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Abstract Eastern hemlock (Tsuga canadensis) occupies a large swath of eastern North

America and has historically undergone range expansion and contraction resulting in

several genetically separate lineages. This conifer is currently experiencing mortality

across most of its range following infestation of a non-native insect. With the goal of better

understanding the current and future conservation potential of the species, we evaluate

ecological differences among populations within these genetically defined clusters, which

were previously inferred using nuclear microsatellite molecular markers from 58 eastern

hemlock populations. We sub-divide these clusters into four genetic zones to differentiate

putative north-central, north-east and southeast (SE) and southwest evolutionary lineages

in eastern hemlock. We use demographic data (relative abundance, mortality, and seedling

regeneration) from the Forest Inventory Analysis program in conjunction with environ-

mental data to model how these lineages respond to current and future climatic gradients.

Ecologically meaningful relationships are explored in the intraspecific context of hemlock

abundance distribution and then related to genetic variation. We also assess hemlock’s

colonization likelihood via a long distance dispersal model and explore its future genetic

and ecological conservation potential by combining the future suitable habitats with col-

onization likelihoods. Results show that future habitats under climate change will markedly
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decline for eastern hemlock. The remaining areas with higher habitat quality and colo-

nization potential are confined to the SE, the genetic zone nearest the species’ putative

glacial refugia, pointing to the need to focus our conservation efforts on this ecologically

and genetically important region.

Keywords Genetic variation � Environmental variation � Intraspecific
variation � Genetic zones � Evolutionary lineages � Climate change

Introduction

Eastern hemlock (Tsuga canadensis [L.] Carr.) is a widespread tree species in the eastern

United States and Canada, occupying multiple forest types and preferring loamy, cool,

moist, well-drained, and acidic soils throughout its range (Godman and Lancaster 1990).

This slow-growing conifer is threatened by an invasive insect pest, hemlock woolly adelgid

(HWA, Adelges tsugae Annand), which has caused widespread mortality in many regions,

so far negatively impacting approximately 50% of the hemlock ecosystems within the

United States (McClure et al. 2003; United States Department of Agriculture, Forest

Service 2015). Because eastern hemlock plays a vital role in maintaining water quality and

is a component of unique floral and faunal assemblages (Heard and Valente 2009;

Spaulding and Rieske 2010; Ford and Vose 2007), its declining status is the subject of

diverse studies aimed at mitigating the effects of HWA via genetic, biological, silvicultural

and chemical intervention (Cheah et al. 2004; Ward et al. 2004; Jetton et al. 2008;

Montgomery et al. 2009). Of particular interest is the need to identify resilient and

adaptable provenances of hemlock to restore populations degraded by HWA and other

human-induced stressors like climate change (Schaberg et al. 2008).

Like most outcrossing, wind-pollinated trees, eastern hemlock is distributed widely in

the eastern United States and demonstrates morphological variation at multiple scales

(Olson and Nienstaedt 1957; Nienstaedt and Olson 1961), including two distinct types with

respect to growth rate, morphology, and macroclimatic variation (Kessell 1979). Linking

geographically structured morphological variation of eastern hemlock to genetic variation

to unravel patterns of phenotypic traits is a challenge because both genomic and epige-

nomic factors interact with the environment to influence the biological phenotype (Lou

2014). For example, population differentiation can be caused by environmentally induced

phenotypic plasticity responses and by genetically induced adaptation effects, as well as by

an interaction between the two (Andrew et al. 2010). Non-additive genotype by environ-

ment (GxE) differentiation among populations at a macroscale can be reflected by within

and among population means of demographic, genetic, and environmental variables (Zenni

et al. 2014). Also, in a conservation setting, GxE interactions can lead to poor seed-choices

for restoration and can complicate the design of provenance studies—but can also offer

opportunity to select specific genotypes for specific environments (Murillo 2001; Baltunis

et al. 2010).

Because of these considerations, the conservation of eastern hemlock requires an

understanding of range-wide population genetic structure including distribution of genetic

variation within and among populations. An in-depth study tracking these factors was

previously performed using 13 highly polymorphic nuclear microsatellite loci on 60

populations throughout its range (Potter et al. 2012). This study used spatially explicit
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Bayesian clustering to identify the potential existence of four distinct evolutionary lin-

eages, each putatively associated with a different Pleistocene glacial refuge in the south-

eastern US, from which followed a post-glacial movement to the Northeast and the Great

Lakes region. The existence of these lineages was also supported by other studies using

allozyme markers (Potter et al. 2008) and seven haploid chloroplast DNA loci (Lemieux

et al. 2011). Information from such within-species molecular-marker derived genetic lin-

eages has the potential to provide more realistic predictions of habitat suitability than do

projections conducted across the entirety of a species (Gotelli and Stanton-Geddes 2015).

For example, delineation of potential climate niches for within-species evolutionary groups

can provide managers insight into managing genetic variability to encourage the best fit on

local landscapes under expected future climatic conditions (Shinneman et al. 2016).

Our main purpose in this paper is to further the knowledge gained by genetic studies by

combining it with macro-scale intraspecific demographic and environmental models

(Prasad 2015) to better understand the conservation potential of the species by taking both

genetic and environmental variation into account (Alsos et al. 2012). Specifically, we aim

to determine the degree to which different evolutionary lineages of eastern hemlock are

associated with different environmental factors, and to then use this knowledge to prioritize

populations for both in situ and ex situ conservation and for restoration. In the process, we

examine various indices that highlight the diversity of these evolutionary lineages along

genetic, ecological, and demographic gradients (Gotelli and Stanton-Geddes 2015). In our

study, we are not focusing on the phenotypic differences along environmental gradients

(because we can’t assess these with neutral genetic markers like microsatellites) but rather

the abundance differences (treated as rough surrogates for fitness—see Nagaraju et al.

2013) correlated with suitable habitats.

Methods

The current effort builds on two aspects of the previous study (Potter et al. 2012)—(a) the

genetic indices of population diversity and differentiation, and (b) population clusters

depicting potential evolutionary lineages. We then add an ecological dimension by eval-

uating the role of environmental factors to assess the abundance of eastern hemlock within

genetic lineages. In the process, we divided the abundance distribution of hemlock into

four genetically derived and geographically separated intraspecific regions based on the

genetically inferred population clusters to conduct further environmental and demographic

analysis using information from U.S. Forest Inventory and Analysis plots, which are

sampled at a much higher spatial intensity (Smith 2002; Bechtold and Scott 2005;

Woudenberg et al. 2010). We looked at demographic and genetic variation among and

within the zones and constructed decision-tree based ensemble models to identify differ-

ences in abundance patterns among and within these zones under current and future climate

conditions (Prasad et al. 2016). We also evaluated realistic future migration and conser-

vation possibilities via a spatially explicit model which relies on historical migration rates

to simulate current colonization likelihoods (Prasad et al. 2013). All statistical analyses,

and most GIS analyses, were conducted in R 3.3.2 (R Core Team 2016), and maps ana-

lyzed and produced in Qgis 2.18.3 (Quantum GIS Development Team 2016) and ArcGIS

10.3.1 (ESRI 2015).
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Derivation of genetic variables

Foliage samples were collected from 60 eastern hemlock populations (consisting of 1180

trees) as described in Potter et al. (2012), which represented most of the hemlock range in

the eastern United States; these samples subsequently were genotyped for 13 highly

polymorphic microsatellite markers developed for eastern hemlock (Shamblin et al. 2008)

and Carolina hemlock (Josserand et al. 2008). All but two of the populations encompassed

20 sampled trees (the two exceptions were very small disjunct populations with 15 and 5

samples), with sampled trees spaced at least 100 m apart to avoid the sampling of

neighbors that might be closely related. All stands were natural, not planted.

Our first objective was to evaluate how well both genetic diversity indices (derived from

the molecular markers) and the environmental variables can predict the abundance of

hemlock. This investigation sheds light on whether population differentiation measures,

together with climatic gradients, can explain the abundance of hemlock to any significant

degree. To accomplish this, the coordinates of 58 eastern hemlock populations (consisting

of *1100 trees in the United States) were buffered at a distance of 9 km (using the

function gBuffer in rgeos package in R) to ensure non-intersection with other buffers. The

buffers around the sampled populations were used to extract abundance, climatic, topo-

graphic, and edaphic variables, and a predictive model then was developed to test the

importance of the genetic and environmental variables in predicting hemlock abundance

within the buffer.

Response variables

Abundance was estimated by averaging the average diameter of the hemlock stems on the

FIA plots because this dominance metric represents a species-specific measure of absolute

abundance in contrast to relativized measures of abundance like importance values, which

incorporate interactions of other species in the plot (Pulliam 2000; Soberon and Peterson

2005; Godsoe 2010). We also derived percent mortality (PM, based on whether the

sampled tree was alive or dead, averaged over the plot) and seedling count (SC, number of

seedlings\1 inch in diameter and at least 12 inches tall, averaged over the plot) from the

FIA data for the four zones. These three demographic measures together provide a rough

measure of the ‘‘overall fitness’’ of the species (Nagaraju et al. 2013).

Models

We developed a model to test how well molecular marker data and environmental variables

can predict hemlock abundance. This model was based on a decision tree based ensemble

method called RandomForest (RF) (Breiman 2001). RF has been used extensively to make

reliable predictions for multidimensional data that are nonlinear and exhibit interactions

(Lawler et al. 2006; Prasad et al. 2006; Cutler et al. 2007).

However, in order to predict the FIA-derived abundance of hemlock based on envi-

ronmental data for the entire range as well as the genetic clusters, a more sophisticated

multi-model ensemble (henceforth, MME) approach was used in which four decision-tree

based models were combined to arrive at an average prediction. The four models were

computed in R and reflect robust statistical learning algorithms with a proven track record:

RandomForest (randomForest package in R) (Breiman 2001), extremely randomized trees

(extraTrees package in R) (Geurts et al. 2006), stochastic gradient boosting (gbm package
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in R) (Friedman 2002), and regularized gradient boosting (xgboost in R) (Chen and He

2015; Chen and Guestrin 2016). We used repetitive resampling via the caret package in R

to optimize the tuning parameters of these four predictive models (Kuhn 2008).

The random forest approach is a very well-known solution to the overfitting problem in

individual decision trees by building a forest of decision trees from bootstrapped data and

further de-correlating it by randomly choosing a subset of predictors to reduce variance and

maintain a favorable bias-variance ratio. The extremely randomized forest (ERF) approach

takes this one step further by randomizing the feature selection (split and threshold). While

RF chooses the ‘best’ split at each node, ERF creates p splits randomly (i.e., independently

of the response variable, p being the subset of predictors randomly chosen in each node)

and then the split with the best gain (mean squared error for regression) is chosen. The

rationale for ERF is that by randomizing the selection of split, the variance is reduced even

further compared to the RF. However, ERF typically uses the entire learning sample

instead of the bootstrapped sample to grow the trees in order to reduce bias (Geurts et al.

2006). The R package gbm implements the well-known stochastic boosting algorithm

(Friedman 2002). Boosting is a method of iteratively converting weak learners to a strong

one (in our case using decision trees). Boosting initially builds a base learner after

examining the data and then reweights observations that have higher errors. Stochastic

gradient boosting reduces variance by shrinkage (regularization) and stochasticity in which

each newer iteration of the decision tree model learns from the previous one (minimizing

residuals weighted by the previous model’s errors based on a shrinkage parameter).

Xgboost is another slightly different approach to boosting which differs in the way reg-

ularization is implemented, improving on its ability to control overfitting (Chen and

Guestrin 2016).

The rationale behind using an ensemble of models is to leverage the strengths of these

powerful learning algorithms (whose strengths and weaknesses depend on the training set)

to build an average prediction model that better reflects the consensus (Jones and Cheung

2015; Martre et al. 2015). Because demographic, genetic, and environmental data have

inherent interactions and nonlinearity, the MME approach typically performs better than an

individual model due to the averaging out of errors (Zhang et al. 2015). Furthermore the

MME approach further resists overfitting the data and maintains a favorable variance-bias

ratio (Hastie et al. 2009), which is critical in minimizing the prediction error while

extrapolating current prediction to future climates.

Genetic-environmental analysis

We first wanted to assess the variance explained, and also the relative importance of

genetic and environmental variables in predicting abundance across the 58 eastern hemlock

populations (see the ‘‘Derivation of genetic variables’’ section). In order to do that we used

three versions of the RandomForest model (Tables 1, 2) using three different sets of

variables: (a) climate variables only (growing season aridity index [GSAI], January tem-

peratures [TJAN], May–September temperature [TMAYSEP] and May–September pre-

cipitation [PMAYSEP]); (b) genetic and HWA presence variables only (mean alleles per

locus [A], unique alleles [AU], effective number of alleles [AE], percent polymorphic loci

[PP], observed heterozygosity [HO], expected heterozygosity [HE], mean pairwise chord

distance from all other populations [MEAN_DC], inbreeding coefficient [FIS], proportion

of the genetic variance contained in the population relative to the total genetic variance

across all possible pairwise population comparisons [MEAN_FST], and whether the pop-

ulation was in a county infested by hemlock wooly adelgid [HWA]) by 2010 (Potter et al.
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Table 1 The predictors used in the local and global model with sources

Climatea

TJAN/tjan Mean January temperature (�C)
TMAYSEP/tmaysep Mean May–September temperature (�C)
PMAYSEP/pmaysep May–September precipitation (mm)

GSAI/gsai Growing season aridity index (May–September)

Elevationb

ELVMAX/elvmax Maximum elevation (m)

ELVSD/elvsd Elevation standard deviation

Soilc

CLAY/clay Percent clay (\0.002 mm)

OM/om Organic matter content (% by weight)

pH/ph Soil pH

SIEVE10/sieve10 Percent passing sieve no. 10 (coarse)

SIEVE200/sieve200 Percent passing sieve no. 200 (fine)

a Data for the period 1981–2010 from (PRISM Climate Group), GCM data from NEX-DCP30 (Thrasher
et al. 2013)
b From the NASA’s Shuttle Radar Topography Mission provided at a resolution of 300 (Guth 2006). We
calculated the maximum value and standard deviation at 10 and 20 km2 grids
c From Natural Resource Conservation Service’s County Soil Survey Geographic (SSURGO) database
(NRCS 2009). Data was processed by (Peters et al. 2013) and aggregated to 10 and 20 km2 grids

Table 2 Explanation of the acronyms for the genetic indices

A Mean number of alleles present in each population across the 13 microsatellite loci

AU Number of unique (private) alleles found in the population (i.e., occurring only in that
population)

PP Percent polymorphic loci (percent of the 13 microsatellite loci for the population that have
more than one allele)

HO Observed heterozygosity (observed proportion of heterozygotes [loci for which there are two
different alleles], averaged over loci)

HE Expected heterozygosity (heterozygosity expected if the population is in Hardy–Weinberg
equilibrium, a null hypothesis for testing whether populations have undergone certain
genetic processes)

AE Effective number of alleles (based on the expected heterozygosity)

MEAN_FST Mean pairwise FST value between a population and all other populations. FST is the
proportion of the total genetic variance contained in a subpopulation relative to the total
genetic variance. (Values can range from 0 to 1. High FST implies a considerable degree of
differentiation among populations)

FIS Inbreeding coefficient (proportion of the genetic variance in the subpopulation contained in
an individual). High FIS indicates a considerable degree of inbreeding

MEAN_DC Mean pairwise genetic chord distance for a population with all other 59 populations. High
values indicate high levels of genetic differentiation

HWA Whether hemlock woody adelgid present (0 | 1)

These were derived from Potter et al. (2012)
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2012); and (c) both climate and genetic variables. The climate variables were chosen to

reflect the most parsimonious set that best explained variance based on previous screening

experience (Prasad et al. 2016). The genetic variables were chosen to represent a wide

variety of metrics that describe within-population genetic diversity and between-popula-

tion genetic differentiation. They were all standard measures of genetic diversity based on

allele size calls at the 13 polymorphic microsatellite loci, calculated using FSTAT version

2.9.3.2 (Goudet 1995), Arlequin 3.0 (Excoffier et al. 2005), and PHYLIP 3.6 (Felsenstein

2005). For more details, see Table 2.

Genetic zones

Another objective of our analyses was to evaluate the demographic, genetic, and envi-

ronmental differences among the geographic zones determined based on the molecular-

marker-inferred evolutionary lineages (Potter et al. 2012). TESS 2.3.1 (Chen et al. 2007), a

spatially explicit Bayesian clustering model, inferred the number and composition of

genetic clusters in eastern hemlock using the microsatellite genotypes for each of the

*1180 individual trees. This clustering model generates a large number of Markov Chain

Monte Carlo simulations for multiple runs across a set of possible cluster numbers (K = 2

Fig. 1 The existence of distinct genetic clusters was consistent with range contraction and expansion in
eastern hemlock as inferred by TESS Bayesian clustering approach (Chen et al. 2007). The figure shows the
proportion within each eastern hemlock population of inferred ancestry from the genetic clusters (one for
each color) suggesting that species was mostly confined to three or four separate glacial refuges in the
Southeastern United States—since these clusters contain the all the ancestry except the Southwest cluster,
which is rather unique (Potter et al. 2012)
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to K = 12 in this case), with the mean deviance information criterion (DIC) results across

runs used to select the most likely K. In this case, TESS inferred the existence of four

genetic clusters, with all four detected in the southern part of the range but only one

common in the north (Fig. 1). Informed by the proportion of these genetic clusters within

each of 58 eastern hemlock populations in the United States and by the distribution of FIA

plots, we delineated four genetic zones for further analyses (Fig. 2). The zones were

delineated to match the extent of the TESS clusters to the degree possible (along with

density of FIA plots and the microsatellite-populations—Fig. 2), though it is important to

note that admixture among genetic clusters within populations made the delineations

somewhat subjective in some cases. For example, because the original clustering analysis

suggested high levels of admixture between the North and the Southeast clusters (Potter

et al. 2012), we created analysis zones that widely separated an area of highest Southeast

cluster prevalence (the SE zone) from areas consisting almost entirely of the North genetic

cluster. These North genetic cluster areas were divided into two zones, one in the

Northeastern states (the NE zone) and one in the Northcentral states of Michigan and

Wisconsin (the NC zone), because of the wide geographic separation of these areas. Areas

of highest prevalence of the South-Central genetic cluster were separated into a south-

western (SW) analysis zone. The isolated Southwest cluster in Alabama in the original

TESS analysis (Fig. 2) was not included in our analyses due to the paucity of FIA plots

containing hemlock in the area.

Fig. 2 The original polygonized TESS clusters (blue outline) are subset to Northcentral (NC), Northeast
(NE), Southwest (SW) and Southeast (SE) zones to reflect FIA plots density and geographic separation (the
red areas). We discount the original extreme Southwest outlier cluster because of the small size and few FIA
plots. The yellow stars are the sampled microsatellite populations
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Genetic-zone analysis

The differences in demographic, genetic, and environmental variables among the genetic

zones were compared using Tukey’s honest significance test (Tukey HSD) in conjunction

with ANOVA to find means that are significantly different from each other. The obser-

vations from the zones are assumed to be independent within and among the zones,

normally distributed, with homogeneity of variance. We also assume spatial independence

among the zones because the populations are not highly genetically related and there is

wide separation between the zones except for the SE and SW.

For a comparative model analysis of these genetic zones, we created an abundance

raster (average diameter rescaled to 0–100) at 20 km resolution based on FIA plots and

assembled environmental variables (climate, soil, and topographic) (Table 1). The global

model involved prediction of eastern hemlock across its entire range for current and future

climates. Because of the importance of the SE zone as putative refugia, it was modelled

separately using a buffer of 200 km to test how this zone might behave under future

climates. Both the global and local SE models were based on the MME approach described

previously.

To assess how the climatic space varied with abundance among the genetic zones, we

also prepared niche maps that display average diameter based on growing season pre-

cipitation and January temperatures (Online Supplementary Figs. A2, A3). We also

evaluated how hemlock fared when combining future predicted habitats of the global

model with colonization probabilities calculated from a spatially explicit model assuming

an optimistic migration rate of 50 km/century, which is at the high end of the estimated

migration rates for some eastern US tree species (McLachlan and Clark 2004; Yansa 2006;

Svenning and Skov 2007; Dobrowski 2011).

Global and local models

For the global model and the local models, we drew on our previous experience with

ensemble models (Prasad et al. 2006, 2016; Iverson et al. 2008). We screened the predictor

variables that explained most of the variation in the model and chose a parsimonious set of

11 variables (Tables 1, 2). We found these variables to be the most relevant and ecolog-

ically important for explaining the variation in abundance at a resolution of 20 km, and

were least affected by collinearity. The selected climatic variables address two key tem-

perature-based constraints to tree species ranges—growing season temperature (May–

September) and the temperature of the coldest month (January). An aridity index, which is

the ratio of May to September precipitation to the potential evapotranspiration index

(Thornthwaite and Mather 1957), along with growing season precipitation, adequately

captures the moisture constraint (Bucklin et al. 2015; Pederson et al. 2015). We retained

two elevation-based variables (maximum elevation and elevation standard deviation

averaged over the 20 km pixels) because these variables are useful in distinguishing

between low and high elevation areas and between those populations that prefer habitats

with rugged or gentle terrain. The current climate data were obtained for the period

1981–2010 from the PRISM climate group (PRISM 2017; Daly et al. 2008). For future

climate, we used ‘‘harsh’’ and ‘‘mild’’ scenarios describing predicted future greenhouse gas

emissions. We chose the Hadley Global Environment Model (HAD, Jones et al. 2011), and

a representative greenhouse gas emissions concentration pathway (RCP 8.5) (Meinshausen

et al. 2011) as the ‘‘harsh’’ scenario because it depicted the largest increase in temperature
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illustrating a scenario of business as usual; it was chosen to estimate the upper end of

potential changes in climate. For the ‘‘mild’’ scenario, we chose the Community Climate

Systems Model (CCSM4—Gent et al. 2011) under the representation concentration

pathway of RCP 4.5 to illustrate the utility of greenhouse gas mitigation efforts.

We also derived a mapped decision tree by extracting the tree rules based on the 20 km

resolution decision tree (pruned to nine nodes based on cross-validation) and mapping

them to a 10 km abundance map. This helps us understand the predictor rules that drive the

distribution of eastern hemlock at a higher resolution based on the rules at a coarser

resolution (Prasad 2015).

Dispersal model

A spatial simulation model (SHIFT) was used calculate colonization likelihoods based on

dispersal under current fragmented landscapes. SHIFT runs at a 1 km resolution and

simulates dispersal via a fat-tailed inverse power function and calculates future colo-

nization likelihoods based on historical tree migration rates and current fragmented

landscapes (Schwartz 1993; Iverson et al. 2004; Prasad et al. 2013). The two main

parameters affecting the migration are the calibration constant (C) that simulates the

historical migration and the generation time of eastern hemlock (with a selected value of

three to span approximately 100 years to coincide roughly with future climate habitat

predictions obtained from the RandomForest model).

The range boundaries for eastern hemlock are derived from the latest FIA annualized

data. A technique based on ESRI’s (2015) ‘‘delineate built-up areas’’ tool and the aggre-

gated abundance of FIA plots was used to generate an estimate of the ‘core’ species

boundary (Peters et al. 2013). This ‘core’ boundary, based on the current species distri-

bution, was used to depict the source region across which propagules are launched in the

SHIFT model. Forested cells from within the core species boundary (‘‘source’’) are

modeled to contribute propagules into forested cells outside the boundary (‘‘sink’’). The

source strength is a function of both the propagule production and dispersal capability

across the boundary. Locations with higher species abundance and closer proximity to the

boundary will create the highest colonization probabilities near the current boundary. Sinks

are forests or woodlots of varying degrees of fragmentation of forest (defined as 1-km

pixels with at least 10% forest in the United States Geological Survey’s 2006 National

Land Cover Data) that provide possible locations for the propagules to colonize under

current and future climates. The predicted suitable habitats of eastern hemlock provide the

future (*2100) suitability of the sink habitats based on projected abundance.

SHIFT is calibrated through trial runs to achieve migration rates ranging from

approximately\25 to[100 km per century (depending on criteria of model runs) under

high forest availability (80% cover, approximately representing the landscape under pre-

settlement conditions), but with the current level of species abundance. We used a

migration rate of 50 km/century for eastern hemlock to test how this optimistic assumption

would affect the colonization of suitable habitats.

We classified the predictions of suitable habitats (from the abundance models) and the

colonization likelihoods (from the SHIFT model) to assess combinations of habitat-quality

(HQ) classes (Low, Medium and High) and colonization-likelihood (CL) classes (Low,

Medium and High). The resulting classification results in nine combinations of (HQ–CL)

classes (Low–Low, Low–Med, Low–High, Med–Low, Med–Med, Med–High, High–Low,

High–Med and High–High) which define the degree of suitability for future conservation
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and restoration efforts by combining future suitable habitats with the colonization potential

of these habitats.

Results

Population genetic analysis

Our first objective was to investigate geographic differences in the genetic diversity indices

previously calculated from the 58 populations throughout the range of eastern hemlock

(Fig. 1) in the eastern US. This evaluation uses range-wide population-level genetic indices

derived from microsatellite data to assess whether they can account for differential

abundance of hemlock by itself and in association with climatic variables. The assumption

here is that the buffered FIA plot locations (see ‘‘Methods’’ section) can be used to

construct models to assess eastern hemlock abundance using (a) climate variables,

(b) genetic variables and (c) both climate and genetic variables (Supplementary Material

Appendix 1, Fig. A1). Climate alone provides a good fit, explaining 45% of the variance in

abundance, and with GSAI, TMAYSEP and TJAN providing most of the explanatory

power (Supplementary Material Appendix 1, Fig. A1a). Interestingly, using only genetic

variables explained an even higher proportion of the abundance variance (54%) with

MEAN_DC, MEAN_FST, HE, AE and A explaining bulk of the variation (Supplementary

Material Appendix 1, Fig. A1b). When both climate and genetic variables were combined,

the variance explained increased to 61% with MEAN_DC and GSAI explaining a major

portion (40%) of it (Supplementary Material Appendix 1, Fig. A1c).

Differences among genetic zones

The differences in demographic and environmental variables among the four genetic

zones—north central (NC), northeast (NE), southeast (SE) and southwest (SW)—(see

Fig. 2) that were derived from the original TESS genetic clusters are shown in Tables 3

and 4 (see ‘‘Methods’’ section). The mean values of demographic variables (average

diameter—AD, percent mortality—PM, seedling count—SC) vary among the zones

Table 3 The differences in the mean values of the demographic variables average diameter (AD), percent
mortality (PM) and seedling count (SC) among the genetic zones

Tess clusters No. of FIA plots ADa* PMb* SCc*

NC 1035 10.6 7.8 2.1

NE 1943 8.6 4.7 4.2

SE 464 7.1 4.3 1.5

SW 215 7.5 6.6 2.9

The asterisk shows that the mean was significant at p B 0.05. The significant differences in mean between
zone combinations are also shown

NC Northcentral, NE Northeastern, SE Southeastern, SW Southwestern
a (NE–NC, SE–NC, SW–NC, SE–NE, SW–NE)
b (NE–NC, SE–NC)
c (NE–NC, SE–NE)
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(significance tested via both ANOVA and Kruskal–Wallis test), which are further analyzed

using the Tukey HSD test to assess which zone combinations of the means are significantly

different (Table 3). AD is significantly different between all pairs of zones except SW–SE.

All three variables were significantly different between NE and NC, while the PM mean

different is significant for SE and NC, and mean SC is significantly different between SE

and NE. The differences among means for all environmental variables are also significant

(Table 4). The NE and NC zones are fairly similar with respect to climatic variables, while

the SE and the SW zones are warmer (TJAN and TMAYSEP), in line with the latitude of

the zones. The SE zone has the highest elevation (ELVMAX) and the most rugged terrain

(ELVSD). Among the edaphic variables, organic matter content (OM) is highest for NC

and quite high for NE compared to the low values for SE and SW; however, CLAY is

much higher in the SE and SW compared to NE and NC. The soils are more basic in the

NC with pH of 6.2 compared to much lower values in the rest of the zones.

We also compared the genetic diversity metrics and HWA presence across these zones

to assess evidence of population differentiation, although we had to rely on the much

sparser subset of the 58 hemlock population locations sampled for microsatellite analysis

(Table 5). Again, significant differences exist for most of these variables among the

genetic zones, except for AU, FIS and HWA. Again, the Tukey HSD test was used after

ANOVA to assess which zone combinations are significant for these variables (Table 5).

Worth noting is that the SE zone, which may be nearest to the location of one or more of

eastern hemlock’s putative glacial refugia, showed the highest values of A, PP, HE and AE.

Also, as expected, populations within the two most widely geographically separated zones,

the SW and NC, had the highest mean level of pairwise differentiation with all other

populations (Mean FST and Mean DC).

It is clear from the above analyses that the distribution of hemlock shows patterns of

genetic and environmental differentiation that are significant among these four genetic

zones, which paves the way for a more robust model-based analysis of hemlock abundance

among these zones along environmental gradients.

The global abundance model

The global (entire eastern US distribution) MME approach (Fig. 3) shows overall decrease

in suitability of eastern hemlock by *2100—especially for the harsh climate scenario (the

overall R-square was 0.53). The boosting models (gbm and xgboost packages in R) had

ELVSD (21%), TMAYSEP (20%), TJAN (16%) and CLAY (10%) as the four most

important variables while the randomization based models (RandomForest and extraTrees

packages in R) had TMAYSEP (23%), TJAN (16%), ELVSD (12%) and GSAI (9%) as the

four most important variables. Both sets of analyses highlight that temperature is the most

influential predictor overall (36% for boosting models and 48% for random forest models).

ELVSD was important too, underscoring that hemlock is more likely to grow in the cool,

moist locations found in the cooler regions of topographically rugged terrain. Because of

the importance of climate, and especially temperature, the distribution under future cli-

mates shows decreases in suitable habitat for eastern hemlock under both the harsh (HAD

RCP8.5) scenario and mild (CCSM4 RCP4.5) scenario, albeit less so under the mild

scenario (Fig. 3). The habitat suitability also decreases inside the range of current hemlock

distribution. The future high quality suitable habitats are mainly confined to the northeast

and some portions of the southeast for the mild climate scenario, while the best ones are

only in the ‘‘LowMedium’’ class for the harsh scenario. While global models are good at

assessing the overall pattern of habitat changes for the entire distribution of eastern
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hemlock abundance, it is useful to assess how the MME approach for the buffered SE zone

would differ from the global pattern. We are most interested in the SE zone in spite of the

fact that the Northeast region has more suitable habitats. This is because it is very likely

that the Pleistocene glacial refuges were in the Southeastern US based on the distributional

pattern of the genetic clusters (Fig. 1) and therefore this region qualifies to be a main focus

for genetic conservation efforts. The model output for the SE (overall R-square of 0.56)

depicts movement of the suitable habitats towards the northeast for both the harsh and the

mild scenario, although the habitat quality falls mostly under the very low and low-

medium suitability classes (Fig. 4). The mild scenario also shows some locations east of

the SE zone, albeit of very low suitability. ELVMAX (35%), ELVSD (16%), TJAN (14%)

and TMAYSEP (9%), PMAYSEP (5%) are the most important variables that together

explain 79% of the total variation for combined the boosted and randomized models.

Topography (ELVMAX and ELVSD) becomes very important in the SE zone, accounting

for 51% of the total variation.

The mapped decision tree (Fig. 5) shows the distribution of abundance based on the

predictor rules of a single decision tree pruned to nine nodes based on cross-validation.

This is useful for understanding patterns of differentiation of abundance in the predictor

space. The predominant abundance distribution in the NE zone is defined by node 9

(magenta) which has the highest average diameter of 12.34 inches. The NC zone is

Fig. 3 The global multi-model ensemble outputs for the entire eastern hemlock habitats using Forest
Inventory Analysis (FIA) plots aggregated to 20 km. Top left is actual FIA based distribution, top right is
future mild climate habitats and bottom is the future harsh climate habitats (*2100). The high and the very
high classes are absent under future climate scenarios pointing to a decrease in abundance under future
climates
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Fig. 4 The model ensemble results for the Southeast genetic zone, buffered to a distance of 200 km. The
red line shows the current FIA distribution, the blue line the SE zone and the black thicker line the limit of
the buffer

Fig. 5 Mapped decision tree. The terminal node numbers (numbers inside rounded circles) in the decision
tree correspond to the classes in the map legend. In order to understand what predictor rules are driving the
distribution of hemlock, we trace the decision tree rules from the terminal node. For example, the rule that
corresponds to the highest abundance predicted (terminal node number 9 (magenta), average diameter of
12.34) has the rule TMAYSEP\ 17.62 C and ELVSD[ 34.4 and TJAN[-10.9 C and CLAY\ 14.55%.
The numbers below the terminal nodes correspond to the average response (in this case average diameter)
and the number below that is the number of cells in the map (339 for class 9)

2238 Biodivers Conserv (2017) 26:2223–2249

123



dominated by node 5 (light blue, with average diameter of 2.6 inches) and node 4 (dark

green, with average diameter of only 0.97 inch). The predictor rules defining these dis-

tributions can be traced within the decision tree (Fig. 5). The area with highest abundance

(12.34 inches in average diameter) tends to be on the cooler side (TMAYSEP\ 17.62 C),

but not too cold (TJAN[-10.9 C)—with rugged terrain (ELVSD[ 34.4) and not too

clayey soils (CLAY\ 14.55%).

In order to understand how the variation in temperature and precipitation (TJAN and

PMAYSEP) affects the abundance across the zones, we constructed what we term the

niche diagrams (Supplementary Material Appendix 1, Figs. A2, A3). Abundance varies

within the range of climatic possibilities across these zones with the NC zone being the

driest and coldest compared to the SE zone, which is the warmest and wettest. The more

detailed versions of these diagrams (Supplementary material Appendix 1, Fig. A3) depict

the variations with greater clarity, highlighting areas of highest abundance (the narrow

bands) for these climatic variables. For example, within the SE genetic zone, there is a

large area of higher abundance when January temperature is low (-2 to 0 �C approxi-

mately) and the May–September precipitation is between 750 and 850 mm.

Future habitat quality and colonization potential

Whilst the analysis so far shows how the abundance of hemlock decreases, especially

under the future ‘‘harsh’’ climate, this in effect depicts changes only in suitable habitats

without considering the migration potential of the species. By running the SHIFT model

for the east-wide distribution of hemlock, we were able to calculate the colonization

likelihoods of suitable habitats by 2100. Even under an optimistic migration rate of

50 km/century, the colonization likelihoods drop off rapidly with distance (Fig. 6). Run-

ning SHIFT for the entire eastern hemlock distribution (Fig. 6, left) and for just the genetic

zones (Fig. 6, right) reveals some interesting patterns. These maps show that most of the

movement (including gene exchange between genetic zones) outside the current range of

hemlock happens between the SE and the SW zones; however, there also is potential for

Fig. 6 The SHIFT model showing colonization likelihoods in *2100 for eastern hemlock. The entire
eastern hemlock distribution (left) and only the genetic zones (right)
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enhanced exchange of genes between the NE region and the northeastern segment of the

SW zone in the future.

In order to assess the overall future scenarios of eastern hemlock considering both

habitat quality and colonization potential of these habitats, we intersected and reclassified

the colonization likelihoods and the suitable habitats into three classes, and recombined

them to obtain nine classes of habitat-quality and colonization likelihood (HQ–CL) for the

entire east-wide distribution and for the genetic zones (Fig. 7). Even though the overall

suitability is quite limited, regions of higher suitability exist between the SE and SW

genetic bands. We again emphasize that the SE zone has the maximum diversity of inferred

ancestral groups and therefore is highly valuable from a seed conservation perspective.

Currently however, this region is already occupied by eastern hemlock, although

exploitable niches may exist in these regions, particularly those with higher potential for

gene-exchange.

Discussion

Preserving the genetic diversity of the threatened eastern hemlock, in situ and ex situ via

sound conservation and management decisions, requires an integrated management

approach that combines information about environmental and genetic lineages. In this

study, we applied intraspecific demographic and environmental models to assess the degree

Fig. 7 The future habitats (HQ) for the ‘‘mild’’ (left column) and ‘‘harsh’’ (right column) scenarios are
combined with colonization likelihoods (CL) of eastern hemlock (*2100) to illustrate the colonization
likelihood of future suitable habitats (only 5 of 9 combined HQ–CL classes are present) for the entire eastern
hemlock distribution (bottom two) and just the four genetic zones (top two)
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to which eastern hemlock evolutionary lineages are associated with different environ-

mental factors, and then projected how those lineages may respond differently to changing

climatic conditions (Thomassen et al. 2010). These evolutionary lineages were likely

generated by long-term biogeographic processes, including Pleistocene-era isolation,

which may have resulted in differential adaptation among groups of populations in

response to different sets of environmental pressures.

The results of our analyses show that (1) both genetic diversity and climate variables are

associated with variation in the population-level abundance of eastern hemlock; (2)

demographic, environmental, and genetic diversity differences exist among the four

genetic zones we delineated for eastern hemlock based on the previous molecular marker

results; (3) locations with suitable environmental conditions for eastern hemlock are

expected to shift, in response to both harsh and mild climate change projections, but the

situation is less dire when considering genetic zones separately; and (4) the colonization of

hemlock beyond its existing distribution is likely to be very limited with climate change

except for narrow bands near the NE and some near the SE.

Not surprisingly, given eastern hemlock’s association with cool and humid climates

(Godman and Lancaster 1990), abundance was positively associated with growing season

precipitation [PMAYSEP] and growing season aridity index [GSAI] (with higher numbers

indicating lower aridity), and negatively associated with May–September temperature

[TMAYSEP] and January temperature [TJAN] (Appendix 1, Fig. A4 in Online Supple-

mentary Material). The relationships, as expected, are in some cases non-linear as, for

example, TJAN. Surprisingly, genetic variables explained a higher proportion of abun-

dance variance than did the environmental variables. The relationships between abundance

and expected heterozygosity (HE), effective alleles (AE), and allelic richness (A) were all

mainly positive, while the relationships between abundance and both mean pairwise

genetic distance (MEAN_DC) and mean pairwise genetic differentiation (MEAN_FST)

declined rapidly (Appendix 1, Fig. A5 in Online Supplementary Material). This is in

keeping with previous work (Potter et al. 2012) that demonstrated that peripheral popu-

lations of eastern hemlock, which tend to consist of trees in low abundance, had signifi-

cantly lower levels of genetic variation and were likely to be genetically distinct from

interior range populations. The strong associations we detected between abundance and

genetic indices based on buffered microsatellite population samples (R-square = 0.54,

Supplementary Material Appendix 1, Fig. A1b) as well as climatic variables (R-

square = 0.45, Supplementary Material Appendix 1, Fig. A1a) set the stage for the next

step of evaluating whether significant differences in demography, genetic indices, and

environmental variables exist among eastern hemlock genetic zones.

Our second set of results in fact demonstrates that significant differences exist among

the four genetic zones, which were delineated using the microsatellite results and the

location of FIA plot-level data. Because the large sample size was perhaps the main reason

for the statistical significance in a majority of the cases, we have tried to interpret the result

cautiously within the context of ‘‘ecological’’ significance. The means of all 11 environ-

mental variables show some significant differences among the zones, although some values

tend to be similar (for example pH for zones SE and SW and SIEVE10 for NE and SE)

(Table 4);—however, barring a few exceptions, the zones are ecologically distinct.

Specifically, the SE zone (encompassed within the Southern Appalachian Mountains) had

the highest growing-season aridity index (indicating lower aridity) and precipitation, mean

January temperatures, and the maximum elevation as well as elevational variation

(Table 4). The Southwestern zone (encompassing southern Indiana and Ohio, eastern

Kentucky, northeastern Tennessee, and western portions of Virginia and West Virginia)
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was somewhat similar, but with the highest growing season mean temperature, lower

elevation, and higher soil clay content. The Northeastern and North Central zones were

both cooler and drier than the southern zones, with the North Central zone (in the Great

Lakes States of Michigan and Wisconsin) the most extreme in these variables. Both also

had soils that were less acidic. Significantly, eastern hemlock average tree diameter was the

highest in this zone (Table 3), which is not unexpected given that this is the only zone

which has not yet been effected by the hemlock woolly adelgid (Morin et al. 2011). More

surprisingly, however, this region had the highest percent mortality and the second lowest

seedling count, suggesting that eastern hemlock in this region may not currently be

structurally sustainable (Cale et al. 2014) for reasons unrelated to HWA. Despite having

been subjected to HWA infestation for the longest time, the Northeast zone (encompassing

the New England States and parts of New York, Pennsylvania and New Jersey) had the

highest seedling count and a relatively high average diameter and relatively low percent

mortality. This was consistent with recent broad-scale analyses of eastern hemlock

demographic trends in the region, which suggest that increasing tree density associated

with the past century of reforestation and succession currently may be overwhelming the

negative impacts of HWA (Trotter et al. 2013). It is not likely the result of increased

hemlock advanced regeneration following HWA-caused tree mortality, however, as

research has found an inverse correlation between HWA density and hemlock seedling

density, perhaps as a result of increased deer browsing (Preisser et al. 2011). Meanwhile,

mortality was the lowest in the Southeast zone, an area where HWA would be expected to

cause higher mortality rates in hemlock because HWA itself does not experience as much

overwinter mortality as in the colder north (Trotter and Shields 2009). The southern

infestations may be recent enough, however, for the impacts on hemlock abundance to not

have fully manifested themselves yet (Trotter et al. 2013). This pattern of abundance, along

with the fact that seedling count was the lowest in the Southeastern zone, is consistent with

the finding that the regional impacts of HWA on its host are surprisingly slow, but that the

insect may be altering regional forest succession pathways (Morin and Liebhold 2015).

Meanwhile, we also detected significant genetic diversity differences among the zones,

relying on the sparser sample of 58 locations across the range of eastern hemlock

(Table 5). Several of the genetic diversity metrics (A, PP, HE, and AE) were highest in the

Southeast, a finding which has led to previous inferences that this is the area most likely to

be near the location of at least one Pleistocene refuge for eastern hemlock (Potter et al.

2008, 2012; Lemieux et al. 2011). Populations near such glacial refugia are expected to

have higher levels of genetic diversity than do the areas colonized from these locations

(Hewitt 2000; Comes and Kadereit 1998). At the same time, we found that the most

geographically isolated zones (Southwest and North Central) were also characterized by

the highest levels of population-level differentiation (Mean FST and Mean DC). This also

is expected, given previous inference about the location of eastern hemlock Pleistocene

refugia and about the subsequent movement of the species from those locations with

climate warming. Specifically, populations in the Southwest zone are likely to have des-

cended from ancestors in a relatively isolated glacial refuge to the west of the Southern

Appalachian Mountains, while the ancestors of the North Central populations appear to

have moved north from a refuge near the Southern Appalachians before turning west

through the Great Lakes region (Potter et al. 2012). Eastern hemlocks in these two zones,

then, have become highly isolated from the hemlocks in other zones, leading to genetic

differentiation of populations within each of the regions (Provan and Bennett 2008).

By establishing environmental and genetic differences among the four zones, these

preceding results underscore the utility of generating projections of how climate change in
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the coming decades may affect eastern hemlock separately within each of the genetic

zones. For example, our range-wide analysis of environmental suitability for eastern

hemlock (as a single undifferentiated unit) predicts a loss of suitable area under both mild

and harsh future climate projections (Fig. 3), although under harsh climate, the loss is more

widespread and intensive. When the analysis is limited to a single genetic zone (SE),

however, the predictions are not as dire: While less area falls within the ‘‘highly suitable’’

category compared to the present, more area is categorized as having ‘‘MediumHigh’’ or

‘‘LowMedium’’ suitability, under both mild and harsh projections (Fig. 4). Additionally,

the mapped decision tree (Fig. 5), which explains 47% of the deviance (goodness-of-fit of

the model compared to the null model), can be used to understand the rules driving the

distribution of the species as a function of abundance, targeting areas of higher vulnera-

bility. For example, for the SE genetic zone, the predominant rule is depicted by node three

(green) that has an average diameter of 5.83 based on rule: TMAYSEP[ 17.62 C and

ELVSD[ 65.22 and CLAY\ 23.73%. Further, the niche maps (Supplementary Material

Appendix 1, Figs. A2, A3) help in understanding small scale variations in abundance based

on climatic variables within the genetic zones. All these results could guide both existing

in situ and ex situ conservation activities (that is, determining where to focus seed col-

lection efforts and to preserve remaining populations of hemlock), as well as informing

future replanting/assisted migration efforts for the species (that is, deciding where genetic

material collected from a certain place could be planted and vice versa; see below). Such

efforts have been under way since 2003, with the USDA Forest Service and Camcore, an

international tree breeding and conservation program at North Carolina State University,

focusing on conserving the genetic resources of both eastern hemlock and Carolina

hemlock (Tsuga caroliniana) through the collection of seed, from hundreds of mother

trees, placed into long-term storage or planted in conservation orchards in Chile, Brazil,

and North Carolina (Jetton et al. 2013; Oten et al. 2014). Specifically, the findings of the

current analyses predict that the suitability of environmental conditions will decline across

much of the distribution of eastern hemlock, but that gene conservation activities, espe-

cially seed collections, will particularly need to focus on the SW and NC genetic zones,

where suitable habitat may be scarce even under a mild future scenario (Fig. 3). The highly

genetically diverse SE genetic zone, meanwhile, may undergo less of a decline in habitat

suitability (except under a harsher climate scenario), but is likely to continue to experience

high levels of HWA mortality and will therefore require a continued emphasis on both seed

collection and on chemical, silvicultural and biological efforts to control the exotic insect

(Cheah et al. 2004; Ward et al. 2004; Jetton et al. 2008). Additionally, the findings of these

analyses could also inform studies, such as common garden experiments, that test the

suitability of genetic lineages to altered climatic conditions in high risk areas (Shinneman

et al. 2016).

We additionally assessed the colonization potential of eastern hemlock around 2100, by

treating the species both as a single undifferentiated unit (Fig. 6, left), and as a set of

genetically differentiated zones (Fig. 6, right). In both cases, when the areas of high

habitat-quality and high colonization likelihood (HQ–CL) are combined under future

climatic conditions, the possibilities are quite restricted (Fig. 7), with those areas for the

genetic zones occurring mostly within areas that are currently occupied by eastern hem-

lock, but outside our delineation of those zones. Clearly, the colonization potential of

eastern hemlock is very limited even under a generous migration potential of

50 km/century, emphasizing that it likely would not be an effective and successful con-

servation strategy to rely on the species to migrate by itself to future environmentally

suitable locations (e.g., those delineated in Fig. 3). Within the climate change context, and
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separate from eastern hemlock’s susceptibility to the invasive hemlock woolly adelgid,

comprehensive ex situ seed collection (Jetton et al. 2013) combined with some form of

assisted migration (Pedlar et al. 2012; Iverson and McKenzie 2013) may be required to

move the species into newly suitable locations in an attempt to maintain it as a meaningful

component of eastern forests. Matching seed sources with appropriate environmental

conditions would be a critical step in this process (Potter and Hargrove 2012), a task that

could be assisted with an understanding of how intra-species evolutionary lineages are

associated differentially with environmental conditions (e.g., Shinneman et al. 2016).

Information such as that presented in Fig. 4 can help identify areas of future suitability

which the trees from a given genetic zone may not be able to reach unassisted, for example

north along the Appalachian chain from the SE genetic zone.

We note that some limitations exist in the combination of demographic data and

environmental information with genetic diversity measurements derived from neutral

molecular markers. First, a mismatch in data resolution is a major impediment in incor-

porating genetic data into range-wide assessments of climate change susceptibility in tree

species. Given the expense and time required to conduct a range-wide molecular marker

study, especially for a species like eastern hemlock with a large distribution, it is currently

not possible to generate genetic measurements at the same resolution at which environ-

mental and even demographic data (in the case of the U.S. Forest Inventory and Analysis

program) are available. The genetic information will, therefore, not have the spatial pre-

cision of the other data sets, although aggregating analyses to larger scales can help to

some extent when the number of populations sampled for genetic information is large

enough. Among other things, this means that the analyses are not sensitive to isolated

disjunct populations, which may have high numbers of rare alleles (Gapare et al. 2005) and

heightened levels of genetic differentiation (Eckert et al. 2008), except to indicate whether

the locations of these populations are likely to have suitable environmental conditions for

the species in the future. On the other hand, matching relatively fine scale environmental

and demographic information with coarser-scale genetic diversity data may enable land-

scape-genetics analyses that focus on processes at relatively fine spatial scales (Manel et al.

2003), including the development of models predicting locations of populations with high

genetic diversity. These models could then be used to guide efforts to prioritize locations

for conservation management and for seed collections.

Second, variation in neutral molecular markers like microsatellites generally does not

reflect adaptive genetic variation within populations or individuals. Instead, it can serve as

an indicator of the existence of within-species evolutionary lineages that, as a result of

broad-scale phylogeographic processes, potentially underwent differential natural selec-

tion. While such information is important and informative, as well as relatively straight-

forward to attain and interpret, a renewed focus is needed on quantitative genetic studies to

determine if and how species will adapt to changing conditions (Kramer and Havens 2009).

In eastern hemlock, this could include research to identify molecular markers, such as

single nucleotide polymorphisms (SNPs), that are associated with important fitness-related

traits such as adaptation to climatic and other environmental conditions (Kirk and Freeland

2011; Eckert et al. 2013; Pais et al. 2017). The results presented here lay the foundation for

such future work, which could play an important role in the genetic conservation of a

widespread and ecological important tree species that faces multiple threats to its existence

across much of its distribution. Also, because our study tackles the widespread global

problem of tree conservation under multiple threats by combining genetic analysis with

environmental modelling, our approach can be applied to any region where such a problem

exists, and where the underlying data are available. The methods and techniques used here
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should of course be modified and fine-tuned to local and regional conditions, but we

provide a broad template for such studies that can be generalized across continents.

In summary, we found that separate eastern hemlock zones, associated with different

evolutionary lineages within the species, exhibit differences in demography, environmental

associations, and genetic variation. Under changing climate, locations with suitable envi-

ronmental conditions for eastern hemlock are expected to shift, but the colonization of

hemlock beyond its existing distribution is likely to be very limited. The results we present,

however, can help guide on-the-ground conservation activities, such as prioritizing areas

for climate-change-oriented ex situ seed collections (including the SW and NC genetic

zones) and for areas (such as the SE genetic zone) where efforts to control the exotic

hemlock wooly adelgid are likely to be most necessary.
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