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A B S T R A C T   

Mountain ecosystems provide multiple ecosystem services and are “natural laboratories” to understand 
ecosystem responses to global change. Because of the inaccessibility and the high cost of field surveys, remote 
sensing indices are the major and sometimes the only measures to monitor the vegetation growth dynamics in 
mountains. However, there are large discrepancies in those indices that should be quantified in mountainous 
regions. This case study in Nepal, a highly mountainous region, explores the consistency and inconsistency of six 
widely used remote sensing indices in monitoring vegetation growth from 2000 to 2020. The study considers 
three greenness indices of normalized difference vegetation indices (NDVI), enhanced vegetation index (EVI), 
and near-infrared reflectance of vegetation (NIRv), one cover index of leaf area index (LAI), and two productivity 
indices of gross primary productivity (GPP) and solar-induced chlorophyll fluorescence (SIF). We find high 
spatial consistency in the multiyear means (r = 0.79~1, N = 4300, p < 0.01), especially in the highlands and 
between EVI and NIRv, and a logarithmic relationship between greenness indices or GOSIF and LAI or GPP. In 
contrast, the long-term trends differ substantially by index and space. Only 7% of the lands show synchronized 
significant increase though all the indices show a widespread increasing tendency (77~87% of the lands). The 
prevalent non-significant changes of all the indices primarily contribute to the trend uncertainties, especially in 
the highlands. The inconsistencies between greenness and productivity indices and in them further exaggerate 
the uncertainties. Our results emphasize the large discrepancies of remote sensing indices in quantifying 
mountain vegetation growth dynamics. Larger inconsistency is expected if we consider disparities among the 
quality-control schemes, study seasons, remote sensing models, satellite platforms, and sensors. Reinforced 
remote sensing data, model improvements and/or new indices are needed for an accurate quantification of the 
vegetation growth dynamics in mountain regions.   

1. Introduction 

Vegetation in mountains often differs substantially in a very short 
horizontal distance due to the large variability of elevation, climate, and 
nutrient availability (Gao et al., 2019). Ecosystems in mountains are 
known to be more sensitive to environmental perturbations than those 
in the lowlands, and therefore have been widely acknowledged as 
“natural laboratories” to study vegetation responses to global change 
(Gottfried et al., 2012; Zhou et al., 2019). Meanwhile, mountains offer 
essential ecosystem services such as freshwater resources and hydro
power to more than half of global population though they occupy only 

one-fourth of global land surface (Locatelli et al., 2017). The symbolic 
term “water towers” is a good example to stress the importance of 
mountains for providing fresh water resources (Viviroli et al., 2007). 
Changes in vegetation growth can significantly influence ecosystem 
services through modulating the land-atmosphere exchanges of carbon, 
water, and energy (Chapin et al., 2011; Frankenberg et al., 2011; Sellers 
et al., 1997). Therefore, an accurate quantification of the vegetation 
growth dynamics in mountains is not only crucial for a better under
standing of the climate change effects on terrestrial ecosystems, but also 
a premise for a scientific evaluation of the ecosystem service provisions. 

Field surveys are the most accurate method to quantify vegetation 
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growth. However, they are time-consuming and labor intensive, 
particularly in mountainous regions, and therefore usually cover very 
limited geographic areas and time periods (Pan et al., 2011). By 
contrast, remote sensing indices have been increasingly used as proxies 
to quantify vegetation growth due to multiple advantages such as global 
coverage, repeatability, consistency, and low cost (Xiao et al., 2019; 
Zeng et al., 2022). Those indices can be generally grouped into three 
broad types: greenness, cover, and productivity (Ding et al., 2020). The 
greenness indices such as normalized difference vegetation index 
(NDVI) and enhanced vegetation index (EVI) are most widely used since 
they are easy to calculate from surface reflectance of the optical spectral 
bands (Camps-Valls et al., 2021; Zhang et al., 2017a). Near-infrared 
reflectance of vegetation (NIRv), a newly-developed greenness index, 
has gained considerable research interests recently since it can isolate 
the vegetated signal from the soil background (Badgley et al., 2017; 
Zeng et al., 2022; Zhang et al., 2022). The vegetation cover indices, 
usually represented by a canopy structure parameter of leaf area index 
(LAI), is also preferred in many studies since it is believed to be more 
relevant to photosynthetic capacity (Street et al., 2007; Xiao and 
Moody, 2004). Productivity, a direct indicator of vegetation growth, can 
be represented by gross or net primary productivity (GPP or NPP)—a 
major component of the ecosystem carbon cycle (Chapin et al., 2011). At 
the same time, solar-induced chlorophyll fluorescence (SIF), the ree
mission of energy from plants during photosynthetic activity (Baker, 
2008), has been widely used as a direct proxy of productivity in recent 
decade (Chen et al., 2022; Doughty et al., 2021; Frankenberg et al., 
2011; Guanter et al., 2014; Li and Xiao, 2019; Li et al., 2018; Pierrat 
et al., 2022; Wang et al., 2022a, 2020). Despite the unparalleled ad
vantages of remote sensing indices, the resulting patterns and dynamics 
of vegetation growth may differ greatly among indices due to the 
different definitions and certain inherent errors caused by sensors 
and/or atmospheric conditions (Ding et al., 2020; Yang et al., 2022a; 
Zeng et al., 2022). For example, though the widespread greening trend 
revealed by greenness indices is expected to enhance ecosystem carbon 
uptake though photosynthesis in recent decades (Chen et al., 2019; Piao 
et al., 2020; Zhu et al., 2016), increasing evidence hints that increase in 
greenness may not necessarily benefit ecosystem productivity (Ding 
et al., 2020; Liu et al., 2021; Sarmah et al., 2021; Wei et al., 2022). 
Therefore, there is an urgent need to identify the consistency and 
inconsistency of different indices in monitoring vegetation growth for a 
more holistic view of the advantages and disadvantages of remote 
sensing applications. 

Currently, a systematic comparative study of remote sensing indices 
in mountains is limited. Numerous studies have compared the vegeta
tion dynamics revealed by different remote sensing indices at regional 
and global scales (Doughty et al., 2021; Fang et al., 2019; Fensholt and 
Proud, 2012; Jiang et al., 2017; Liu et al., 2021; Lyapustin et al., 2014; 
Sarmah et al., 2021; Wang et al., 2022b; Zhang et al., 2022, 2017a). 
However, they primarily focused on the disparities among different 
vegetation types and latitudinal regions or among different satellite 
sensors for one kind of remote sensing indices. Ding et al. (2020) 
compared the growth trends of vegetation greenness, cover, and pro
ductivity globally, but did not explore the altitudinal patterns specif
ically and include the two recently-flavored indices of NIRv and SIF. Liu 
et al. (2022) evaluated the vegetation dynamics in high mountains, but 
focused on the consistency of different sensors in estimating NDVI. A 
recent study by Yang et al. (2022a) explored the consistencies among 
different vegetation products in the Tibetan Plateau, but mainly 
concentrated on the performances in characterizing land surface 
phenology. Considering the large elevation gradients, remote sensing 
data are expected to have large discrepancies in mountains due to the 
complex climate-vegetation conditions and poor data quality (Doughty 
et al., 2021; Huete et al., 2002). For example, Krakauer et al. (2017) 
indicated overall browning of vegetation in western Nepal from 2000 to 
2016 based on Moderate-resolution Imaging Spectroradiometer 
(MODIS) LAI, while Baniya et al. (2018) reported significant greening 

trends in the whole Nepal from 2000 to 2017 using NDVI. However, it 
remains unclear how the inconsistency among different remote sensing 
indices differs by altitude and whether vegetation growth has been 
enhanced or degraded in mountains by a warming climate and 
increasing human disturbances. 

Using Nepal as an example, this study explores the consistency and 
inconsistency of six widely used remote sensing indices in monitoring 
vegetation growth dynamics in mountains including NDVI, EVI, NIRv, 
LAI, GPP, and SIF. Nepal is ideal for such a comparative study since it 
covers a large altitude range (60–8000 m in elevation) and a nearly 
complete spectrum of vertical vegetation zone worldwide. Our objec
tives are to (1) compare the spatial distributions of the multiyear means 
and long-term trends of vegetation growth as revealed by different 
remote sensing indices, and (2) identify the possibility of long-term 
vegetation growth enhancement or degradation and the inconsistency 
in terms of greenness, cover, and productivity. We mainly focused on the 
discrepancies among different kinds of remote sensing indices in char
acterizing vegetation growth dynamics. Inconsistencies of the same 
indices between different remote sensing platforms, sensors, and model 
algorithms were also discussed briefly though they are beyond the scope 
of the present research. These efforts can not only improve our under
standing of the vegetation dynamics and the uncertainties in mountains 
but also provide references for decision-making of climate change 
adaptation and mitigation strategies in Nepal. 

2. Data and methods 

2.1. Study area 

Nepal is a mountainous and landlocked country in South Asia 
bounded by an Indian foothill of the Himalaya to the south, east and 
west, and the Chinese Tibetan Plateau to the north (Fig. 1). It covers a 
land area of 147,181 km2 with extremely large altitudinal gradients 
ranging from about 60 m in the southeast to more than 8000 m (Mt. 
Everest) in the north. The topography is dominated by Terai in plains (<
200 m), hills in lowlands (200 ~ 1000 m) and midlands (1000 ~ 3000 
m), and mountains in high lands (> 3000 m). The complex topography 
results in a complete vertical climate zone, with a mean annual pre
cipitation from 200 mm in some northern regions to more than 5000 mm 
in the south and a mean annual temperature ranging from -10 ◦C in the 
north to more than 30 ◦C in the south (Baniya et al., 2018; Koju et al., 
2020; Krakauer et al., 2017). Forest, including needle-leaved forests 
located in highlands and broad-leaved forests situated in low and 
mid-lands, is the main vegetation type in Nepal, followed by crop and 
grass (FRTC, 2022). 

2.2. Datasets 

The collection 6.1 Nadir bidirectional reflectance distribution func
tion (BRDF)-Adjusted Reflectance (NBAR) product (MCD43A4) from 
MODIS (Schaaf and Wang, 2021) was used to calculate the NDVI, EVI, 
and NIRv at a 500 m scale and daily timescale. MCD43A4 provides a 
BRDF-adjusted surface reflectance for seven MODIS spectral bands (1–7) 
to remove the view angle effects. LAI data were obtained from an 8-day 
composited MODIS LAI product (MOD15A2H, Version 6.1, and 500 m) 
(Myneni et al., 2021). The GPP and NPP data were obtained from the 
version 6.1 gap-filled MODIS GPP (MOD17A2HGF, 8-day composite, 
500 m) and NPP (MOD17A3HGF, yearly) products (Running and Zhao, 
2021). The two products have excluded the poor-quality inputs and 
filled the missing values through linear interpolation. The SIF data were 
obtained from the global, OCO-2 based SIF product (GOSIF) product (Li 
and Xiao, 2019), which has a spatial resolution of 0.05◦ and temporal 
resolution of 8 days. The dataset was developed based on discrete OCO-2 
SIF observations, MODIS data, and reanalysis climate data. For each 
pixel, the LAI, GPP, and SIF data were aggregated to a monthly timescale 
by the maximum value composite (MVC) method (Huete et al., 2002), 
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and then the mean value during the growing season was estimated for 
each year. Given the large variability of vegetation growing season 
along elevation gradients, we loosely defined the growing season as the 
months from April to October following a global-scale study (Piao et al., 
2015) to make the number of observations consistent across the space. 
The associated uncertainties were discussed by quantifying the vegeta
tion dynamics in summer season only (see discussion later). 

Land cover maps in 2000 and 2019 at a spatial resolution of 30 m 
were obtained from the International Centre for Integrated Mountain 
Development (ICIMOD). The maps have been developed by the Forest 
Research and Training Centre (FRTC) of Nepal through the National 
Land Cover Monitoring System (NLCMS) (FRTC, 2022). The dataset was 
generated using freely available Landsat data in Google Earth Engine 
(GEE) platform, with an overall accuracy larger than 90% (FRTC, 2022). 
We regrouped the raw land cover types into forest (forest and other 
wooded land), grass (grassland), crop (cropland), urban (built-up land), 
water (water body), and others (glacier, snow, riverbed, bare soil, and 
bare rock with sparsely vegetation). Therein, forest alone occupies 
approximately 46% of the total land area in 2019 (Fig. 1b). Given a lack 
of forest subtypes in the raw land cover dataset, we loosely divided the 
forest into Sub-Tropical Evergreen Forest (STEF, ≤1200 m), Temperate 
Deciduous Forest (TDF, 1200~2100 m), and Temperate Coniferous 
Forest (TCF, ≥2100 m) basing on altitude (https://www.imnepal.com/ 
forests-nepal/assessed on June 21, 2022). The elevation data (Fig. 1a) 
were obtained from the NASADEM data product at 1 arc second reso
lution (NASA JPL, 2020). Both the land cover and elevation data were 
resampled to a 500 m resolution by the majority method to keep 
consistent with the MODIS-based products. Land pixels experiencing 
land cover change between 2000 and 2019 (accounting for 

approximately 10% of the total) were excluded when we compared the 
vegetation growth dynamics across land covers. 

2.3. Methods 

2.3.1. Calculating NDVI, EVI, and NIRv 
The NDVI, EVI, and NIRv were calculated as: 

NDVI =
B2 − B1

B2 + B1
(1)  

EVI = 2.5 ×
B2 − B1

B2 + 6 × B1 − 7.5 × B3 + 1
(2)  

NIRv = (NDVI − C) × B2 (3)  

where B1, B2, and B3 represent the surface reflectance of red (band 1), 
near-infrared (band 2), and blue (Band 3) bands, respectively. The 
values for B1, B2, and B3 range from 0 and 1 (Huete et al., 2002). The 
parameter C was set to 0.08 (Badgley et al., 2017). We calculated these 
indices at a daily time scale and aggregated them to a monthly scale by 
the MVC method and then calculated their growing-season mean values. 

2.3.2. Identifying the discrepancies among different remote sensing indices 
Discrepancies of the six indices in characterizing vegetation growth 

dynamics in Nepal were analyzed from three perspectives. 
First, we calculated multi-year means in the period from 2000 to 

2020, and then compared the spatial distributions of the six indices 
across altitudes and land covers, and the space on a per-pixel basis. To 
reduce the impacts of spurious vegetation signals, land pixels with NDVI 

Fig. 1. Topographical map and the land cover map in 2019 of Nepal. The forests include Sub-tropical Evergreen Forest (STEF), Temperate Deciduous Forest (TDF), 
and Temperate Coniferous Forest (TCF). The elevation data were obtained from the NASADEM data product (NASA JPL, 2020). The land cover data was provided by 
the International Centre for Integrated Mountain Development (ICIMOD) (FRTC, 2022). 
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< 0.1 were removed following the convictions (Ding et al., 2020; Liu 
et al., 2022; Pan et al., 2018). 

Second, we estimated the long-term trend from 2000 to 2020 on a 
per-pixel basis by a linear regression model and then compared the 
spatial distributions of the vegetation growth trends as revealed by the 
different remotely sensed indices. The trends were grouped into four 
types basing on the linear changing slope and two-tailed significance 
test: significant increase (slope > 0, p < 0.05), significant decrease 
(slope < 0, p < 0.05), increase (slope > 0, p ≥ 0.05), and decrease (slope 
< 0, p ≥ 0.05). 

Last, we analyzed the possibility of vegetation growth enhancement 
or degradation by combined uses of the long-term trends in all the six 
remote sensing indices. The possibilities were divided into seven cate
gories as defined in Table 1. In addition, we compared the long-term 
trends of greenness, cover, and productivity following previous experi
ences (Ding et al., 2020). Change of vegetation cover was represented by 
LAI dynamics directly. Change of productivity was defined as “signifi
cant” if both GPP and GOSIF changed significantly in the same direction. 
Otherwise, their trends were defined as “non-significant or uncertain”. 
Given that vegetation indices (NDVI, EVI, and NIRv) are integrated in
dicators that are closely related to both vegetation cover and produc
tivity (Zeng et al., 2022), they were termed as “greenness” in this study 
in order to examine their consistencies with the other vegetation in
dicators. Change of greenness was considered as “significant” when the 
changes for NDVI, EVI, and NIRv were significant and in the same 
direction. 

To keep more spatial details, the GOSIF results were resampled to the 
pixel size (i.e., 500 m) of MODIS datasets (NDVI, EVI, NIRv, LAI, and 
GPP) when we compared the spatial variability of those indices by 
altitude and land cover. However, the MODIS-based estimates were 
resampled to the pixel size of GOSIF product (0.05◦) by a mean method 
when we performed correlation analysis among different indices across 
the space on a per-pixel basis. 

3. Results 

3.1. Spatial patterns of the multiyear mean values 

The spatial patterns of vegetation growth are overall consistent 
among the six remote sensing indices in Nepal (Fig. 2). Vegetation 
growth peaks around 2500 m and decreases dramatically by the rise of 
elevation, with a clear “cliff” between the hills of midlands and moun
tains of highlands regardless of the indices (Fig. 3a–c). However, large 
discrepancies are observed in the plains and lowlands. The multiyear 
means of all the greenness indices (NDVI, EVI, and NIRv) in the lowlands 
and plains are similar to and slightly lower than those in the midlands, 
respectively, with an obvious “plateau” between 200 and 2500 m. The 
LAI also exhibits similar estimates in the mid- and low-lands, but much 

lower values in the plains. The two productivity indices of GPP and 
GOSIF exhibit highly contrasting patterns along with altitudes. Specif
ically, spatial distributions of GOSIF are consistent with those of 
greenness indices, yet GPP declines rapidly and gradually by the 
decrease of elevation from the midlands to the plains. The large spatial 
variability of vegetation growth can be also seen from a perspective of 
different vegetation types, as indicated by the maximum in forest, fol
lowed by crop and grass for all the remote sensing indices (Fig. 3d–f). In 
addition, GPP was clearly lower in the STEF than in the other two for
ests, while all the other indices show similar multiyear mean estimates 
among all the forest types. Note that vegetation growth in urban land is 
close to that of cropland since most of the current urban land is covered 
by forests or croplands in early years (e.g., urban land tripled from 2000 
to 2019 in Nepal), therefore leading to relatively high mean estimates 
across the whole study period. 

On a per-pixel basis, all the indices, especially the vegetation 
greenness indices and GOSIF (r = 0.95~1), are strongly related to one 
another (r = 0.79~1, N = 4300, p < 0.01) (Fig. 4). The correlations are 
slightly weaker between GPP and all the other remote sensing indices (r 
= 0.79~0.81). However, the correlations differ greatly by land cover 
and elevation (Fig. 5). The TDF or the low- and mid-lands show rela
tively weaker correlations than the highlands where are dominated by 
grasslands and others. The GPP is more closely related to GOSIF than to 
the greenness indices in the TDF and grasslands, but the opposite hap
pens in the STEF, TCF, crop, and others. Among the greenness indices, a 
closer relationship of GPP with NIRv than with NDVI and EVI is only 
found in STEF. In addition, a logarithmic relationship is shown between 
the greenness indices or GOSIF and GPP or LAI (Fig. 4). 

3.2. Spatial patterns of the long-term trends 

All the remote sensing indices, in particular the indices of greenness 
and cover, show an upward tendency in Nepal from 2000 to 2020 
(Fig. 6). Specifically, about 77–87% of the land pixels experience an 
enhancement in vegetation growth. Nevertheless, the area percentages 
of “significant increase” vary substantially by the indicator, ranging 
from 20% in GPP to 45% in GOSIF. Additionally, the altitudinal patterns 
differ greatly by the index (Fig. 7a–f). According to the greenness 
indices, vegetation growth increases in more than 80% of the lands 
around the 1000~1500 m zone, and the percentage declines dramati
cally by the rise or decrease of elevation but a peak in the plains. The 
high-elevation regions (around 4000 m) also show a small peak of 
vegetation growth enhancement, but mostly in a non-significant form. 
By contrast, the vegetation growth enhancement mainly occurs in the 
plains and lowlands based on LAI and GPP. GOSIF shows two evident 
peaks of vegetation growth enhancement in both the low and high- 
altitude regions. By land covers, all the indices show the most preva
lent vegetation growth enhancement in croplands and the most wide
spread vegetation degradation (“significant decrease”) in urban lands 
(Fig. 7g). Comparatively, vegetation growth increases or decreases 
insignificantly in more than four-fifths of the TCF and grasslands. 

The linear change rates are highly consistent across the space for the 
three greenness indices (r = 0.94~0.99) (Fig. 8). By contrast, weak re
lations are observed between the GPP and all the other indices (r =
0.36~0.44). In general, NIRv shows slightly stronger relations to LAI and 
productivity indices than NDVI and EVI. Similar to the multiyear mean 
estimates, we find large discrepancies among those six indices in 
monitoring vegetation growth dynamics across land covers or elevations 
(Fig. 5). For example, there are negative relationships between GPP and 
the other indices in the TDF and STEF. GOSIF in general presents much 
weaker connections with the other indices, particularly with GPP and in 
the highlands. Overall, NIRv is marginally more closely related to GPP in 
terms of long-term trends than the other indices. 

Table 1 
Defining the possibility of vegetation growth enhancement or degradation.  

Possibility Definition 

Very likely 
increased 

Significant increase in all the six indices 

Likely increased Significant increase in three to five indices and insignificant 
change in the others 

Probably 
increased 

Significant increase in two indices and insignificant change in 
the others 

Very likely 
decreased 

Significant decrease in all the six indices 

Likely decreased Significant decrease in three to five indices and insignificant 
change in the others 

Probably 
decreased 

Significant decrease in two indices and insignificant change in 
the others 

Uncertain Significant change in none or only one index or both significant 
increase and significant decrease have been observed among the 
six indices  
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3.3. Possibilities of vegetation growth enhancement or degradation 

Considering the large discrepancies of different indices, change of 
vegetation growth is “uncertain” in nearly half of the study area from 
2000 to 2020 (Fig. 9a), and the discrepancies increases sharply as 
elevation increases in the mid- and high-lands, with a clear “cliff” 
around 1500–2000 m (Fig. 9b). Indeed, vegetation growth likely or very 
likely increases in 41% of the total lands, with the greatest possibility in 
the plains and the second in the lower altitudinal bins of the midlands 
(Fig. 9b). Further, the consistency differs greatly by the land cover 
(Fig. 9c). More than 60% of croplands likely or very likely experiences 
vegetation growth enhancement, closely followed by the TDF and STEF, 
whereas the percentage is less than 20% in the TCF, grass, urban, and the 
others. Note that vegetation growth likely or very likely decreases in 
very few areas (<1%) of Nepal (Fig. 9a) that mainly occurs in urban 
lands (Fig. 9c). 

By further distinguishing the inconsistency types, more than half of 
the study area exhibits non-significant trends in greenness, cover, and 
productivity, in particular over the high altitudinal regions, and only 7% 
of the lands show consistent increases in all the indices (Fig. 9d–f). 
About 36% of the remaining portion of the study area experiences sig
nificant increases in greenness and/or cover but non-significant change 
in productivity. By contrast, only 5% of the land witnesses significant 
increase in productivity and non-significant change in greenness or 
cover. Around 40% of croplands likely experience significant vegetation 
growth enhancement (Fig. 9e), but mainly in terms of greenness and/or 
cover (Fig. 9f). Such inconsistent trends also occur in the other land 
covers. 

4. Discussion 

4.1. Consistency and inconsistency of the multiyear mean estimates of 
vegetation growth 

Our results show overall consistent altitudinal patterns of the 
multiyear mean estimates, suggesting the robustness of remote sensing 
indices in capturing the general picture of vegetation growth patterns in 
mountains. This is because vegetation greenness indices are integral 
indicators that not only relates to canopy structure (Carlson and Ripley, 
1997), but also links to chlorophyll abundance in leaves (Running et al., 
2004), while LAI is a robust indicator of leaf area increment (Fang et al., 
2019). All of them may eventually be linked to photosynthetic capacity 
and plant growth potential (Myneni et al., 1997). The consistency is 
particularly high between EVI and NIRv because they both represent 
vegetation greenness and can largely reduce the impact of background 
soil on vegetation signal (Badgley et al., 2017; Doughty et al., 2021; 
Zhang et al., 2022). Overall, vegetation growth peaks in the mid- and 
low-lands because forests are mainly situated there. 

However, the relative magnitudes of vegetation growth in the plains 
and lowlands differ greatly by the index, especially between greenness 
or cover and productivity. This might be caused by (1) the different 
definitions and ecological meanings of those indices (Ding et al., 2020) 
and (2) the different vegetation types in the plains and lowlands (Fig. 1). 
On one hand, vegetation greenness and cover can determine the po
tential light absorption capacity, and thus photosynthetic potential, but 
not necessarily the actual photosynthetic rates. The actual vegetation 
growth is further modulated by the vegetation-specific potential light 
use efficiency, incident photosynthetically active radiation, and multiple 
environmental stresses such as air temperature stress and soil water 

Fig. 2. Spatial distributions of the multiyear mean values in Nepal according to six remote sensing indices during the period from 2000 to 2020. The white colored 
areas mean no data (hereafter). Normalized difference vegetation indices, NDVI; Enhanced vegetation index, EVI; Near-infrared reflectance of vegetation, NIRv; Leaf 
area index, LAI; Gross primary productivity, GPP; OCO-2 solar-induced chlorophyll fluorescence, GOSIF. 
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availability (Chapin et al., 2011; Piao et al., 2020; Zhang et al., 2019). In 
fact, vegetation indices were proved to be poor indicators of actual 
photosynthetic rates when all vegetation types and seasons were 
considered (Gamon et al., 1995). On the other hand, the plain areas are 
dominated by croplands, the biome-specific properties (e.g., efficiency 
in using sunlight) of which were highly different from the forests in the 
hills according to the MODIS GPP algorithm (Running and Zhao, 2021). 

Contrary to previous studies (Doughty et al., 2021; Jeong et al., 
2017; Zhang et al., 2022), we find no clear advantages of SIF and NIRv 
than NDVI and EVI in characterizing MODIS GPP in mountains. Indeed, 
we find highly consistent spatial distributions of those indices in Nepal. 
The phenomenon can be attributed to the diverse correlations by land 
cover (Fig. 5), therefore overshadowing the superiority of these two 
indices in some ecosystems. For example, the representativeness of 
GOSIF to MODIS GPP is poorest in STEF (Li and Xiao, 2019; Zhang et al., 
2022), most likely due to more serious cloud and aerosol contamination 
in the tropical or subtropical areas (Samanta et al., 2012). It should be 
noted that the MODIS GPP product have substantial uncertainties (Zhao 
et al., 2006) and there are no regional-scale GPP reference data for 
evaluating SIF and NIRv. The MODIS data were reported largely un
derestimate the cropland GPP (Guanter et al., 2014), which at least 
partially contribute the large discrepancy between the multiyear mean 
GPP and GOSIF in the low- to mid-latitude regions (Fig. 3c). Reinforced 
remote sensing data and ground-based experiments are needed to assess 
the accuracy of MODIS GPP and the effectiveness of other indices in 
monitoring the vegetation growth patterns in mountainous regions. 

4.2. Consistency and inconsistency of the long-term trends of vegetation 
growth 

All the indices show a widespread vegetation growth enhancement in 
Nepal during the past two decades though the area percentages with a 
“significant change” are different. This agrees well with numerous 
findings that Earth’s surface is greening up due to climate change, CO2 
fertilization, and/or land management (Piao et al., 2020). However, our 
results emphasize the large discrepancies of the vegetation growth 
trends in mountains when evaluated statistically on a per-pixel scale. 
Our findings correspond well with a recent study by Ding et al. (2020), 
who suggest that the vegetated areas with simultaneous increases in 
NDVI, EVI, LAI, GPP, and NPP accounted for only 5.4% of the global 
total. The disparities are largely contributed by the non-significant 
changes of all those indices in more than half of the total land area, 
especially in the highlands, hinting that impacts of climate change and 
land use activities on vegetation growth might be ignorable or have been 
cancelled each other in the most lands of Nepal. For example, Zeng et al. 
(2017) suggested that warming is not always occurring faster at higher 
elevations, and Gao et al. (2019) found no general rules controlling the 
vegetation phenology in mountains. 

In addition, we confirm more prevalent enhancement in greenness 
indices than in productivity, which constitutes the second major source 
of the disparities. The concurrent increases in ecosystem respiration and 
productivity (Ding et al., 2020; Liu et al., 2021) have been considered as 
the major reason for the inconsistency between greening and produc
tivity in previous studies. However, it cannot explain the inconsistency 

Fig. 3. Variations of the multiyear mean estimates of the six remote sensing indices by the 50-m altitude bin and land cover type in Nepal.  
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Fig. 4. Correlations among the six remote sensing indices across the space. The blue- to red-colored points represent increasing point density. All the Pearson’s 
correlation coefficients (r) are significant at the 0.01 level (N = 4300, two-tailed test). Red line shows the possible non-linear fitted curve, with R2 indicating the 
coefficient of determination. 

Fig. 5. Pearson’s correlation coefficients among the six indices over different land covers (a–f) and elevation-regions (g-j). The correlations were calculated at a grid 
scale of 0.05◦ to keep accordance to the pixel size of GOSIF. Only grid cells dominated by relatively pure land covers (area percentage > 2/3) were screened to 
estimate the correlation coefficients for each land cover type. The urban lands were not included due to the scarcity of urban-dominated grid cells. 
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with GPP. We argue that other factors may play more important roles. 
First, photosynthesis of green tissues may end under extreme conditions 
and non-green leaves may also contribute to the photosynthesis (Hubau 
et al., 2020). For example, a recent study by Hu et al. (2022) show that 
the relationship between GPP and LAI were highly coupled in arid 
grasslands, but were fully decoupled in humid evergreen broadleaf 
forests. This at least can partially explain the negative relationship be
tween greenness or LAI and GPP in the STEF and TDF over Nepal. Sec
ond, increasing leaf growth may enhance self-shadowing, which in turn 
reduce productivity (Street et al., 2007). Third, human disturbances 
such as cropland (Chen et al., 2019; Sarmah et al., 2021) and forest 
(Oldekop et al., 2019) management practices may impact the carbon 
uptake. For example, we find that though croplands have the largest 
possibility of vegetation growth enhancement among all the land cover 
types, most of the “likely increased” areas are caused by the synchro
nized increases in greenness, cover, and SIF (Fig. 9). Oldekop et al. 
(2019) found a decrease in deforestation due to decentralized 
community-based forest management in Nepal, which certainly 
enhanced the vegetation productivity. It is worthwhile noting that 
increasing ecosystem respiration may further underscore the benefits of 
greening for carbon sequestration in mountains. For example, we 
compared the long-term trends of MODIS NPP with those of GPP and 
others (Fig. 10). As expected, NPP increases in fewer areas than GPP 
(65% vs. 77%) and around 15% the lands exhibit a decrease in NPP but 
an increase in GPP. Also, the correlations of the other indices with NPP 
are much weaker than that with GPP. These together suggest the 
possible overestimation of the greening benefits for mitigating climate 
change and promoting the other ecosystem services by using the indices 
of greenness, cover, and gross primary productivity. 

Furthermore, the different proxies to vegetation greenness, cover, or 
productivity also contribute to the disparities. For example, only 69% of 
the lands show consistent long-term trends (in both the change di
rections and significance levels) for the three greenness indices, and the 
percentage reduces to 35% for the two productivity indices (Fig. 11). 
This should be mainly caused by the different sensitivities of the spectral 
bands to vegetation signal, which in turn lead to different responses of 
the indices to environmental perturbations (Huete et al., 2002; Liu et al., 
2022). In general, the TCF and grassland in highlands present larger 
discrepancies than the other lands if viewed from the change directions 
and significance levels. This is a little different from the general lat
itudinal patterns of vegetation growth that the inconsistency was rela
tively higher in tropical forests, grasslands, and croplands (Wang et al., 
2022b). The probability of vegetation growth enhancement is highest in 
the plains where are dominated by croplands, most likely due to 
intensive agricultural activities such as irrigation and fertilizer uses 
(Chen et al., 2019; Sarmah et al., 2021). 

As advocated elsewhere, SIF (Jeong et al., 2017), NIRv (Badgley 
et al., 2017; Dechant et al., 2022), and LAI (Glenn et al., 2008; Myneni 
et al., 1997) are better than NDVI and EVI in tracking the change of 
vegetation productivity. Nevertheless, we do not find clear advantages 
of all of them in mountains. On the contrary, we demonstrate relatively 
lower consistency between GOSIF and MODIS GPP in the highlands 
where are dominated by grasslands and others. The phenomenon might 
be closely related to the poor data quality of all the remote sensing data 
in mountainous regions and the uncertainties of MODIS GPP product 
(see discussion later). Concurrently, the GOSIF may fail to capture the 
spatial details of vegetation growth in highly heterogeneous regions like 
mountains due to its coarse spatial resolution. In addition, the 

Fig. 6. Spatial distributions of the long-term change trends of the six remote sensing indices. Inserted line and pie charts show the trends of the mean value for the 
whole Nepal, and the area percentages of different trends. 
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contrasting sensitivities of GPP and SIF to environmental drivers (Song 
et al., 2018; Yang et al., 2022b) could also contribute to the discrep
ancies in their long-term trends. Our results show more increases in 

GOSIF than MODIS GPP in Nepal (Fig. 6e and f), agreeing well with 
previous findings at a global scale (Li and Xiao, 2019). 

Fig. 7. Area percentages of the different long-term trends for the six remote sensing indices by the 50-m altitude bin and land cover type.  

Fig. 8. Correlations of the long-term linear changing rates (scaled by 1000 times) among different remote sensing indices across the space. All the r values are 
significant at the 0.01 level (N = 4300, two-tailed test). Red line shows a linear fitted curve. 
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4.3. Other potential causes of the discrepancies in remote sensing data 

The discrepancies listed above can be further manifested. Data- 
quality control is of utmost importance to an effective application of 
remote sensing in mountains. For example, we summarized the data 
quality of the MODIS products being used in this study and find that the 
number of available data on average reaches 135 for the daily MCD43A4 
product during the growing season, which only accounts for 64% the 
total time periods. The data missing problem is overall more serious in 
the mid- to high-lands (Fig. 12a). Worse still, only 46% of the available 

data have good-quality values and the percentages decrease in a linear 
form with increasing altitudes. Though the number of data is nearly the 
same across the space for the gap-filled LAI and GPP products (Fig. 12b 
and c), the percent of good-quality data fluctuates greatly by the lati
tude, with relatively smaller percentages in the latitudinal bins from 
2000 to 2600 m or above 5500 m. By further distinguishing the causes of 
the poor-quality data, we find that clouds (especially in the high- 
elevation regions) and aerosols (especially in the lowlands) are the 
two major noises in the LAI products (Fig. 12d). Similarly, the cloud 
contamination is also mainly responsible for the poor-quality GPP 

Fig. 9. Possibility of vegetation growth enhancement or degradation according to the long-term trends of the six remote sensing indices (a–c), and the long-term 
vegetation growth trends in terms of vegetation greenness (G), cover (C), and productivity (P) (d, e, f). “↑”, “↓”, and “—” in panel d indicate “significant in
crease”, “significant decrease”, and “non-significant or uncertain”, respectively. 

Fig. 10. Comparison of the long-term trends in net primary productivity (NPP) with those in the six remote sensing indices. (a) Trend of NPP. (b) Consistency 
between the trends of NPP and GPP. (c) Correlations between the NPP (kg C m− 2 year− 1) and the six remote sensing indices across the space. The red- and orange- 
colored down arrows represent significant (p < 0.05) and non-significant decreases, respectively. The up arrows in dark and light green colors indicate significant (p 
< 0.05) and non-significant increases, respectively. 
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estimates since it leads to the failure of radiative transfer equation in 
generating the Look-up-Table (LUT) for the MODIS FPAR (Fraction of 
Photosynthetically Active Radiation) algorithm (Fig. 12e) — a main 
parameter of the MODIS GPP model. Though the poor-quality data have 
been cleaned and determined by linear interpolation in the year-end 
gap-filled products (Running and Zhao, 2021), the filled values can 
never represent the actual GPPs under cloudy sky conditions. The GOSIF 
data should have the same data quality problems because MODIS data 
were the key inputs for the GOSIF model (Li and Xiao, 2019). The poor 
data quality of certain largely contributes to the discrepancies among 
different indices in mountains, especially in STEF and TDF, and the 
highlands. However, it remains a debate whether we should use all or 
only “good quality” flagged pixels. Taking NDVI as an example, we show 
that about 13% of the study area would have no data for the entire 
growing season in one or more years if using only “good quality” data 

(Fig. 13a and b). The quality control has little impacts on the spatial 
distributions of the multiyear means (Fig. 13c), but strongly impacts the 
long-term trends. For example, only 46% of the total land pixels show 
the same change trends in terms of directions and significance levels 
(Fig. 13d–f). Appropriate filtering and reconstruction methods are rec
ommended in future efforts to reduce the impacts of data quality, but 
caution should be paid to the possible new errors introduced by the 
gap-filling algorithms themselves (Liu et al., 2017). 

Choices of seasonal scales and remote sensing-based models could 
also largely contribute to the inconsistency. On one hand, increases in 
greenness and cover can enhance growing-season carbon uptake, but not 
necessarily the annual total carbon storage (Linscheid et al., 2021). The 
relation between SIF and GPP is also proved to be seasonal-dependent 
(Pierrat et al., 2022). As a result, the consistency among different 
indices may differ by the seasonal scale. For example, we examined the 

Fig. 11. Consistency among the three greenness indices (i.e., NDVI, EVI, and NIRv) (a) or between the GPP and GOSIF (b). The trend was assumed to be “consistent” 
if all the indices changed in the same directions and significance levels. Otherwise, the trends are “inconsistent”. 

Fig. 12. Variations of the MODIS data quality by the 50 m altitude bin during the growing season averaged from 2000 to 2020. (a–c). The number of data and the 
percentage of “good quality” flagged data. (d, e) The number of the data contaminated by different noises. Since the data quality are nearly uniform for the red, near- 
infrared, and blue bands of MCD43A4 products, only the red band was shown in figure panel a. 
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Fig. 13. Comparison of the long-term NDVI trends with and without quality control. (a, b) Data availability with and without quality control. (c, d) Correlations of 
the multiyear means or long-term changes of NDVI after quality control (NDVI_QC) with those without quality control (NDVI_ALL) across the space. (b, f) Consistency 
between the NDVI trends with and without quality control. 

Fig. 14. Comparison of the vegetation growth dynamics between the growing season defined in this study (April to October) and the summer season (June to 
August). (a, b) Correlations of the multiyear means (the units of those indices are the same as that shown in figure panel c) and long-term change rates (scaled by 
1000 times) between the two seasonal scales. (c) Variations of the multiyear mean estimates of the six remote sensing indices by the 50-m altitude bin in the summer 
season. (d) Possibility of vegetation growth enhancement or degradation according to the long-term trends of the six remote sensing indices in the summer season (1, 
very likely increased; 2, likely increased; 3, probably increased; 4, uncertain; 5, probably decreased; 6, likely decreased; 7, very likely decreased). 
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spatial-temporal patterns of all the indices in summer (June to August) 
(Fig. 14). Results show that although the spatial distributions of the 
multiyear means (Fig. 14a and c) and long-term change rates (Fig. 14b) 
are overall consistent in different seasonal scales (r = 0.79 ~ 0.99, p <
0.001), the percentage of the lands with “likely or very likely” vegeta
tion growth enhancement (23%) in summer (Fig. 14d) is much lower 
than that (41%) in the growing season (April to October) defined in this 
study. On the other hand, large discrepancies might exist in the same 
kind of remote sensing index such GPP (Pei et al., 2022; Zhang et al., 
2019, 2015) and LAI (Fang et al., 2019) due to the disparities in model 
inputs and structure. To illustrate, we compared the GPP patterns 
revealed by MODIS product with that by three other GPP products 
including vegetation photosynthesis model (VPM) (Zhang et al., 2017b), 
two-leaf light use efficiency model (TL-LUE) (Bi et al., 2022), and a 
upscaled eddy covariance dataset created by Japanese National Institute 
for Environmental Studies (labeled as NIES) (Zeng et al., 2020) during 
their overlapping period from 2000 to 2016. We find large discrepancies 
of the GPP patterns, especially in the long-term trends (Fig. 15). The 
multiyear means from MODIS is overall lower than the other three 
products, particularly over the lower latitude regions (Fig. 15a and d). 
The lower estimates of MODIS GPP might be due to the poor represen
tativeness of the environmental stresses of soil moisture (Koju et al., 
2020; Stocker et al., 2019). The long-term change rates of MODIS GPP 
are weakly linked to that of all the other three products (r = 0.03 ~ 0.21) 
(Fig. 15b and d) on a per-pixel basis and on average even show an 
opposite tendency to some other products (Fig. 15c). 

In addition, vegetation growth patterns might differ greatly by data 
collections, satellite sensors, and platforms though they are beyond the 

scope of present research. For example, the version 5 MODIS data may 
underestimate the greening trend caused by the sensor degradation 
(Zhang et al., 2017a), while version 6 MODIS data may overestimate the 
greening trend due to the overcorrection in some regions (Lyapustin 
et al., 2014). A recent study by Liu et al. (2022) suggests that inconsis
tent pixels among three widely-used NDVI products (GIMMS (Global 
Inventory Modelling and Mapping Studies), SPOT/VEGETATION, and 
MODIS) account for three-fifths of the vegetated area in the High 
Mountain Asia due to the contrasting characteristics (e.g., band center 
and bandwidth, sensitivity of sensors, satellite orbit, and resolution) of 
different satellite sensors. To illustrate, we compared the vegetation 
growth dynamics revealed by the AVHRR (Advanced Very High Reso
lution Radiometer) based GIMMS (Pinzon and Tucker, 2014), SPOT/
VEGETATION and PROBA-V based CGLOPS-1 (Copernicus Global Land 
Operations “Vegetation and Energy”) (Smets et al., 2020), and 
MODIS-based (calculated in this study) NDVI products in Nepal during 
the overlap time periods of 2000-2015 (Fig. 16). Results show overall 
consistent spatial distributions of the multiyear means (Fig. 16a, e–g), 
but large inconsistencies in the long-term trends. The CGLOPS-1 prod
ucts present much more “significant increase” (accounting for 51% of 
the total lands) than the other two products (23~29%), and there are 
relatively low spatial consistencies between different NDVI products on 
a per-pixel basis (r = 0.12~0.50, N = 1752). Discrepancies can be also 
found in the same sensor onboard different satellite platforms. For 
example, we compared the growing-season MODIS NDVI estimates from 
Terra (MOD13A1) (Didan, 2021b) and Aqua (MYD13A1) (Didan, 
2021a) satellites during 2003 and 2020 and found some differences in 
both the multiyear means and long-term trends, especially over the 

Fig. 15. Comparison of the vegetation growth dynamics in term of GPP revealed MODIS with that by vegetation photosynthesis model (VPM, monthly, 0.05O ×

0.05O) (Zhang et al., 2017b), two-leaf light use efficiency model (TL-LUE, monthly, 0.05O 
× 0.05O) (Bi et al., 2022), and a upscaled eddy covariance dataset (labeled 

as NIES, 10-day, 0.1O × 0.1O) (Zeng et al., 2020) during the period from 2000 to 2016. (a, b) Spatial distributions of the multiyear mean values and long-term trends. 
(c) Long-term trends of the mean GPP in Nepal. (d) Correlations of the multiyear means and long-term changing slopes derived from MODIS data with that from the 
other three products. The MODIS data were aggregated to the same grid scales of the other three GPP products by a mean method when performed the comparison 
analysis. ** and * mean the trends or correlations are significant at the 0.01 and 0.05 levels, respectively. 
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middle to high lands (Fig. 17). In addition, they both exhibit smaller 
multiyear means (0.55~0.59 vs 0.62) and fewer “significant increase” 
(31~32% vs 42%) than the NDVI data calculated from the combined 
reflectance products (MCD43A4) in this study. These together highlight 
the importance of improving the remote sensing indices, model algo
rithms, and satellite sensors/platforms, and the necessity of combined 
uses of multiple indices when the better data are not yet available for 
monitoring mountainous vegetation dynamics. 

5. Conclusions 

This study provides a systematic comparison of six widely used 
remote sensing indices in characterizing the vegetation growth in a 
typical mountainous region. Our results indicate overall high consis
tency, especially between the EVI and NIRv, in capturing the spatial 
variations of the multiyear mean vegetation growth in mountains. The 
consistency differs by the altitude and land cover type, with the largest 

Fig. 16. Comparison of the growing-season vegetation growth dynamics revealed by the AVHRR based GIMSS NDVI3g (8 km, half-month), the SPOT/VEGETATION 
and PROBA-V based CGLOPS-1 NDVI (1-km, 10-days), and the MODIS NDVI calculated in this study (500 m, daily). (a-d) Multiyear means and long-term trends by 
100 m altitude bins. (e-j) Correlations of the multiyear means and long-term linear change rates across the space among different products. The long-term linear 
change rates are scaled by 1000 times. All the correlations are significant at the 0.01 level. The CGLOPS-1 and MODIS data are aggregated to a cell size of 8 km by a 
mean method to keep consistent with GIMMS data. 

Fig. 17. Comparison of the growing-season vegetation growth dynamics revealed by the NDVI data from Terra/MODIS (MOD13A1, 500 m, 16-days), Aqua/MODIS 
(MYD13A1, 500 m, 16-days), and that calculated from the combined reflectance products of both satellites (MCD43A4, 500 m, daily). (a–d) Multiyear means and 
long-term trends along the 50 m altitude bins. (e–j) Correlations among different NDVI data in terms of the multiyear means and long-term linear change rates (scaled 
by 1000 times) across the space. 
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consistency in the highlands which are dominated by grass and sparely 
vegetation. Also, we find prevalent non-linear relationships between 
greenness indices or GOSIF and LAI or GPP. In contrast, large in
consistencies exhibit in the long-term trends of vegetation growth across 
the space, though all the indices show a widespread greening tendency. 
The fraction of the lands in an “uncertain” trend increases sharply by the 
rise of elevation in the mid- to high-lands, with a clear “cliff” between 
1500 and 2000 m . The non-significant changes of all the indices in the 
study period mainly contribute to the trend uncertainties, especially in 
the highlands. The inconsistency between greenness and productivity 
indices (particularly in the lowlands which are dominated by the STEF 
and TDF) and in them (particularly between the productivity indices of 
GPP and SIF) further increase the discrepancies. Those discrepancies 
will be further cascaded when considered the quality-control methods, 
seasonal scales, product models, data collections, and satellite sensors/ 
platforms. Although this study emphasizes the inconsistency, the syn
chronized changes of all the remote sensing indices in few areas echo the 
strong impacts of agriculture (increase) and urbanization (decrease) on 
the vegetation growth in Nepal. Future efforts should be tailored to 
explore the mechanisms behind the inconsistencies, apply reinforced 
remote sensing data or ground-based experiments to determine which 
indicator is more accurate, improve model algorithms of existing 
indices, and/or develop new remote sensing indices in mountainous 
regions. 
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