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Abstract 
Context  Pattern metrics drawn from image process-
ing and remote sensing have been applied as descrip-
tors of the texture of landscape gradient data. Like 
some classical pattern metrics in ecology, texture has 
several facets which are measured by examining an 
adjacency matrix—the frequencies of co-occurring 
pixel values on a map—in different ways.
Objectives  To improve the interpretation and appli-
cation of such metrics in landscape ecology we refor-
mulate and interpret several of them by analogy to 
traditional metrics used with categorical data.
Results and conclusions  1. Four of the eight classi-
cal texture metrics measure attraction—the tendency 
for the same or similar values to be adjacent. Four 
others measure dispersion—the diversity of adja-
cencies relative to the entire adjacency matrix, the 
diagonal of the matrix, or the origin of the matrix. 
2. The attraction metrics (dissimilarity, contrast, 
inverse difference, and homogeneity) differ only in 
the algebraic weights applied to different parts of an 

adjacency matrix. 3. The dispersion metrics (entropy, 
uniformity, difference entropy, and sum entropy) can 
be made more comparable by rescaling them to their 
maximum possible values. 4. While the metrics may 
be applied to any adjacency matrix, the choices about 
the method used to create an adjacency matrix have 
subtle yet important implications for the use and com-
parability of some metrics.

Keywords  Landscape pattern · Texture metrics · 
Landscape gradient · Grayscale data

Introduction

Landscape ecologists employ two general conceptual 
models to guide the development and application of 
pattern metrics in real-world problems. When a land-
scape is viewed as a patchwork (or network) of dis-
crete objects such as habitat patches, the conceptual 
model is often referred to as the patch mosaic or the 
patch-corridor-matrix model (Forman and Godron 
1986; Forman 1995). When a landscape is viewed as 
a blending of variegated habitat patches (McIntyre 
and Barrett 1992; McIntyre and Hobbs 1999) or as a 
spatially continuous habitat surface (Gustafson 1998), 
the conceptual model has become known as the 
landscape gradient model (McGarigal and Cushman 
2005). Gustafson (1998) linked these concepts to the 
data model for different types of pattern metrics—the 
patch mosaic metrics typically used categorical maps 
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as a complete census of a landscape and focused on 
the pattern of the discrete patches, while landscape 
gradient metrics were derived from a sample of 
numeric values from discrete locations within a land-
scape and focused on point-data or geostatistical anal-
ysis of overall spatial pattern.

The advent of census maps portraying numeric 
data such as greenness, probability, and percent veg-
etation cover presented a new data model, potentially 
amenable to pattern analyses using both conceptual 
models (Hoechstetter et al. 2008). This has stimulated 
exploration of new landscape gradient pattern met-
rics, especially those derived from surface metrology 
(e.g., Hoechstetter et al. 2008; McGarigal and Cush-
man 2009; Abdel Moniem and Holland 2013; Kedron 
et  al. 2018) and image analysis (e.g., St-Louis et  al. 
2006, 2009; Tuttle et  al. 2006; Wood et  al. 2013; 
Tuanmu and Jetz 2015). Many of the classical texture 
metrics from image analysis (Haralick et  al. 1973) 
have been applied for a long time in remote sensing 
of natural resources (e.g., Peddle and Franklin 1991; 
Franklin et al. 2000; Coburn and Roberts 2004) and 
were first introduced as landscape pattern metrics by 
Musick and Grover (1991) and in landscape ecology 
software by Baker and Cai (1992).

While conceptual models may help to interpret 
landscape pattern metric values in a specific situa-
tion, they may also be limiting in the sense that pat-
tern analysis is generic, and a metric value is just a 
number (Vogt and Riitters 2017). In other words, pat-
tern is a property of a landscape and does not require 
an ecological motivation or interpretation. What is 
required is an understanding of what is measured by 
a pattern metric, because that is prerequisite to reli-
able ecological interpretation of a hypothesized pat-
tern-process relationship (Bogaert 2003). When pat-
tern per se is interpreted incorrectly, a pattern metric 
does not measure what we think it measures, and our 
ecological understanding is at best approximate. Later 
we will use the common misinterpretation of the clas-
sical contagion metric (O’Neill et  al. 1988; Li and 
Reynolds 1993) to motivate a better understanding of 
what some pattern metrics measure.

Seeking an understanding of what is measured by 
landscape gradient metrics, some authors have turned 
to empirical correlations with patch mosaic metrics 
(e.g., McGarigal and Cushman 2009; Kedron et  al. 
2018). While informative, those comparisons are 
contingent on the underlying comparability of two 

different maps—the categorical map used for patch 
mosaic metrics and the numeric map used for land-
scape gradient metrics. In this paper we use another 
approach with only one numeric map to improve 
the understanding of what is measured by the tex-
ture metrics most known as dissimilarity, contrast, 
inverse difference, homogeneity, entropy, uniformity, 
difference entropy, and sum entropy. Through algebra 
and argument by analogy we generalize what land-
scape ecologists already know from experience with 
analogous patch mosaic metrics and show how some 
texture metrics may be improved by incorporating 
insights from the ecological literature [e.g., by res-
caling entropy to a maximum value (Pielou 1966)]. 
While texture metrics are a small subset of the meth-
ods available to analyze landscape gradient maps, 
they are an important subset because texture is widely 
recognized as a fundamental descriptor of landscape 
pattern (Riitters 2019). We do not intend to recom-
mend metrics for any specific application, but instead 
to provide generic metric definitions which are appli-
cable to a wide range of applications and a framework 
to interpret the results in ecologically familiar terms.

Haralick (1973) texture metrics describe pixel 
adjacencies, also known as co-occurrences, on quan-
tized (binned) numeric maps. The pixel adjacen-
cies on a raster map are summarized in an adjacency 
matrix, also known as a co-occurrence matrix. Within 
an adjacency matrix, the rows and columns indicate 
the pixel values that are adjacent, and the elements 
of the matrix indicate the frequencies of each type 
of adjacency (Fig. 1). Texture metrics are computed 
from proportions calculated as the frequency of each 
element divided by the total frequency in the matrix 
(Fig. 1). This is the same data reduction process used 
to calculate the well-known contagion metric from 
nominal data (O’Neill et  al. 1988; Li and Reynolds 
1993).

The key to improving the ecological interpretation 
of texture metrics applied to numeric data is to notice 
that quantized numeric maps portray ordinal data, 
which are categorical data where the numeric value of 
a pixel is meaningful. Thus, it is reasonable to expect 
that insights gained from ecological applications of 
well-known metrics with dichotomous or nominal 
data may improve the interpretation of texture metrics 
with real-valued data. Furthermore, many of the avail-
able numeric maps are quantized for efficient stor-
age or analysis anyway. From a metric computation 
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perspective, the only difference between dichotomous, 
nominal, and ordinal maps is that in the latter, the 
numeric differences between pixel values are meaning-
ful. Our primary objectives here are to summarize an 
understanding of what eight commonly used texture 
metrics measure on quantized numeric maps, and to 
suggest how those metrics can be extended or improved 
by using insights gained from previous ecological treat-
ments of categorical maps. We also reformulate defin-
ing equations to facilitate metric comparisons, and 
address computational issues.

Methods

Preliminary considerations

In principle, metric computation is independent of 
the data reduction procedure used to create an adja-
cency matrix. However, it is necessary to understand 

the reduction procedure to understand the metric. 
For example, the well-known 4-neighbor procedure 
examines the adjacency of a given pixel with respect 
to the four neighboring pixels in cardinal direc-
tions. Since the procedure is also applied to all four 
neighboring pixels, this procedure counts each adja-
cency twice (i.e., as both [pixel 1, pixel 2] and [pixel 
2, pixel 1]). In other words, 4-neighbor procedure 
yields a symmetric adjacency matrix. This becomes 
important for metrics such as entropy because it vio-
lates an assumption that each element in the adja-
cency matrix represents a unique state. For that rea-
son, our data reduction procedure uses a 2-neighbor 
procedure by which each adjacency is counted once, 
tabulating the pair [pixel 1, pixel 2] separately from 
the pair [pixel 2, pixel 1], yielding an ordered adja-
cency matrix (Fig.  1). Since pixel order is arguably 
arbitrary (e.g., inverting the input map would trans-
pose the adjacency matrix), it can be removed to con-
struct an unordered adjacency matrix (Fig. 1). Where 

Fig. 1   Illustration of the 
ordered and unordered 
adjacency matrices for a 
2-neighbor rule defined as 
“one pixel below or one 
pixel to the right.” The pixel 
values labeled as 0, 1, 2, 3 
may represent nominal or 
ordinal values. Adjacency 
frequencies and proportions 
are calculated as defined 
in Table 1. Adjacencies 
at the map border are 
ignored. The total number 
of adjacencies is 40, and 
the numbers of unique 
adjacencies in the ordered 
and unordered matrices are 
16 and 10, respectively
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appropriate we provide metric definitions for both the 
ordered and unordered cases which do not violate the 
assumptions of the metrics.

Metric definitions must also consider the extent of 
the map which is used to create an adjacency matrix. 
For example, in a global analysis the entire map 
extent is used, whereas in a moving window analysis 
the extent is defined by a window which contains a 
portion of the map. Because the purpose of a mov-
ing window analysis is to localize the metric calcula-
tion to create a map of a given metric, the calculated 
metric must be comparable for all windows across the 
global extent. For example, some metrics are rescaled 
to maximum values which depend on the number of 
unique states in an adjacency matrix, which cannot 
be assumed to be constant for all windows. Our met-
ric definitions are structured for applications to both 
global and window extents.

The assumptions regarding the characteristics of 
the input data are especially important when compar-
ing metric definitions in the literature. Specifically, it 
is important to know whether the range of pixel val-
ues includes or excludes both negative and zero val-
ues. For example, the original Haralick (1973) met-
rics exclude negative and zero values, which required 
rescaling the input data to apply the metrics to a 
map of a vegetation index (Tuanmu and Jetz 2015). 
However, for some types of maps (e.g., a map of per-
cent vegetation cover) a zero value is meaningful. 

Accommodating these nuances required minor 
modification of some published metric definitions. 
We assume that input data has been appropriately 
rescaled and quantized to ordinal integers in [0, 1, 2, 
3…]. It is recognized that different types of quantiza-
tion may affect the realized metric values (e.g., Löf-
stedt et  al. 2019), but sensitivity to quantization is 
beyond the scope of this paper. We use the notation in 
Table 1 when later defining metrics.

Interpreting metrics

Attraction metrics

The classical landscape metric of clumping (called 
contagion by O’Neill et  al. 1988) was motivated to 
detect the tendency for each pixel category to appear 
in contiguous patches of the same category. Like the 
well-known Shannon index of species evenness (Pie-
lou 1966), it is a rescaled measure of entropy that 
accounts for the number of unique states (here, the 
states are defined by the types of adjacencies instead 
of the types of species). The metric usually works 
as a patch mosaic metric because dichotomous and 
nominal maps typically exhibit contiguous patches of 
the same pixel value, such that there is an over-abun-
dance of observations in the diagonal elements of an 
adjacency matrix, which reduces entropy. However, 

Table 1   Notation used for metric definitions

Notation Definition Notes

i, j Pixel values i (row) and j (column) in the adjacency matrix formed 
by 2-neighbor adjacencies

i, j ∈ [0, 1, 2, 3…]

x(i, j) Element i, j in the adjacency matrix Ordered adjacency frequencies
x
�

(i, j)
{

x(i, j) + x(j, i), if i ≠ j

x(i, j), if i = j

Unordered adjacency frequencies

p(i, j) x(i,j)∑
i

∑
j x(i,j)

Ordered adjacency proportions

p′(i, j) x
�
(i,j)∑

i

∑
j x(i,j)

Unordered adjacency proportions

px−y(k)
∑

i

∑
j where �i−j�=kp(i, j) Difference function (Haralick et al. 1973)

px+y(k)
∑

i

∑
j where i+j=kp(i, j) Sum function (Haralick et al. 1973)

Ng Number of unique pixel values in the adjacency matrix
Nk Number of k levels in the adjacency matrix
k∗ Selected k level User-selected
Ik

{
1, if k ≤ k∗

0, if k > k∗
Indicator variable
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it is an unreliable measure of contagion because it is 
equally sensitive to an over-abundance of adjacen-
cies that are not diagonal elements, which also reduce 
entropy but do not indicate contagion (Riitters et al. 
1996). For this reason, Riitters et al. (1995) proposed 
an alternate contagion metric (DA in Table 2) which 
is the sum of only the diagonal elements of an adja-
cency matrix.

To develop interpretations of related Haralick met-
rics, the first step is to define the difference function 
( px−y(k) in Table 1) which calculates the proportions 
of all adjacencies for which the absolute value of the 
difference between adjacent pixel values equals k 
(see example in Fig. 2). With that, DA can be gener-
alized to k-attraction for ordinal maps (Table  2) for 
which the parameter k is a threshold numeric dif-
ference between two adjacent pixels. For k = 0, only 
the diagonal elements of an adjacency matrix are 
included, and k-attraction is equivalent to DA. For a 
selected value of k > 0, an off-diagonal element of the 
adjacency matrix is included if the numeric difference 
between pixel values is less than or equal to k. As 
an alternative to contagion, the term attraction thus 
refers to the tendency for the same or similar values 
to be adjacent on dichotomous, nominal, and ordinal 
maps.

The next step is to reformulate the Haralick met-
rics called dissimilarity, contrast, inverse difference, 
and homogeneity using the same difference function 
that was used for k-attraction. It is then apparent that 
the Haralick metrics are weighted sums of the differ-
ence function and that the weights are a function of 
k (Table 2). In other words, these metrics differ only 

by the weights applied to adjacencies at the distance 
(k) from the diagonal of the adjacency matrix. The 
weight is linear with respect to k for the dissimilarity 
and inverse difference metrics and nonlinear for the 
contrast and homogeneity metrics. The inverse dif-
ference and homogeneity metrics include the diago-
nal elements of the adjacency matrix, are bounded 
in [0,1], and larger values indicate more attraction, 
while dissimilarity and contrast exclude the diagonal 
elements, are unbounded, and larger values indicate 
less attraction (or more repulsion). For k-attraction 
the weights are a [1, 0] step function of k; the met-
ric includes the diagonal elements of the adjacency 
matrix, is bounded in [0, 1], and larger values indi-
cate more attraction. Based on algebraic similarity 
alone, the realized values for all attraction metrics 
are expected to be correlated to some degree, as illus-
trated by an application to a map of percent tree cover 
(Fig. 3). While all these metrics are plausible choices 
for measuring the aspect of pattern called attraction, 
an understanding of their algebraic differences should 
help to inform the choices of a metric for a specific 
application.

Dispersion metrics

The Haralick metrics called entropy and uniformity 
are natural extensions of well-known species diversity 
metrics, only as applied to describe the diversity of 
adjacencies instead of the diversity of species. In fact, 
entropy is the Shannon index, and uniformity (also 
known as angular second moment and energy) is 
the complement of the Gini-Simpson index. Without 

Table 2   Attraction metrics, illustrating the reformulation of the typical literature definition using the difference function

The reformulations of the last four metrics substitute k = i − j , and 
∑

kpx−y(k) =
∑

i

∑
jp(i, j) . The reference numbers in the table refer 

to: 1—Riitters et al. (1995); 2—Soh and Tsatsoulis (1999); 3—Haralick et al. (1973); 4—Clausi (2002)

Metric [reference] Typical literature formulation Reformulation using 
difference function

DA [1]
∑

i[p(i, i)] px−y(0)

k-attraction Not applicable ∑
k

�
Ik ⋅ px−y(k)

�

Dissimilarity [2]
∑

i

∑
j[�i − j� ⋅ p(i, j)] ∑

k

�
k ⋅ px−y(k)

�

Contrast [3, 4] ∑
i

∑
j[(i − j)2 ⋅ p(i, j)]

∑
k

�
k2 ⋅ px−y(k)

�

Inverse difference [4] ∑
i

∑
j

�
p(i,j)

1+�i−j�

� ∑
k

��
1

1+k

�
⋅ px−y(k)

�

Homogeneity [2, 3] ∑
i

∑
j

�
p(i,j)

1+(i−j)2

� ∑
k

��
1

1+k2

�
⋅ px−y(k)

�
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Fig. 2   A worked example of the difference and sum functions 
for ordinal data. Step 1: the k values correspond to a given sum 
or absolute difference of the corresponding row and column 
labels. In the difference matrix, k increases with distance from 
the diagonal (top left). In the sum matrix, k increases with 
distance from the origin (top right). Step 2: the ordered pro-

portions from Fig.  1 are inserted into the adjacency matrices 
(middle left and bottom left). Step 3: for a given value of k, the 
difference and sum functions are the sums of proportions hav-
ing that k value (middle right and bottom right); the k values 
are color-coded for each function
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going any further, these Haralick metrics are thus 
already interpretable as measures of the dispersion 
of observations within an adjacency matrix (analo-
gous to the dispersion of individuals among species). 
The choice between them is also familiar—entropy is 
more sensitive to rare observations while uniformity 
is more sensitive to abundant observations—as is the 
concept of rescaling metrics to their maximum pos-
sible values to improve comparability among differ-
ent sets of observations. Here we can suggest several 
little-used or novel variations of these Haralick met-
rics which include rescaling and accounting for the 
differences between ordered and unordered adjacen-
cies (Table 3).

We develop rescaling procedures following the 
general rationale of Li and Reynolds (1993) to define 
maximum possible values. We start with the usual 
expression for entropy but use (Gini–Simpson) diver-
sity to represent uniformity (Table 3). The maximum 
possible values for entropy and diversity depend 
on the potential number of unique adjacencies in 
an adjacency matrix. If N is the number of unique 
pixel values (not adjacency values) in an adjacency 
matrix, then the number of possible adjacencies is 
N2 when adjacencies are ordered, and 

(
N2 + N

)
∕2 

when adjacencies are unordered. When all adjacen-
cies are equally likely, they all equal 1∕N2 (ordered 
adjacencies) or 2∕

(
N2 + N

)
 (unordered adjacen-

cies). Solving the defining entropy and diversity 

equations (Table  3) for those quantities yields the 
maximum values for entropy (ordered: 2 ⋅ lnN ; unor-
dered: ln

(
N2 + N

)
− ln2 ) and diversity (ordered: 

1 −
(
1∕N2

)
 ; unordered: 1 −

[
2∕

(
N2 + N

)]
 ). A met-

ric is rescaled with division by its maximum value, 
yielding the evenness and equitability metrics for 
ordered and unordered adjacencies (Table 3).

Finally, we consider Haralick’s difference entropy 
and sum entropy metrics. They describe the overall 
dispersion of adjacencies relative to the diagonal (dif-
ference entropy) or the origin (sum entropy) of the 
adjacency matrix (Fig. 2). For these metrics the order 
of adjacencies is irrelevant, but like entropy they can 
be rescaled for comparability among sets of observa-
tions. For computational efficiency and to illustrate 
rescaling according to the realized number of unique 
states, we suggest the maximum value of lnK , where 
K is the number of unique k values in an adjacency 
matrix, derived analogously to the maximum Shan-
non diversity index (Pielou 1966).

Discussion

The science and practice of pattern measurement will 
continue to evolve, driven by new conceptual models 
and data sources, capitalizing on metrics developed 
within other fields, and informed by applications 
to the burgeoning data stream with ever-improving 

Fig. 3   Correlation among attraction metrics from moving 
window analyses of a map of percent tree cover. The input map 
depicted tree cover percent for the conterminous United States 
(USGS 2019) after re-sampling to 2430  m resolution. Maps 
of metric values were created by moving window analyses in 
which input pixel values equal to zero were treated as missing 
data and metric values were assigned to the pixel at the center 

of a given window. A threshold k = 5 was used for the k-attrac-
tion metric. The 8000 points and loess curves shown in the 
charts are a ~ 1% random sample of the output pixels for three 
cases: (left) percent tree cover in [1, 100] with a 15 pixels × 15 
pixels moving window; (middle) percent tree cover rescaled to 
[1, 20] with a 15 × 15 moving window; (right) percent cover 
rescaled to [1, 20] with a 7 × 7 moving window
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computing capacity (Costanza et  al. 2019). The tex-
ture metrics described here were derived largely 
within the field of image processing; while they have 
been used extensively in remote sensing and medi-
cal imaging there are fewer applications in landscape 
ecology. In the past, the introduction of a new land-
scape pattern metric has typically required a dem-
onstration that it was different or better in some way 
from those already available, but rarely has a new 
metric been gauged against a standard of understand-
ing what it measures. With a new understanding 
of what is measured by texture metrics on numeric 
maps, we can more clearly see the relationships 
between them, and to the landscape ecology metrics 
which have been applied to categorical maps, and we 
can use insights gained from the latter to improve and 
interpret the texture metrics in an ecological context.

We can suggest two plausible lines for future 
research. First, it is well-known in the ecology liter-
ature that the classical entropy and diversity metrics 
are sensitive to the total number of species. Simi-
larly, an unequal abundance of pixel values affects 
the entropy and diversity of adjacencies because the 
more abundant pixel values naturally have a higher 
frequency of adjacencies than the rare pixel values. 

That is the rationale for using what are known as 
conditional metrics (e.g., Li and Reynolds 1993; 
Nowosad and Stepinski 2019), for which the propor-
tions in an adjacency matrix are based on the fre-
quency of adjacencies involving a given pixel value 
instead of the total frequency of all adjacencies. Li 
and Reynolds (1993) provided an appropriate resca-
ling of entropy for that case, and rescaling could be 
developed analogously for diversity. Future research 
to develop other related metrics (e.g., Nowosad 
and Stepinski 2019) may also be considered. Sec-
ond, while the Haralick metrics which are based 
on numerical differences between adjacent pixels 
have no computational equivalent for dichotomous 
or nominal maps, we have shown that metrics for 
the latter are useful for informing the interpretation 
of the former. Future work could explore alternate 
definitions of additional Haralick metrics so that the 
same definition can apply to all three types of cat-
egorical data. In this regard, we can suggest that the 
similarity indices proposed by Gower (1971) for all 
three types of categorical data could help to bridge 
the gap. Gower (1971) also suggested rescaling 
alternatives which could improve the comparability 
of the attraction metrics among sets of observations.

Table 3   Dispersion metrics

The reference numbers in the first column refer to: 1—Haralick et al. (1973); 2—Li and Reynolds (1993); 3—Riitters et al. (1996); 
4—Wickham and Riitters (1995); 5—Clausi (2002)

Metric [Reference] Definition Notes [Reference]

Entropy (ordered adjacencies) [1] −
∑

i

∑
j[p(i, j) ⋅ lnp(i, j)], for p(i, j) > 0

Evenness (ordered adjacencies) [2] Entropy

2⋅lnNg

, for Ng > 1 Uses ordered entropy

Entropy (unordered adjacencies) [3] −
∑
i

∑
j≥i

�
p�(i, j) ⋅ ln p�(i, j)

�
, for p�(i, j) > 0

Evenness (unordered adjacencies) [3] Entropy[
ln
(
N2
g
+Ng

)
−ln2

] , for Ng > 1 Uses unordered entropy

Diversity (ordered adjacencies) [1, 4] 1 −
∑

i

∑
j[p(i, j) ⋅ p(i, j)] Complement of uniformity [5]

Equitability (ordered adjacencies) [4] Diversity

1−
(
1∕N2

g

) , for Ng > 1 Uses ordered diversity

Diversity (unordered adjacencies) 1 −
∑
i

∑
j≥i

�
p�(i, j) ⋅ p�(i, j)

�

Equitability (unordered adjacencies) Diversity

1−
[
2∕

(
N2
g
+Ng

)] , for Ng > 1 Uses unordered diversity

Difference entropy [1] −
∑

k[px−y(k) ⋅ lnpx−y(k)]

Difference evenness Difference entropy

lnNk

, for Nk > 1

Sum entropy [1] −
∑

k[px+y(k) ⋅ lnpx+y(k)]

Sum evenness Sum entropy

lnNk

, for Nk > 1
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