splashing from the canopy (Su et al., 2022). 
Canopy architectures determine the formation of flow paths (Nanko 
et al., 2022). Leaves mostly form short-residence flow paths due to their 
hydrophobic-prone nature (Ginebra-Solanellas et al., 2020). Therefore, 
the leaf-volume is crucial to the amount of short-residence flow-paths. 
Consequently, dense canopy, either due to stand density, leaf biomass or 
branch overlap, would increase the canopy water-holding capacity and 
intercept rainfall, thus hinder the TF generation. At the second stage, the 
canopy reservoir fills as rainfall progresses. Our observed TF/GRP in-
crease implies the formation of more drainage pathways as the canopy 
gets fuller (Rodrigues et al., 2022). Beyond full canopy capacity, most 
observation reflect direct free fall or those quick-pass water although the 
water drained from the canopy still constitute a small fraction of TF 
(Germer et al., 2005; Gerrits et al., 2010). Therefore, the influences of 
stand structures should be further limited after the canopies reach their 
full capacity and TF mainly depends on the rainfall conditions. Conse-
quently, rainfall attributes dominate the amount of throughfall. 

Compared with TF, SF generates as the full canopy and bark storage 
promotes water routing increasingly through the stem flow path to the 
forest floor (Levia and Germer, 2015; Rodrigues et al., 2022). Moreover, 
branch routes mostly constitute medium- and longer-residence flow 
paths (Nanko et al., 2022). Therefore, SF threshold is more pronounced 
than TF. SF has the longest travelling distance along the branches and 
stem; therefore, most influenced by the tree and stand structures. 
Individual-specific tree characteristics highly influenced its generation, 
causing high variances among individuals within the stand (Fig. 3B). 
Consequently, the initiation values of SF failed to show significant dif-
ferences among different types of stands (Table 4). Moreover, at full 
capacity of canopy reservoir, the drainage maintained stably at the 
maximum value, reducing the intraspecies variances. Therefore, the 
total SF depth was similar among different forest types (Table 3). This 
causality relationship among TF, SF and Ic resulted in similar GRP across 
stands. It also explained the varied importance of structure attributes for 
GRP components. 

4.2. Stand structural attributes were strong predictors for GRP 

Except for the mixed stand (Fig. 6I), we found higher cumulative 
explanatory power of structural factors than species across different 
types of forest (Figs. 5 & 6). This finding contrasts with previously 
studies where species identity has long been regarded a pronounced 
factor on GRP (Baptista et al., 2018; Cano-Arboleda et al., 2022; Tonello 
et al., 2021). The disparities might rise from the fact that most of strong 

Table 6 
Predictive models of TF, SF and Ic in the BRT model.  

Rainfall 
components 
(mm) 

Indicator P Coefficient R2 P 

TF Intercept  <0.001***  − 2.020  0.966  <0.001  
P  <0.001***  0.849    
D  <0.001***  0.016    

SF Intercept  <0.001***  − 1.529  0.754  <0.001  
P  <0.001***  0.051    
D  0.828  − 0.001    
TH  <0.001***  0.163    

Ic Intercept  0.141  − 1.051  0.461  <0.001  
P  <0.001***  0.066    
DBH  <0.001***  0.311    
TH  0.006**  − 0.209    
CA  0.252  0.023    
TD  0.226  0.001   

Note: TF: Throughfall (mm); SF: Stemflow (mm); Ic: Interception (mm); P: Pre-
cipitation (mm); D: Rainfall duration (h); TH: Tree height (m); CA: Canopy area 
(m2); DBH: Diameter at breast height (cm); TD: Stand density (trees⋅ha− 1). 

Fig. 9. Relationship between simulated values and field observed values of BRT model. A, B and C represent TF, SF and Ic, respectively. The comparison between the 
modeled and observation values were derived from the test dataset. 
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identity effects are usually intertwined with the structural features, such 
as dense crown structure, distinct leaf morphology, overlapping 
branches and foliage, in the comparison of stands of different species- 
composition (Cano-Arboleda et al., 2022). Our study successfully sepa-
rating the structural traits from species identity, and identifies the pure 
influence of species identity, such as in cases of mixed stands (Fig. 6I). 
The ecosystem can function higher/lower in a mixed stand than in 
monoculture stands either because of the selection or the complemen-
tarity effects (van der Plas et al., 2016; Zhang et al., 2022). The complex 
species interaction can be more prominent in mixed stands than in pure 
stands (Fig. 6I V.S. 6C&I), leading to a higher influence of species than 
the cumulative influences of structure factors in the mixed stands 
(Fig. 6I). The pure species influences were high also in SF and TF of 
plantation and coniferous stands (Fig. 5F and Fig. 6C) but the cumula-
tive influence of structural traits still prevail. Moreover, structural at-
tributes would change dramatically during the life span, which makes it 
even less accountable to attribute GRP to species identity. Therefore, 
considering the predominant role of structural attributes in most cases, 
focusing on species identity may keep the evaluation of individual fea-
tures within a certain range instead of specific values and cause errors in 
the modelling process. 

Among the structural factors, we found TH and DBH to be more 
influential than CA and LAI in many cases (Figs. 5 & 6). Canopy 
roughness length influences the water and energy flux between the stand 
and the atmosphere (Bonan et al., 2021; Fan et al., 2023). Moreover, the 
large and high trees are more exposed to atmospheric advection which 
would promote the trunk and canopy storage evaporation which 
otherwise would have formed drainage along the canopy and stem 
routes. Meanwhile, the shorter and smaller trees are sheltered from 
energy advection between inside and outside of the stands, diminishing 
tree body evaporative loss (Ringgaard et al., 2014). Therefore, varia-
tions of tree height and size are likely to complicate the correlations 
between GRP components and hydrometeorological factors, e.g. rainfall 
characteristics, VPD, and wind speed (Brauman et al., 2010; Dong et al., 
2020), strengthening the influence of structural attributes on their GRP 
(Francis et al., 2022; Jiang et al., 2019). 

We found that the trade-off between structural traits (Fig. 8) is 
influencing the relationship between GRP components and structural 
traits (Fig. 7). Resources limitation would lead to growth competition, 
which directly impact stand structural attributes. The phytoeconomic 
spectrum can cause trade-offs in the characteristics of adjacent in-
dividuals (Wang et al., 2022). Therefore, as the influences of structure 
attributes of different individuals merge to form stand character, indi-
vidual performance associated with species identity would diminish as 
the observational scale increases. Such structure dynamics would have 
functional consequences. For example, the influence of individual 
structure on transpiration is weakened during scale extension, and the 
influence of group structure is more evident (Li et al., 2022; Zhang et al., 
2023a). Therefore, as SF and Ic are strongly rely on the cumulative in-
fluences of stand structural factors (Figs. 5 & 6), the similarities in stand 
structures, such as DBH and LAI (Fig. 2C &D), would partially count for 
the lack of the differences of GRP components among stands of different 
species compositions (Table 3). Furthermore, this study successfully 
established general formula to describe GRP partitioning components of 
plantation stands across the region with structure factors accounted 
most of the influential factors (Fig. 9 and Table 6). For other regions with 
different rainfall regimes, our parameter values might not be applicable 
but our approach might be viable. 

It should be noted that our statement of structural attributes over 
species identity over GRP is per growing season. During the growing 
season, the canopy features are relevant stable and the GRP process is 
more a physical process. Therefore, the species-specific biotic process, e. 
g. canopy phenology does not involve. Seasonally variable biological 
activity and canopy phenology cause strong variations in canopy surface 
and its function in GRP (Anna and Wojciech, 2018; Blume et al., 2022; 
Michalzik et al., 2016; Nanko et al., 2022; Zhang et al., 2022). Moreover, 

the differences of canopy between coniferous forest and broadleaved 
forest in non-growing season makes large differences of GRP during the 
non-growing season (Ouyang et al., 2021). In addition, species diversity 
has also been proved to have indirect impact on GRP. Findings from 
(Barbier et al., 2009; Frischbier and Wagner, 2015; Zabret et al., 2018) 
stresses the importance of leaf phenology in studies on rainfall parti-
tioning. Therefore, the comparative importance of species identity and 
stand structures worth further exploration when it comes to the transi-
tion period between the dormant and the growing season. 

4.3. Implications of stand configurations for eco-restoration 

Predictions of altered rainfall regimes have brought up the explora-
tion over how to balance socio-economic water demands with ecosystem 
hydrological processes and functioning of these plantations (Attarod 
et al., 2015; Davis et al., 2015; Lian et al., 2022). Multiple previous 
studies have established linear relationships of GRP components with 
the single stand structural variable (Brantley et al., 2019; Niu et al., 
2023). However, large uncertainty remains in characterizing forest 
stand structures using the single stand structural variable (Angela et al., 
2015). Moreover, most of them are species-specific or site-specific, 
hampering the wide applications of these relationships due to the vari-
ations in stand configurations and varied species physiologic charac-
teristics (Exler and Moore, 2022; Wu et al., 2021; Zhao et al., 2023). 
Therefore, determining the priorities of importance in species and stand 
structures would facilitate the establishment of effective predictive 
models for GRP components and applicable for estimation at larger 
scales. 

Our results suggest that species-dependent selections would over 
simplify the forest stand water balance dynamics over time. Instead, 
researchers can catalogue the ecohydrological properties of stand 
structural attributes to inform decision-makers and with the species 
growth trajectory to formulate the management plans for maintaining a 
sustainable structure affordable by local water resources. 

Species configurations in eco-restoration projects usually are not 
considered in stand structural traits pertaining to ecohydrological 
functions. Our results highlight the importance of that structural 
configuration for advancing the modelling of eco-restoration projects’ 
roles on ecohydrological processes. Our BRT models have the potential 
to estimate the GRP components across the Loess area (Table 6). 
Therefore, the application of BRT modelling would be a practical tool 
with input of commonly forest inventories that can allow the evaluation 
of GRP over large plantation areas to optimize forest and water 
managements. 

5. Conclusions 

Forest stands with different configurations demonstrate consistent 
hydrological dynamics regardless of tree species composition or stand 
origin. Stands of different types, by origin or species composition, rarely 
have significant differences in throughfall (TF) in an arid region. How-
ever, stand origins or species compositions could have significantly 
different stemflow (SF) or canopy interception (Ic). The BRT analysis 
revealed that TF was dominant by rainfall attributes. However, SF and Ic 
increasingly rely on structural attributes as the rain water residence time 
increased. The BRT models developed based on precipitation and 
structural traits captured the stand-scale TF and SF better than Ic across 
variable stands on the Loess Plateau. Therefore, we conclude that 
structural factors play a predominant role in determining GRP process 
during the growing season. 

Our study highlights the influences of stand structures in regulating 
the SF and Ic of GRP. Estimating GRP should consider different pheno-
logical phases when species differences might play a significant role. 
This present study contributes to a more holistic understanding of GPR 
temporal variations for better modeling GRP at the regional scale. 
Finally, using a single reference value to represent certain species or 
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forest types in large-scale water balance evaluation may cause large 
errors. A comprehensive understanding of the influence variable on GRP 
is needed to the effects of the plantations on watershed water cycles. 
Therefore, our findings are helpful for improving ecohydrological pre-
diction models that are critical for the implementation of large-scale 
eco-restoration projects. 
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