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Abstract: Risks associated with severe wildfire are growing in forest landscapes due to interactions
among climate change, fuel accumulation from fire suppression, an expanding wildland–urban
interface, and additional factors. People, infrastructure, ecosystem services, and forest health all
face varying degrees of risk. The spatial distributions of the many social and ecological factors
that influence wildfire, its impacts, and management responses are an important landscape-level
context for managing risks and fostering resilient lands and communities. Decision-support tools that
integrate these varied distributions can provide a holistic and readily interpreted characterization
of landscapes, helping fire management decision making be appropriate, efficient, and effective.
Firescapes—landscape types defined in relation to fire, its drivers, and its effects as a socioecological
system—fill this role, providing a way to organize and interpret spatial variation along multiple
relevant dimensions. We describe a quantitative approach for classifying and mapping firescapes
for decision support, using the southeastern United States as a case study. We worked with regional
partners to compile relevant large-scale datasets and identify 73 variables for analysis. We used factor
analysis to reduce the data to eight factors with intuitive interpretations relevant to fire dynamics,
fire history, forest characteristics, climate, conservation and ecosystem service values, social and
ecological landscape properties, and social vulnerabilities. We then used cluster analysis on the
factors to generate quantitative landscape classes, which we interpreted as nine distinctive firescape
classes. The firescapes provide a broad-scale socioecological information context for wildfire risk
management and planning. The analytical approach can accommodate different data types at a
variety of scales, incorporate new monitoring data as they are available, and can be used under
data-driven scenarios to assess possible consequences of future change. The resulting firescape
maps can provide decision support to forest managers, planners, and other stakeholders, informing
appropriate strategies to manage fire and associated risks, build community and forest resilience to
fire, and improve conservation outcomes.

Keywords: cluster analysis; factor analysis; fire planning; firescape; forest resilience; prescribed fire;
risk management; social vulnerability; wildfire

1. Introduction

Risks posed by wildfire to people, infrastructure, and ecosystems are increasing
in forested landscapes across the United States and globally due to a combination of
increased fuel loads, global climate change, increasing human ignitions, an expanding
wildland–urban interface (WUI), and other factors [1–3]. Nearly a quarter of the US is
typically at moderate to very high risk from wildfires [4]. In 2020–2021 there were a
combined 117,935 wildfires reported across the US, burning approximately 17 million acres.
While the largest and most destructive of these occurred in the western US, nearly 40%
occurred in the southeastern US, more than any other comparable region [5].
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Severe wildfires threaten people, their homes, and other infrastructure, not only with
direct exposure but also through exposure to smoke [4,6]. Although wildfires can affect
any community, socially vulnerable populations can be disproportionately impacted by
wildfires and concurrent smoke emissions [7,8], and there is a strong need to better under-
stand the intersection between social vulnerability and the various risks associated with
wildfires. Moreover, ecosystem services provided by forests, such as carbon storage and
clean drinking water, can also be threatened by uncontrolled high-intensity wildfires [9,10].
Wildfire impacts on ecosystem services interact with other threats including severe drought,
extreme weather events, and outbreaks of forest insects and disease, each of which may con-
tribute to increased wildfire frequency and severity in a changing climate [11,12]. Clearly, a
full understanding of wildfire risk requires the integration of multiple social and ecological
information sources.

In response to the ongoing wildfire crisis, land managers, policymakers, and others
are tasked with significantly expanding efforts to manage risks and build ecosystem and
community resilience. Even given substantial increases in funding and capacity, strategic
planning to efficiently reduce risks and build resilience with limited resources will be
needed. This is a complex, multi-dimensional problem requiring coordination among
multiple stakeholders at multiple scales [13]. Implementing risk management measures
in fire-prone landscapes commonly requires cooperation across jurisdictional and land
ownership boundaries because wildfire risk is an all-lands problem occurring at inherently
large landscape scales [4].

For example, expanding the regional footprint of prescribed fire will be crucial for
reducing fuel loads at landscape scales [14,15]. Prescribed fire is a cost-effective tool for
managing hazardous fuels and can improve forest health and resilience, reducing negative
impacts from wildfires by reducing burn severity and extent [14,16]. Approximately 8
million acres are treated with prescribed fire each year in the southeastern US, more than
in any other part of the country [17,18]. However, prescribed fire produces smoke, which
impacts air quality and necessitates careful planning to avoid human health impacts, which
can affect socially vulnerable communities in particular [7,19,20]. Prescribed fire can also
escape the intended burn area into WUI environments, although uncommon, potentially
leading to destructive wildfire.

In regions such as the southeastern US with complex land use patterns and owner-
ship geographies, varying community capacities for coping with risk, and mixed public
perceptions about prescribed fire, there are significant challenges involved in planning
and implementing fuel reduction and other fire management activities [4]. Meeting such
challenges requires decision-support tools that provide, among other things, knowledge
about the spatial and social distributions of risk and where management tools such as
prescribed fire can be most effective in reducing risk [21]. It also requires knowledge about
various constraints—social and institutional as well as biophysical—that shape how ecosys-
tem management, community investments, or other interventions can be implemented
and whether they are likely to succeed. All of these factors vary among landscapes with
different social, biophysical, and ecological properties.

Efforts to manage risks and build resilience can therefore benefit from a data-driven
understanding of the broad socioecological context in which decision making occurs,
translated into readily interpreted and accessible information tools. This insight has led
to the development of the firescape concept [4,22]. Firescapes can be seen as recurring
landscape types with particular social, built, biophysical, and ecological properties, such
that different firescapes carry distinctive implications for wildfire, prescribed fire, and their
consequences for people and resources [22]. Firescapes are not intended as a complete guide
for planning and decision making in themselves; rather, they elucidate geographic variation
in the social and ecological landscape properties most important for understanding fire and
how it affects communities. As a result, they provide a broad-scale information context for
locally informed ecosystem management decision making and for broad-scale planning.
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Our objective was to use the firescapes concept to provide a regional perspective of the
factors influencing wild and prescribed fire management in a spatially explicit landscape
context. To accomplish this goal, we implemented a quantitative approach to classify,
describe, and map firescapes across the southeastern US. Using a spatial data synthesis
approach, we compiled multiple regional and national datasets and identified a large
number of relevant spatial variables, and then applied a statistical classification routine
to the data. This entailed factor analysis to reduce the data to a relatively small number
of synthetic variables that have intuitive interpretations relevant to fire dynamics, fire
history, forest characteristics, climate, conservation values, social and ecosystem service
vulnerabilities, land use/land cover, and additional landscape properties. We then applied
a cluster analysis to the factors, using these social and ecological properties to classify
landscapes into a series of types that we interpret as firescape classes. Finally, we examined
the characteristic factor values of the resulting firescape classes to develop a narrative
description of each class and mapped the firescapes across the region. Similar methods
could be used to update firescapes over time, to help monitor and interpret landscape
changes driven by changing fire behavior, ecosystems, land use, climate, populations, and
social characteristics.

We interacted during all stages of our research with a group of forest management
experts and potential end users in an informal elicitation process to help structure the anal-
ysis around the social, ecological, and biophysical properties considered most important
for informing fire management at broad landscape scales. Engaging stakeholders in social–
ecological systems research can improve analyses, help ensure the relevance and usability
of end products in specific decision-making contexts, and help achieve user buy-in [23].
In particular, given the large body of spatial information available for characterizing land-
scapes, the advisory group helped in identifying relevant data and bringing an integrated
view of the key components of landscape variability to bear on the analysis. This collabora-
tive process improved the relevance of the landscape factors and quantitative firescapes for
planning and decision-making applications. The co-developed analysis provides a novel
decision-support tool by mapping integrated landscape information relevant for wildland
and prescribed fire management.

2. Materials and Methods
2.1. Study Region

The southern region of the administrative unit of the USDA Forest Service (USFS) is
comprised of 13 US states from Virginia on the Atlantic coast, westward to Texas (Figure 1).
This large region contains a wide array of biologically diverse ecosystems with varying de-
grees of fire dependency, including coastal pine forests and savannahs, seasonally flooded
bottomland hardwood forests, montane mixed deciduous and hardwood forests, and many
other forest and non-forest ecosystem types. The region is also characterized by highly
fragmented land ownership with ~86% privately owned forest land and an expanding
wildland–urban interface (WUI) driven by high population growth [24,25]. Reduced fire
frequency through fire suppression and exclusion has been an important aspect of forest
change during the past two centuries, resulting in longer fuel accumulation periods and
changes in forest structure and composition [26,27]. Fuel loads can also be locally elevated
by tree damage from increasingly severe weather events including coastal hurricanes.
Fire regimes are today dominated by human causes, both planned and unplanned. Most
wildfires in the region have human ignition sources, and prescribed fire is a widespread
forest management tool, particularly in coastal plain forests [28]. Mean maximum tempera-
tures have not risen significantly in the southern region as a whole in recent decades [29],
but climate change model projections suggest that temperature and drought frequency
will increase by the mid-century, potentially increasing wildfire events and reducing safe
prescribed burning windows [30,31].
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Figure 1. The study area included 13 states in the southeastern United States (USDA Forest Service
Region 8). Landscapes with at least 25% forest cover were included in the analysis.

2.2. Expert Working Group

We used an unstructured, collaborative, co-development approach to guide all stages
of the research, through a working group with weekly meetings throughout the project.
The group included regional experts in wildland and prescribed fire management from
relevant programs within the USFS Region 8 Regional Office (Fire & Aviation Management;
Regional Information Management) and the Southeastern Region Coordinator for the Na-
tional Cohesive Wildland Fire Management Strategy [4]. The core group was supplemented
on an ad hoc basis by area experts from the USFS National Forest System, the Southern
Group of State Foresters (https://southernforests.org/ accessed on 15 February 2023),
and scientists at the USFS Southern Research Station. The working group regularly dis-
cussed data selection for the full set of spatial variables for analysis, the general approach
to data synthesis and its applicability to management problems, and the credibility of
spatial results.

2.3. Data Selection and Preparation

We compiled a large suite of relevant spatial variables, intended to collectively provide
a description of social and ecological landscape properties that influence fire, its impacts,
and its management. The expert working group assisted in identifying relevant variables
and existing spatial data products. Data quality criteria for inclusion were peer-reviewed
publication, public accessibility, complete spatial coverage of the study region, and recency.

https://southernforests.org/
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In selecting variables, we guarded against bias in two ways: (1) the research team and
expert working group ensured that no one voice unduly drove the process and collectively
provided a broad knowledge base; and (2) we erred on the side of retaining rather than
eliminating variables, resulting in a large and diverse dataset. The statistical analysis (see
below) then reduced redundancy and identified fundamental components of landscape
variability in an objective way.

We initially identified 88 variables for inclusion from existing data products. We used
program R [32] and ArcGIS software (version 10.7.1) [33] to pre-process data and then
summarize variables to a grid of contiguous 1000 ha (2470 acre) hexagons covering the
southern region (Figure 1). The choice of a 1000 ha landscape size for analysis was based on
our intent to produce spatial results at a management-relevant scale, capable of revealing
important landscape gradients at the regional level. This involved down-sampling for some
spatially coarse data (e.g., gridded climate data) and up-sampling for spatially fine-grained
data (e.g., land cover). Appendix A.1 provides a brief definition, source, native resolution,
and method of summarization to the 1000 ha hexagon units of analysis for each variable.

We limited the analysis to hexagons with at least 25% forest cover (Figure 1), using
the 2019 National Land Cover Dataset (NLCD) product to define forest cover [34]. After
filtering the hexagons by forest cover, we used a Pearson Correlation matrix to examine
the degree of correlation among variables [35,36]. Our statistical analysis did not require
excluding moderately correlated variables (see below), but we wished to avoid duplicating
essentially identical spatial information. Therefore, if any two variables had a correlation
coefficient > 0.95, we retained only the one that also had lower correlation with other
retained variables. This resulted in retention of 73 variables. In the following thematic
sections, we overview the included data products and variables—Appendix A.1 provides
the full list of 73 retained variables.

2.3.1. Fire Dynamics and History

We used modeled spatial variables from the Wildfire Risk to Communities (WRC)
project [37,38] to quantify the probability of fire occurrence (burn probability) and flame
length exceedance (4 feet and 8 feet), an indicator of likely burn intensity if a fire occurs.
To represent mean fire return interval at the landscape scale, we used the LANDFIRE
project’s Fire Return Interval variable [39]. We included data from three separate projects
to quantify the history of fire in all forest lands during approximately the past two decades
(year ranges for each source are given in Appendix A.1). At the scale of the hexagonal
landscape units, we summarized both forest burn frequency (number of fires) and total
area burned (summed across the full time period) from the USFS/NASA MODIS Burned
Areas project [40] and from an archival USDA Forest Service database of reported fires [41].
We also calculated total burned area from the Monitoring Trends in Burn Severity (MTBS)
program [42,43]. Each of these sources of fire records provides unique information and
each has limitations. To approximate a more complete record, we used a max-composite
approach to combine all three. The resulting variable used the largest burned area estimate
among the three products within each landscape unit.

2.3.2. Fire and Communities

The wildland–urban interface concept uses measures of proximity and spatial mixing
between natural and developed landscape components to provide information about the
vulnerability of people and infrastructure to wildfire spread [24]. To quantify WUI, we
summed the ‘interface’ and ‘intermix’ cover proportions from the SILVIS Lab’s WUI spatial
data product [24]. We also included a WUI risk variable from the Southern Wildfire Risk
Assessment project, which uses the WUI spatial pattern to index the potential wildfire risk
to populations and structures [44]. We used additional variables from the WRC dataset to
represent aspects of risk to infrastructure and communities—risk to potential structures,
exposure type, and wildfire hazard potential [38].
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We also included two variables to quantify the potential for forests to send smoke,
if they burn, to populated areas at unsafe levels of exposure. Since no spatial data of
this kind were available, we modeled potential smoke exposure using methods detailed
in Appendix A.2. The modeling approach used a satellite-based smoke plume dataset,
forest fuel load [39], and weather patterns [45] to simulate smoke plumes for all landscapes
and intersected the plumes spatially with population density [37,38]. Populations were
weighted for potential vulnerability to unsafe smoke exposure using a social vulnerability
dataset [46] (see Section 2.3.3). The two included variables estimated potential exposure
given existing fuel loads and potential exposure under a scenario of reduced fuels through
forest management before wildfire occurs (Appendix A.2).

2.3.3. Social and Cultural

Firescapes are landscape types defined by unique social and ecological characteristics
which, taken together, are important for understanding how fire and associated risks oper-
ate as a human–environment system. To that end, we included population and housing
density from the WRC dataset as basic measures of community and infrastructure distribu-
tions [38]. To account for forest land ownership patterns we summarized the proportion of
each landscape in private, federal, state, and tribal ownership [47]. We also incorporated so-
cial vulnerability measures to account for socioeconomic conditions that place communities
at a disadvantage in preparing for and responding to wildfire and increase susceptibility
to risks associated with wildfire [7,8,20,48]. We included spatial variables from the So-
cioeconomic Data and Applications Center (SEDAC) and the Centers for Disease Control
(CDC) at the census tract level that quantify vulnerabilities associated with (1) economic
and educational status, (2) housing type and transportation, (3) household composition
and disability, (4) minority status and language, and (5) overall vulnerability [46].

2.3.4. Forest Properties

To quantify forest fuel load, a crucial measure for understanding the potential for
hazardous fire, we summarized total available fuels within forested areas using the most
current fuel data from the LANDFIRE program’s Fuel Characteristic Classification Sys-
tem [39]. We calculated the proportional cover of broad forest types (upland conifer,
longleaf/slash pine, loblolly/shortleaf pine, upland hardwoods, bottomland/moist soil
hardwoods) and forest stand size classes (small, medium, and large diameter trees) using
spatial data modeled from the USFS Forest Inventory and Analysis (FIA) field plot data
under the FIA’s BIGMAP program [49,50]. We also summarized total forest carbon stocks
using BIGMAP model estimates. To estimate the risk of damage to forests from insects
and disease, which can interact with other factors to influence wildfire hazard especially
through tree stress and mortality, we summarized the total basal area modeled to be at risk
of loss from a national USFS analysis that also relied on FIA plot data for modeling [51].

2.3.5. Landscape and Watershed Properties

We included measures of the current proportional cover of forest, agriculture, and
urban development using the NLCD [34]. To quantify changes in land cover, we sum-
marized the change in density (i.e., the proportion of pixels) of natural, agricultural, and
developed cover over the past 10 and the past 20 years using the Land Change Monitoring,
Assessment, and Projection (LCMAP) annual data products [52,53]. Additional landscape
description included a LANDFIRE index for the departure of current vegetation conditions
from reference conditions, i.e., ‘vegetation departure’ [39], and an index of decadal change
in growing season greenness using the mean Normalized Difference Vegetation Index
(NDVI), which is correlated with vegetation amount and productivity—this product was
derived from the Landscape Dynamics Assessment Tool [54].

To quantify the importance of forest watersheds as sources of surface-derived drinking
water for downstream populations, we used spatial data from the USFS Forests to Faucets
2.0 project [12] at the HUC12 watershed scale (mean size = 101.3 km2), summarized to



Land 2023, 12, 2180 7 of 35

our smaller landscape scale. We included variables for watershed importance, the size of
the dependent population, natural and impervious watershed cover proportions, and the
proportion of the watershed with high risk to surface drinking water from fire (wildfire
hazard potential) and from land use change [12].

2.3.6. Biodiversity

Wild and prescribed fire each have important consequences for the condition of
forest habitats supporting plant and wildlife species [55,56]. To represent the importance of
landscapes for biodiversity conservation, we calculated the number of at-risk terrestrial species
with potentially suitable habitats present, using the US Fish and Wildlife Service’s estimated
current range for threatened and endangered plant and wildlife species (https://ecos.fws.gov/
accessed on 25 January 2022). We included variables for the number of wildlife species,
the number of plant species, and both combined. For a broader measure of conservation
value, we also summed the proportional cover of medium- to highest-priority areas from
the Southeast Conservation Blueprint [57]. The Blueprint ranks lands and waters across
the region where conservation activities are expected to have a significant impact based on
terrestrial and aquatic ecosystem health, ecosystem services, and landscape connectivity.

2.3.7. Climate

We included variables to represent long-term climate (i.e., climatologies) during the
most recent thirty years available (1992–2021). We used climate data from the statistically
downscaled MACAv2 dataset, selected for use in the 2020 Resources Planning Act (RPA)
Assessment and archived by the USFS [58]. This dataset includes variables summarized
on a monthly timescale. We included 30-year means for five monthly variables, selected
for their relevance to fire activity: mean daily minimum relative humidity in the month
with the lowest value in the year, total precipitation in the month with the lowest value in
the year, mean daily downward solar radiation in the month with the highest value in the
year, mean daily maximum temperature in the month with the highest value in the year,
and mean daily potential evapotranspiration (PET) in the month with the highest value
in the year. In addition, we included the 30-year mean of the Standardized Precipitation–
Evapotranspiration Index (SPEI), a standard drought index which has been correlated
with wildfire occurrence and severity [59]. We calculated the SPEI from the monthly total
precipitation and mean PET from the MACAv2 data, estimating drought severity on a
3-year timescale for each month (i.e., that month and the 35 preceding), relative to baseline
years 1979–2008.

2.4. Statistical Analysis

We subjected the full dataset of 73 variables described above to a sequential process of
factor analysis followed by cluster analysis to classify landscapes across the study region
into distinctive types, which we then interpreted as firescape classes. Factor analysis
uses the correlation structure among a set of variables to model a smaller number of
unobserved, latent variables known as factors [60,61]. The factors quantify important
dimensions of the full dataset, accounting for variation in the data with a smaller number
of factors. The factors can be interpreted by examining the loadings of the original variables
onto each factor, allowing for a description of the factors in terms of their ecological and
social relevance.

We applied a maximum-likelihood factor analysis and rotated the factors using the
varimax rotation [61]. Varimax rotation maximizes the loading of a given variable onto
only one or a few factors, simplifying the interpretation of factors while maintaining
orthogonality (i.e., the factors are uncorrelated with one another). Nonetheless, it is not
uncommon for different components of one variable to load on different factors. To identify
a sufficient number of factors to describe important dimensions of the data while keeping
the number of factors manageable, we generated a scree plot of the cumulative variance
explained to identify a shelf or ‘elbow’ relative to the number of factors included [62]. In

https://ecos.fws.gov/
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choosing the final number of factors, we also took into account the interpretability of factors
when different numbers were included. Maximum-likelihood-based factor analysis makes
a data normality assumption, and we examined q-q plots and outliers for all variables.
As expected for any large, multivariate socio-ecological dataset, we identified moderate
skew for some variables but we chose to retain these considering the potential loss of
information more detrimental than any mild effect of normality violations on the factor
distributions [63].

We then implemented a non-hierarchical k-means cluster analysis, for which the fac-
tors were the inputs. Cluster analysis groups observations—in this case, landscapes—based
on shared characteristics, maximizing within-cluster similarity and minimizing between-
cluster similarity [54,64–66]. Cluster analysis identifies structures in multivariate data,
offering advantages over similar methods in the relative ease of interpreting and com-
municating results [65,67]. Clusters can be thought of as categorical types into which the
multidimensional data space has been partitioned and within which the input variables—in
this case, the factors—exhibit characteristic value ranges. The use of orthogonal factors as
inputs avoided the inclusion of multiple correlated variables in the cluster analysis [66].
Each resulting cluster (i.e., firescape class) was defined by its set of centroid values for
the factors, and the firescape classes contrast with one another in terms of the underlying
factors. To identify a sufficient number of clusters to describe important regional variability,
we generated a scree plot of the sum of squares ratio to identify a shelf in the variance
explained relative to the number of clusters included [64,68].

After assigning a firescape class membership to every 1000 ha landscape, we mapped
both the firescapes and the underlying factor scores to explore their spatial patterns across
the study region. We also generated a spring plot to visualize the relative similarities
among firescape classes, based on Euclidean distances among the cluster centroids in the
multi-dimensional factor space. Spring plotting was based on the Fruchterman–Reingold
algorithm [69] implemented in the qgraph R package [70]. We conducted all other statistical
analyses in program R version 4.1.2, using the base factanal and kmeans functions to
perform the factor and cluster analyses, respectively [32].

3. Results
3.1. Factor Analysis

The cumulative variance explained in factor analysis with an increasing number of
factors (Figure 2) resulted in a relatively smooth curve but indicated a choice of fewer than
10 factors to describe key dimensions of the data efficiently. Our final choice of eight factors
was also influenced by the clear interpretability of factors with the analysis set to return
eight factors (see below). All eight factors had eigenvalues greater than 1.0 and collectively
explained 45.4 percent of the total variance among the 73 variables (Table 1). Table 2
shows variable loadings on each factor, excluding factor loadings < +/−0.30 (Appendix A.3
provides the complete factor loading results). Each factor showed unique geographic
variation across the study region (Figure 3—note that factor scores are standardized and
have a mean value of zero).

We interpreted key characteristics of the factors and gave them descriptive names
(Table 1) based on their variable loadings (Table 2). Here we provide additional detail for
the individual factors. We named Factor 1 Climate and Species at Risk. Eighteen variables
had loadings >0.30 for this factor, and the six with the highest loadings were all climate
variables. Landscapes with high values were characterized by cool, wet climate conditions
with low drought potential. High values for this factor were also associated with forest
in the large diameter class, presence of threatened and endangered species habitats, high
fuel load and forest carbon stocks, potential to send hazardous levels of wildfire smoke to
populated areas, and low cover of upland conifer forest. Landscapes with the highest values
were mainly in the interior highlands, especially the southern Appalachian Mountains, and
to a lesser extent along the coastal plains (Figure 3).
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Figure 2. Plots for determining the number of factors and clusters. (A) Cumulative variance explained
to identify a shelf or elbow relative to the number of factors included in the factor analysis. While the
plot indicated a relatively smooth curve, a choice of 8 factors resulted in readily interpreted factor
loadings. (B) Sum of square ratios used to identify a shelf or elbow relative to the number of clusters
included in the cluster analysis (occurs at 9 clusters).

Factors 2, 3, and 6 quantified various aspects of fire behavior and related forest eco-
logical properties. We named Factor 2 Wildfire Intensity and Fire-prone Forests. There were
17 variables with loadings >0.30 for this factor. Landscapes with high values were primarily
characterized by high cover of pine forest types and low cover of upland hardwood forest,
high wildfire hazard potential, and high wildfire flame length exceedance probabilities.
There were additional positive associations with forest in the small diameter class and hot
climate, both of which can contribute to wildfire hazard. There were negative associations
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of this factor with watershed importance for surface drinking water and the size of the
downstream drinking water population. Places with the highest values were widespread
along the Gulf and Atlantic coastal plains and in Florida. We named Factor 3 Fire History,
with five variables having loadings >0.30. This factor principally characterized the fire his-
tory of landscapes—high values were associated with both the frequency of fire occurrence
and the total area burned over the past two decades. Landscapes with very high values
were relatively uncommon and widely dispersed (Figure 3). We named Factor 6 Wildfire
Potential. Five variables had loadings >0.30 for this factor. Landscapes with high values
were characterized by high burn probability, high risk to potential structures, and high
wildfire hazard potential. This factor also had moderate positive loadings for threatened
and endangered species habitats, reflected by landscapes with the highest values concen-
trated in the Florida peninsula. Factors 2 and 6 were related but not equivalent. They
sorted variables into those associated with burn intensity and those associated with burn
probability, respectively. These are two principal aspects of wildfire hazard—the likelihood
of fire occurrence and the likely intensity of fire if it occurs.

Table 1. Key dimensions of landscape variability important for assessing wildfire dynamics, risks,
and management in southeastern US forest landscapes, identified through factor analysis of 73 spatial
variables. Variance explained is the cumulative variance in the dataset accounted for by each
additional factor from 1 through 8. Factor names and key characteristics were interpreted from their
variable loadings (Table 2).

Factor Var. Explained Factor Name Key Characteristics

1 0.076 Climate and Species at Risk Climate (multiple variables), threatened and endangered plants and
animals, large diameter forest, wildfire fuels, potential for smoke

2 0.149 Wildfire Intensity and Fire-prone
Forests

Potential flame length exceedance, wildfire hazard potential, longleaf
and slash pine forest, small diameter forest, hot climate

3 0.212 Fire History Area burned and fire frequency

4 0.273 Population, Infrastructure, and
Wildland–Urban Interface

Developed land use, mixed urban–forest landscapes, WUI proportion,
wildfire risk in the WUI

5 0.331 Forests and Carbon Forest cover, forest carbon stocks, conservation values, fuel load, and
potential wildfire exposure

6 0.375 Wildfire Potential Burn probability, risk to potential structures, wildfire hazard potential

7 0.416 Social Vulnerability Multiple dimensions of socio-economic vulnerability

8 0.454 Land Use/Cover Change Agricultural and natural land use/cover change

Factors 4 and 7 quantified social and socioecological landscape properties. We named
Factor 4 Population, Infrastructure, and Wildland–Urban Interface. Five variables had loadings
>0.30 for this factor, characterizing housing and population density and the proportion of
developed land and impervious surface. Landscapes with high values were also character-
ized by high WUI proportion and high WUI risk and were spatially clustered near towns
and cities (Figure 3). We named Factor 7 Social Vulnerability. All five social vulnerability
variables in the full dataset had loadings >0.30 for this factor, and these were the only
variables with loadings >0.30. All loadings were positive, indicating that landscapes with
high values were characterized by high social vulnerabilities in terms of socio-economic
status; household composition and disability; minority status and language spoken in
the household; and housing and transportation types. Landscapes with high values were
distributed in a broad arc across the Atlantic and Gulf coastal plains and lower Piedmont
subregions and in some interior highland areas including eastern Kentucky and eastern
Oklahoma (Figure 3).
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Table 2. Factor loadings of 73 spatial variables across southeastern US forest landscapes (only including variables with loadings > +/−0.30). Negative loadings
indicate an inverse relationship. * Note that the WUI Risk variable expresses high risk as highly negative values. Variable descriptions are in Appendix A.1.

Factor 1: Climate and
Species at Risk Loadings

Factor 2: Wildfire
Intensity and Fire-Prone

Forests
Loadings Factor 3: Fire History Loadings Factor 4: Population,

Infrastructure, and WUI Loadings

Min Precipitation 0.745 Longleaf/Slash Pine 0.613 Forest burn frequency,
2001–2021 0.980 Housing unit density 0.989

Min relative humidity 0.526
Proportion of watersheds

with high to very high
wildfire hazard potential

0.557 Forest area burned,
2001–2021 0.977 Population density 0.989

SPEI drought index 0.489 Flame length exceedance
(8 ft) 0.554 Forest burn frequency,

2012–2021 0.880 Developed land cover 0.856

Stand size class: Large 0.446 Flame length exceedance
(4 ft) 0.536 Maximum burned area

(composite) 0.872 Proportion impervious 0.672

T and E Plants and Wildlife 0.443 Stand size class: Small 0.536 MTBS Burned area,
2000–2020 0.701 WUI Risk * −0.651

T and E Wildlife 0.423 Max downward radiation 0.463 WUI proportion 0.350

Forest carbon stocks 0.360 Max temperature 0.436

Fuel Load 0.336 Loblolly/Shortleaf Pine 0.409

Potential wildfire smoke
exposure 0.328 Bottomland/Moist Soil

Hardwoods 0.378

Downstream drinking
water population 0.312 Wildfire hazard potential 0.344

Potential
evapotranspiration −0.949

Vulnerability index:
Minority status and

language
0.343

Max temperature −0.765 Natural-caused fires,
2000–2018 0.330

Max downward radiation −0.713 Upland Hardwoods −0.819

Stand size class: Medium −0.470 Downstream drinking
water population −0.719
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Table 2. Cont.

Factor 1: Climate and
Species at Risk Loadings

Factor 2: Wildfire
Intensity and Fire-Prone

Forests
Loadings Factor 3: Fire History Loadings Factor 4: Population,

Infrastructure, and WUI Loadings

Upland Conifer −0.438 Watershed importance for
surface drinking water −0.623

Non-stocked forest
type group −0.344 Stand size class: Large −0.407

Non-stocked size class −0.337 SPEI drought index −0.328

Vulnerability index:
Minority status
and language

−0.300

Factor 5: Forests and
Carbon Loadings Factor 6: Wildfire

Potential Loadings Factor 7: Social
Vulnerability Loadings Factor 8: Land Use/Cover

Change Loadings

Forest land cover 0.887 Risk to potential structures 0.945 Vulnerability index:
Overall 0.967 Natural cover density

change, 2010 to 2019 0.980

Forest carbon stocks 0.817 Burn probability 0.937 Vulnerability index:
Socioeconomic 0.811 Natural cover density

change, 2000 to 2019 0.792

Proportion natural cover 0.654 Wildfire hazard 0.718
Vulnerability index:
Housing type and

transportation
0.755 Agriculture cover density

change 2010 to 2019 −0.951

Fuel Load 0.546 T and E Wildlife 0.341
Vulnerability index:

Household composition
and disability

0.604

Projected total basal area
loss from all pests 0.518 T and E Plants and Wildlife 0.314

Vulnerability index:
Minority status and

language
0.428

Conservation priority
areas 0.453

Exposure type 0.391

Agricultural land cover −0.802

Wildland–Urban Interface
(WUI) −0.302
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Figure 3. Factor scores from factor analysis of 73 spatial variables (Appendix A.1) across southeastern
US forest landscapes. Relationships of these factors to the original variables are shown in Table 2.
Factor scores are standardized and have an overall mean of zero.

Finally, factors 5 and 8 quantified important forest characteristics and aspects of land
cover. We named factor 5 Forests and Carbon. Nine variables had loadings >0.30 for this
factor. High values were associated with high proportions of forest cover and natural cover,
low proportions of agricultural cover and WUI, and high forest carbon stocks, forest fuel
load, forest at risk from insects and disease, and high-priority conservation areas. Land-
scapes with high values were concentrated in places with extensive forest cover throughout
the region. We named factor 8 Land Use/Cover Change. Three variables had loadings >0.30
for this factor, all quantifying change in the proportion of natural or agricultural land.
Landscapes with high values were characterized by increasing natural land cover and
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decreasing agricultural cover—mainly reflecting conversion from agriculture to a variety of
land uses in the generalized ‘natural’ cover class [71,72]. Landscapes with positive values
were widespread and most frequently in the western part of the region (e.g., east Texas)
and along the Atlantic coastal plain. Areas with negative values, indicating natural cover
loss, were also widespread, but interior highland landscapes mostly showed values near
zero for this factor.

3.2. Cluster Analysis

Scree plotting indicated a choice of nine (9) clusters to efficiently partition the eight-
factor data space (Figure 2B). The resulting clusters, interpreted as firescape classes, were
defined by their centroid values for all eight factors (Figure 4). We developed plain-language
names and descriptions of the classes based on these characteristic factor values and the
distinctive geographic pattern of each class across the study region (Table 3, Figure 5). Their
geographic distributions (Figure 5) were associated in part with well-known biophysical
variation in the region, including coastal plain, Piedmont, and mountain subregions, and
with regional variations in forest types, fire histories, aspects of the built environment (e.g.,
urban development), human geography (e.g., varying social vulnerabilities), and climate.
Spring plotting of cluster centroids revealed relative similarities and differences among
the firescape classes (Figure 6). For example, classes 2, 5, 8, and 9 formed a closely related
group, with wider distances among the remaining classes. Classes 2, 5, 8, and 9 also had
the largest landscape memberships among all classes, collectively occupying the strong
majority of the forest land area in the region (Table 3).
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Table 3. Firescape classification of southeastern US lands with at least 25% forest cover, generated
through factor and cluster analysis of 73 spatial variables. Narrative descriptions are based on
interpretation of the factor values characteristic of each class (Figure 4).

Cluster Firescape Name Key Characteristics Area (km2)

1 History of wildfire, potential for intense fire
Rural areas with recent history of fire, pine forest cover, moderate potential
for high intensity fire, low burn probability, low risk to structures, low
population density, low social vulnerability

15,220

2 Cool and wet broadleaf mountain forests

Mountain forest landscapes with cool, wet climate, high deciduous
(non-conifer) forest cover, high conservation value, high fuel load and
carbon stocks, moderate risk from wildfire smoke, low potential for intense
fire

182,930

3 Rural pine forest, conversion to agricultural lands
Moderate pine forest cover, natural land cover conversion to agriculture,
moderate potential for high-intensity fire, low population density and
wildland–urban interface, moderate social vulnerability

58,880

4 Urban periphery landscapes Exurban and urbanizing landscapes with high population density,
development, WUI, and WUI risk 33,940

5 Rural agriculture, vulnerable communities, and
low wildfire potential

Rural areas with low forest cover, carbon stocks and fuel load, mild
climate, low burn probability, low risk to structures and wildfire hazard
potential, high social vulnerability, moderate gain of natural land cover

284,140

6 Rural mixed forest with hazardous fire potential High potential for hazardous fire, history of wildfire, low/mixed forest
cover with some pine and hardwoods, low population density and WUI 14,080

7 Warm and dry, mixed woodlands
Warm and dry climate, low to moderate forest cover with mixed
hardwoods and conifers, low carbon stocks, wildfire potential but low
potential for intense fire

126,250

8 Rural pine forests, intense fire, and vulnerable
communities

High pine forest cover, fuel load, and carbon stocks, potential for intense
fire, low population density, high social vulnerability 382,690

9 Semi-rural with low social vulnerability and
moderate climate

Low social vulnerability, moderate forest cover, moderate climate,
low–moderate wildfire potential and fire history 226,080

Land 2023, 12, x FOR PEER REVIEW 17 of 37 
 

 

Figure 5. Firescapes map of southeastern US lands with at least 25% forest cover, generated through 

factor and cluster analysis of 73 spatial variables. Firescape class numbers correspond to the descrip-

tions in Table 3. 

 

Figure 6. Relative differences among firescape classes, based on the Euclidean distances among their 

centroid values for all eight factor variables used in cluster analysis. Firescape classes are shown 

with number and color corresponding to Figure 5. Shorter and darker arcs correspond to greater 

overall similarity between firescape classes. 

Figure 5. Firescapes map of southeastern US lands with at least 25% forest cover, generated through
factor and cluster analysis of 73 spatial variables. Firescape class numbers correspond to the descrip-
tions in Table 3.



Land 2023, 12, 2180 16 of 35

3.3. Firescape Descriptions

Firescape 1 (History of wildfire, potential for intense fire) was characterized by a very
high centroid value for the Fire History factor, a moderately high centroid value for the
Wildfire Intensity and Fire-prone Forests factor, and low values for the Population, Infrastructure,
and WUI, Wildfire Potential, and Social Vulnerability factors. These attributes suggest rural
landscapes with recent fire history, pine forest, and moderately lower social vulnerabilities
than most other firescape classes. Isolated landscapes across the region were included in this
firescape class, with larger concentrations in northern Florida and southern Georgia—its
distribution in the northern part of the region was extremely limited.
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Figure 6. Relative differences among firescape classes, based on the Euclidean distances among their
centroid values for all eight factor variables used in cluster analysis. Firescape classes are shown with
number and color corresponding to Figure 5. Shorter and darker arcs correspond to greater overall
similarity between firescape classes.

Firescape 2 (Cool and wet broadleaf mountain forests) had high centroid values for the
Climate and Species at Risk and Forests and Carbon factors, and a moderately high value for
the Wildfire Potential factor. It had low centroid values for the Potential Wildfire Intensity and
Fire-prone Forests and Population, Infrastructure, and WUI factors. These attributes suggest
rural landscapes with cool, moist climates, dominated by a high cover of mostly non-conifer,
upland hardwood forest. Although moderate potential for wildfire was suggested, a low
likelihood of high-intensity fire was also suggested. Landscapes in this firescape class were
common but limited to the northern parts of the region within interior highland subregions
including the southern Appalachian Mountains, Cumberland Plateau, and Ozark Mountains.

Firescape 3 (Rural pine forest, conversion to agricultural lands) was characterized by a
strongly negative centroid value for the Land use/cover change factor, indicating gain of
agricultural cover and loss of natural cover. This firescape also had an above-average
centroid value for the Wildfire Intensity and Fire-prone Forests factor, below average value
for the Population, Infrastructure, and WUI factor, and an above average value for the Social
Vulnerability factor. These attributes suggest rural lands with moderate social vulnerability,
pine forests with moderate potential for high-intensity fire, and a recent history of land
conversion to agriculture.

Firescape 4 (Urban periphery landscapes) was mainly characterized by a very high cen-
troid value for the Population, Infrastructure, and WUI factor. This firescape was concentrated
in the periphery of urban and developed areas across the region, where population density
is high but landscapes also have some forest cover.

Firescape 5 (Rural agriculture, vulnerable communities, and low wildfire potential) had a
strongly negative centroid value for the Forests and Carbon factor, above average values for
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the Social Vulnerability, Climate and Species at Risk, and Land Use/Cover Change factors, and a
below average value for the Wildfire Potential factor. These attributes suggest agricultural
landscapes with low forest cover (although all landscapes included in analysis had at least
25% forest cover), high social vulnerability, low wildfire probability, mild climate, and some
conversion to natural land cover. This was a common firescape class distributed throughout
the region but mostly concentrated in the east and north, with the notable exception of a
large agricultural region in southern Georgia.

Firescape 6 (Rural mixed forest with hazardous fire potential) had very high centroid
values for the Wildfire Potential and Wildfire Intensity and Fire-prone Forests factors and an
above average value for the Fire History factor. Together with below average values for the
Population, Infrastructure, and WUI and Forests and Carbon factors, these attributes suggest rural
landscapes with mixed non-forest, pine, and hardwood forest covers, strongly characterized
by potential for intense fire and a recent history of fire. This class was common in southern
Florida and had some occurrence in eastern Oklahoma, but was rare elsewhere.

Firescape 7 (Warm and dry, mixed woodlands) had a very low centroid value for the
Climate and Species at Risk factor, indicating hot and dry long-term climate conditions. Low
centroid values for the Forests and Carbon and Wildfire Intensity and Fire-prone Forests factors,
and an above average value for the Wildfire Potential factor, suggest mixed landscapes with
low hardwood and conifer forest cover and high wildfire potential but low potential for
high-intensity fire. This firescape class was restricted to east-central Texas and eastern
Oklahoma and was dominant in that westernmost part of the study region.

Firescape 8 (Rural pine forests, intense fire and vulnerable communities) had high centroid
values for the Forests and Carbon and Wildfire Intensity and Fire-prone Forests factors, mod-
erately low values for the Wildfire Potential and Population, Infrastructure, and WUI factors,
and an above average value for the Social Vulnerability factor. These attributes indicate high
forest cover dominated by pine forest types with potential for high-intensity fire in rural
landscapes with high social vulnerabilities. This firescape was common and widespread,
accounting for the most rural forest lands in the coastal plain and Piedmont subregions, as
well as pine forest lands west of the Mississippi River.

Firescape 9 (Semi-rural with low social vulnerability and moderate climate) had the lowest
centroid value of any firescape class for the Social Vulnerability factor, an above average
value for the Climate and Species at Risk factor, and moderately low values for the Forests
and Carbon, Wildfire Potential, and Fire History factors. It also had a centroid value near zero
(average) for the Population, Infrastructure, and WUI factor. Taken together, these attributes
indicate semi-rural landscapes with unusually low social vulnerability, moderate forest
cover and climate, and low fire activity. This firescape class was widespread but more
common in the northern and central parts of the region, with concentrations in semi-rural
areas broadly surrounding towns and cities.

4. Discussion

The sequential application of factor and cluster analyses to a large, carefully chosen set
of spatial variables constitutes a data-driven way to identify and map landscape types that
can be characterized as firescapes. The results of this analysis can provide decision support
to forest managers, planners, and other stakeholders in the study region by helping to
inform locally appropriate management strategies and investments aimed at reducing risks
associated with wildfire, building community and forest resilience to fire, and improving
conservation outcomes. Management tools for such efforts include but are not limited
to prescribed fire, mechanical fuel treatments, hardening homes against fire, educational
outreach, community capacity building, and other forms of community engagement.

4.1. Socio-Ecological Implications

Our results translate a large number of social and ecological landscape properties into syn-
thetic information that can support the evaluation of needs and opportunities concerning wild
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and prescribed fire management. Here, we illustrate this with examples that relate firescape
attributes to management priorities, without reviewing each firescape class exhaustively.

The Social Vulnerability factor and the social vulnerability attributes of the different
firescape classes provide geographic information about the co-occurrence of vulnerable
populations and potential for hazardous fire, based on variables representing income,
education, age, disability, minority status, housing type, and transportation. Recent re-
search suggests that economically stressed, historically disadvantaged, and underserved
populations experience greater vulnerability to wildfires compared to other communi-
ties [7,8,20,48]. Examining the intersection between social vulnerability and wildfire risk
is therefore imperative. Our results suggest that this intersection is most pronounced in
landscapes such as those included in firescapes 8 (Rural pine forest, intense fire, and vulner-
able communities) and 3 (Rural pine forest and conversion to agriculture), where high social
vulnerability and potential for high-intensity fire coincide. The Rural pine forest, intense
fire, and vulnerable communities firescape in particular spans the coastal plain from eastern
Texas to eastern North Carolina and Virginia, a region with strong existing investments in
frequent prescribed fire [28,73]. Dominant ecological and biophysical characteristics of this
firescape—heavy forest cover primarily in pine forest types, high cover of small-diameter
forest stands, high flame length exceedance probabilities and wildfire hazard potential, and
warm climate—all indicate an ongoing need to reduce hazardous fuels.

However, social characteristics of this firescape include mostly rural communities
with moderate or high social vulnerability. In such places, while traditional fuel reduction
measures including prescribed fire remain important, increased attention to the heightened
vulnerability of communities to smoke from prescribed fire is also warranted [20]. Safe risk
management near communities may be advanced through a combination of treatments,
such as mechanical thinning prior to prescribed fire [74,75]. Education, outreach, and other
investments to enhance community preparedness for both prescribed fire and wildfire can
play an outsized role in improving outcomes in these places [3,7].

Prescribed fire can be even more challenging in landscapes with dense human popula-
tions and infrastructure, where wildfire risks may still be high but a mixture of management
approaches may be more suitable. Firescape 4 (Urban Periphery Landscapes) exemplifies this
situation, characterized mainly by high values for the Population, Infrastructure, and WUI
factor. The co-occurrence of forest cover with urban development in this firescape, and in
WUI landscapes more generally, clearly carries wildfire risk management concerns. But
social perceptions around prescribed fire, and risks of escaped fire and smoke exposure, call
for careful planning with affected communities, potentially taking advantage of alternatives
such as mechanical fuel reductions or specialized site preparation prior to prescribed fire.

Other attributes of the firescapes and factors suggest opportunities for improving
forest conservation outcomes while also reducing risks for surrounding communities. The
factors Forests and Carbon and Climate and Species at Risk provide geographic information
about conservation priorities including maintaining a suitable habitat for threatened and
endangered species, maintaining forest carbon storage capacity and watershed quality,
and reducing risks to forest trees from insects and disease. Prescribed fire can play a role
in advancing each of these goals [10,76–78]. The firescape Cool and Wet Broadleaf Moun-
tain Forests, restricted to interior highlands subregions, had high values for both of those
factors, suggesting high conservation value in terms of these goals. This firescape is also
characterized by a cool, wet climate and low potential for high-intensity fire, combined
with moderate wildfire potential, high fuel loads, and potential to send smoke at unsafe
levels to vulnerable populations. Taken together, these results suggest that landscapes
in this firescape class could benefit in multiple ways from increased investments in pre-
scribed fire. Fuel reduction via prescribed fire can help reduce the risk of exposing nearby
communities—and more distant urban areas beyond the extent of the firescape—to un-
controlled emissions of harmful smoke from wildfires under high-fuels conditions [79,80].
Biodiversity values can be advanced through the direct ecological benefits of prescribed
fire [55,56,77], and ecosystem services potentially compromised by wildfire, including for-
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est carbon storage, drinking water quality, and sustainable forestry, can also see long-term
benefits from prescribed fire programs [10,81].

4.2. Quantitative Firescapes: Advantages and Applications

The quantitative clustering approach we present allows the classification and delin-
eation of firescapes to be largely determined by the data. This can help avoid undue
reliance on preconceived notions of important landscape patterns for determining how
and where firescapes should be delineated. A challenge with the data-driven approach is the
potential sensitivity of the analysis to data quality and the selection of data inputs. We sought
to include a wide variety of relevant social and ecological landscape properties to produce
broadly applicable firescape delineations and to avoid over-determining or biasing the results
with only a few influential variables or factors. The use of expert elicitation proved crucial for
robust data discovery, selection, and—in the case of smoke exposure potential—identifying
the need for new data. Regardless, the information that the firescapes provide is limited to
what can be derived from the input data, and their interpretation should take this into account.

An important rationale for our use of factor analysis was that many of the variables
used to describe landscape properties, which can initially appear unrelated, in fact may
be shaped by shared underlying drivers and may therefore be correlated. Factor analysis
simplifies the cluster analysis by first reducing the environmental space to these shared, and
in a sense more fundamental, dimensions [54]. This makes interpretation of the firescapes
more straightforward while still retaining the most important dimensions of variability in
the data. The Climate and Species at Risk factor illustrates this well, with high loadings for
more variables than any other factor. Positive values for this factor were associated with a
cool and moist climate, presence of at-risk species habitats, extensive forest cover, upland
deciduous and mixed forests, high fuel load, and large-diameter forest stands. All of these
properties are indicative of forest landscapes in and around the Appalachian Mountains
and Cumberland Plateau (Figure 3), where basic climatic, physiographic, and land use
patterns have tended to shape a variety of landscape properties. The factors and their maps
quantify shared patterns such as these, facilitating a more general understanding.

A benefit of our data-driven approach is that it can be applied at finer or coarser spatial
scales, or even hierarchically, depending on data availability and the intended purposes of
a firescape analysis (e.g., for more local or national landscape description). We chose a fairly
fine spatial scale of analysis and arbitrary hexagonal units to allow gradients in the data to
determine firescape delineations while de-emphasizing overly precise or pre-determined
local boundaries. But a similar analysis could be performed using spatial units such as
HUC watersheds, which are commonly used for planning and decision making [82], or
firesheds, which have been used in wildfire risk analysis in the western US [83].

We did not include parameters for spatial location or adjacency in the cluster analysis,
treating individual landscape units as though they were spatially independent. The clear
spatial contiguity of landscapes in a given firescape (Figure 5) resulted instead from auto-
correlation in the input data describing landscape properties—a typical characteristic of
spatial data. Although a spatial clustering routine could be applied if stronger contiguity
of firescapes were desired, advantages of not doing so are twofold. First, a preference for
spatial proximity can force landscapes into a class other than what would be assigned if
only the social and ecological properties of principal concern are considered. Second, when
spatial proximity is not a parameter, landscapes with similar properties but separated by large
distances can easily fall within the same firescape class. This is clear in our spatial results,
with disjunct pockets of a given firescape occurring across the region. For example, firescape 6
(Rural mixed forest with hazardous fire potential) had two widely separated centers of abundance,
in Florida and Oklahoma, and even within each of those areas the distribution of this firescape
was fragmented. This example also illustrates that landscapes as clearly dissimilar as those in
eastern Oklahoma and central Florida can nonetheless share properties that are important for
determining how fire operates, and affects people, in those places.
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Finally, quantitative firescapes may be expected to change over time as the landscape
properties that determine firescape membership change. Population densities, community
demographics, climate, fuel load, WUI, and other landscape properties in the analysis all
may change over time. To the extent that these changes are monitored, changes in the
distribution of firescapes can be assessed through re-analysis of the updated data. This also
provides a quantitative means of assessing possible future change, using modeled data
under a variety of future scenarios. In particular, given that climate change projections indi-
cate conditions favoring increased wildfire activity [1,2], assessing plausible future change
in firescape distributions has relevance in various planning and decision-making contexts.

5. Summary

Firescape types carry distinctive implications for wildfire, ecosystem management
tools such as prescribed fire, and their consequences for people and resources [22]. They
integrate biophysical and social descriptions to characterize landscapes in terms of the
physical and cultural systems that affect fire and are affected by fire. As a result, they have
relevance for issues that are seeing renewed emphasis in response to the ongoing wildfire
crisis, including but not limited to social vulnerabilities and inequities with respect to wild-
fire impacts, ecosystem services placed at risk such as forest carbon storage and clean water
provisioning, and the role of expanded prescribed fire efforts in mitigating risks. Firescapes
provide a broad-scale context for developing fire management strategies appropriate to
prevailing landscape conditions. Given ongoing and expected future social, ecological,
and climate change, the distribution of firescape types may also be expected to change,
highlighting their potential as a tool for dynamic landscape monitoring and projection.

The spatial data products provided by the firescapes analysis have a variety of po-
tential research applications, in addition to their management applications. For example,
quantitative firescapes provide relevant information for understanding risks associated
with wildfire, but our analysis does not in itself constitute a formal risk assessment. Else-
where, we report a quantitative risk assessment based on Bayesian network modeling,
using the factors generated in our firescapes analysis as model inputs [84]. The risk analysis
quantifies spatial gradients in risks to people and ecosystem services from wildfire and uses a
scenario-based approach to quantify the capacity of fuel reduction decisions to reduce risk. The
firescapes analysis and the risk analysis provide distinct and complementary information for
risk management, including, but not limited, to prescribed fire planning. The risk assessment
reported by [1,2] relies strongly on the data reduction and identification of key dimensions
of landscape variability provided by the firescapes analysis. We suggest that there are likely
additional research applications not yet pursued or conceived that could also benefit.
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Appendix A

Appendix A.1. Variables Included in Large-Scale Data Synthesis for 13 States in the USDA Forest Service Southern Region

Table A1. Variables included in large-scale data synthesis for 13 states in the USDA Forest Service southern region. The dataset was used in factor analysis to
generate synthetic factor variables used in the cluster analysis. See main text for data source references.

Variable Name Source Description Original Resolution Summarized to Hexagons

Fire dynamics and history

Burn probability USFS Wildfire Risk to Communities Annual probability of wildfire burning in a
specific location 270 m Mean

Flame length exceedance probability
(4ft) USFS Wildfire Risk to Communities Probability of flame lengths > 4 feet,

if fire occurs 270 m Mean

Flame length exceedance probability
(8ft) USFS Wildfire Risk to Communities Probability of flame lengths > 8 feet,

if fire occurs 270 m Mean

Fire return interval LANDFIRE 2022
Fire return interval, all fire—mean period
between fire under presumed historical
regime

30 m Mean

Forest area burned, 2001–2021 USFS/NASA MODIS Burned Areas Summed area burned, 2001–2021 500 m Sum

Forest burn frequency, 2001–2021 USFS/NASA MODIS Burned Areas Times a pixel (~450 m sq.) burned during
2001–2021—mean for landscape 500 m Mean

Forest burn frequency, 2012–2021 USFS/NASA MODIS Burned Areas Times a pixel (~450 m sq.) burned during
2012–2021—mean for landscape 500 m Mean

Human-caused fires, 2009–2018 USDA Forest Service Research Data
Archive, Short et al. Human-caused fires 2009–2018, Short et al. Point Sum

Natural-caused fires, 2009–2018 USDA Forest Service Research Data
Archive, Short et al. Natural-caused fires 2009–2018, Short et al. Point Sum

Fire acreage burned, 2009–2018 USDA Forest Service Research Data
Archive, Short et al. Total acres burned 2009–2018, Short et al. Point Sum

Human-caused fires, 2000–2018 USDA Forest Service Research Data
Archive, Short et al. Human-caused fires 2000–2018, Short et al. Point Sum

Natural-caused fires, 2000–2018 USDA Forest Service Research Data
Archive, Short et al. Natural-caused fires 2000–2018, Short et al. Point Sum
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Table A1. Cont.

Variable Name Source Description Original Resolution Summarized to Hexagons

Fire acreage burned, 2000–2018 USDA Forest Service Research Data
Archive, Short et al. Total acres burned 2000–2018, Short et al. Point Sum

MTBS Burned area, 2000–2020 Monitoring Trends in Burn Severity Total acres burned 2000–2020, MTBS Fire perimeter polygon Sum

Maximum burned area (composite) Max composite—MTBS, Short et al.,
MODIS Burned Areas

Max acres burned, among three data
products, 2000–2021 Multiple Sum

Fire and communities

Wildland–Urban Interface (WUI) SILVIS Lab, University of
Wisconsin-Madison

Sum of interface (housing in vicinity of
contiguous vegetation) and intermix (housing
and vegetation intermingle)

10 m Proportion

Wildland–Urban Interface (WUI) Risk Southern Group of State Foresters
Index rating potential impact of wildfire
on people and homes (negative
value = high risk)

30 m Mean

Risk to potential structures USFS Wildfire Risk to Communities Index measuring wildfire likelihood and
intensity with consequences to a home 270 m Mean

Exposure type USFS Wildfire Risk to Communities

Where homes are exposed to wildfire from
adjacent wildland vegetation, exposed from
indirect sources such as embers and
home-to-home ignition, or not exposed due
to distance from direct and indirect
ignition sources

270 m Mean

Wildfire hazard USFS Wildfire Risk to Communities Relative potential for uncontrolled wildfire 270 m Mean

Potential wildfire smoke exposure USDA Forest Service Southern Research
Station

The vulnerability-weighted population
exposed to hazardous smoke (at least
40 micrograms per cubic meter) if a fire occurs

1000-ha hexagon Mean

Potential wildfire smoke exposure,
Rx-reduced fuels

USDA Forest Service Southern Research
Station

The vulnerability-weighted population
exposed, given an assumption of reduced
fuels resulting from fuels management

1000-ha hexagon Mean
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Table A1. Cont.

Variable Name Source Description Original Resolution Summarized to Hexagons

Social and Cultural

Housing unit density USFS Wildfire Risk to Communities

Residential housing units/km2 generated
using 2018 population and housing data from
the US Census Bureau, building footprint
data from Microsoft, and land cover from
LANDFIRE

270 m Mean

Population density USFS Wildfire Risk to Communities

Residential population density generated
using 2018 population data from the US
Census Bureau, building footprint data from
Microsoft, and land cover from LANDFIRE

270 m Mean

Private forest ownership USDA Forest Service data archive Proportion of forest land in private
ownership 250 m Proportion

Federal forest ownership USDA Forest Service data archive Proportion of forest land in federal ownership 250 m Proportion

State forest ownership USDA Forest Service data archive Proportion of forest land in state ownership 250 m Proportion

Local forest ownership USDA Forest Service data archive Proportion of forest land in local government
ownership 250 m Proportion

Vulnerability index: Socioeconomic Socioeconomic Data and Applications
Center (SEDAC); CDC

Socioeconomic data based on variables:
Below Poverty, Unemployment, Income, and
No High School Diploma

Census block; 1 km Mean

Vulnerability index: Household
composition and disability SEDAC/CDC

Household data based on variables: Aged 65
or Older, Aged 17 or Younger, Civilian with
Disability, Single-Parent Households

Census block; 1 km Mean

Vulnerability index: Minority status and
language SEDAC/CDC

Minority Status and Language data based on
variables: Minority and Speaks English “Less
than Well”

Census block; 1 km Mean

Vulnerability index: Housing type and
transportation SEDAC/CDC

Housing Type and Transportation data based
on variables: Multi-Unit Structures, Mobile
Homes, Crowding, No Vehicle, Group
Quarters

Census block; 1 km Mean

Vulnerability index: Overall SEDAC/CDC Overall social vulnerability, composite Census block; 1 km Mean
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Table A1. Cont.

Variable Name Source Description Original Resolution Summarized to Hexagons

Forest properties

Fuel Load LANDFIRE 2022 Total available forest fuels (tons) 30 m Sum (forested lands)

Forest carbon stocks USDA Forest Service FIA BIGMAP Total forest carbon (tons/acre), 2014–2018 30 m Mean

Upland Conifer Forest type groups, FIA BIGMAP Includes Pinyon/Juniper Group,
Fir/Spruce/Hemlock Group 250 m Proportion, total forest types

Longleaf/Slash Pine FIA BIGMAP Longleaf/Slash Pine Group 250 m Proportion, total forest types

Loblolly/Shortleaf Pine FIA BIGMAP Loblolly/Shortleaf Pine Group 250 m Proportion, total forest types

Bottomland/Moist Soil Hardwoods FIA BIGMAP
Includes Oak/Gum/Cypress Group,
Elm/Ash/Cottonwood Group, Tropical
Hardwoods Group, Exotic Hardwoods

250 m Proportion, total forest types

Upland Hardwoods FIA BIGMAP
Includes Oak/Pine Group, Oak/Hickory
Group, Maple/Beech/Birch Group,
Aspen/Birch Group

250 m Proportion, total forest types

Non-stocked forest type group FIA BIGMAP Considered forest but currently non-stocked
(e.g., post-harvest) 250 m Proportion, total forest types

Stand size class: Small FIA BIGMAP Forest dominated by small diameter trees,
2014–2018 250 m Proportion cover

Stand size class: Medium FIA BIGMAP Forest dominated by medium diameter trees,
2014–2018 250 m Proportion cover

Stand size class: Large FIA BIGMAP Forest dominated by large diameter trees,
2014–2018 250 m Proportion cover

Non-stocked size class FIA BIGMAP Considered forest but currently non-stocked
size class 250 m Proportion cover

Projected total basal area loss from all
pests

USDA Forest Service, Forest Health
Protection

Projected loss to basal area from all pests by
mid-century (risk) 240 m Mean
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Table A1. Cont.

Variable Name Source Description Original Resolution Summarized to Hexagons

Landscape properties

Vegetation departure index LANDFIRE 2022 Vegetation that has departed from historical
vegetation (mean) 30 m Mean

Growing season greenness trajectory,
2001 to 2017

USFS Landscape Dynamics Assessment
Tool (LanDat)

Trajectory of change in mean growing season
greenness (NDVI), 2001–2017 250 m Mean

Growing season greenness trajectory,
2008 to 2017

USFS Landscape Dynamics Assessment
Tool (LanDat)

Trajectory of change in mean growing season
greenness (NDVI), 2008–2017 250 m Mean

Natural cover density change, 2000 to
2019 USDA Forest Service/LCMAP Change in cover density. ‘Natural’ excludes

‘developed’ and ‘agricultural’ 30 m Mean

Natural cover density change, 2010 to
2019 USDA Forest Service/LCMAP Change in cover density. ‘Natural’ excludes

‘developed’ and ‘agricultural’ 30 m Mean

Agriculture cover density change 2010
to 2019 USDA Forest Service/LCMAP Change (gain or loss) in agriculture cover 30 m Mean

Development density change 2010 to
2019 USDA Forest Service/LCMAP Change (gain or loss) in developed area 30 m Mean

Forest land cover NLCD 2019 Proportion forest cover 30 m Proportion of total

Developed land cover NLCD 2019 Proportion developed (all urban classes) 30 m Proportion of total

Agricultural land cover NLCD 2019 Proportion agriculture 30 m Proportion of total

Watersheds

Watershed importance for surface
drinking water Forests to Faucets 2.0 Important HUC-12 watersheds for

surface-derived drinking water
HUC12 watershed; mean
size = 101.3 km2 Mean

Downstream drinking water population Forests to Faucets 2.0 Sum of surface drinking water population
downstream of HUC-12 watershed

HUC12 watershed; mean
size = 101.3 km2 Sum

Proportion of watersheds with high to
very high WHP Forests to Faucets 2.0 Proportion of HUC-12 watershed with high

or very high wildfire hazard potential
HUC12 watershed; mean
size = 101.3 km2 Proportion

Land use change risk to surface
drinking water, medium scenario Forests to Faucets 2.0

Land use change risk to important
watersheds under RCP4.5 scenario,
2010–2040

HUC12 watershed; mean
size = 101.3 km2 Mean
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Table A1. Cont.

Variable Name Source Description Original Resolution Summarized to Hexagons

Land use change risk to surface
drinking water, high scenario Forests to Faucets 2.0

Land use change risk to important
watersheds under RCP8.5 scenario,
2010–2040

HUC12 watershed; mean
size = 101.3 km2 Mean

Proportion natural cover Forests to Faucets 2.0 Proportion natural cover, HUC-12 HUC12 watershed; mean
size = 101.3 km2 Proportion of total

Proportion impervious Forests to Faucets 2.0 Proportion impervious, HUC-12 HUC12 watershed; mean
size = 101.3 km2 Proportion of total

Biodiversity

T and E Plants USFWS current range Total number of T and E plant species Polygon Sum/Total

T and E Wildlife USFWS current range Total number of T and E wildlife species Polygon Sum/Total

T and E Plants and Wildlife USFWS current range Total number of T and E species combined Polygon Sum/Total

Southeast Blueprint Conservation
Priority Areas Southeast Conservation Blueprint Proportional cover, combined Medium and

High priority 270 m Proportion

Climate

Potential evapotranspiration (PET),
monthly

USDA Forest Service Data Archive,
RPA, MACAv2/METDATA 30-year normal (1992–2021) 1/24 degree (~4 km2) Mean

Min relative humidity, monthly MACAv2/METDATA 30-year normal (1992–2021) 1/24 degree (~4 km2) Mean

Min Precipitation, monthly MACAv2/METDATA 30-year normal (1992–2021) 1/24 degree (~4 km2) Mean

SPEI drought index MACAv2/METDATA 30-year mean (1992–2021) of 3-year drought,
relative to 1979–2008 reference period 1/24 degree (~4 km2) Mean

Max temperature, monthly MACAv2/METDATA 30-year normal (1992–2021) 1/24 degree (~4 km2) Mean

Max downward radiation (SRAD),
monthly MACAv2/METDATA 30-year normal (1992–2021) 1/24 degree (~4 km2) Mean
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Appendix A.2. Methods for Potential Smoke Exposure Modeling

Smoke exposure modeling methods used to produce the two ‘potential wildfire smoke
exposure’ variables (Appendix A.1).

In a study exploring the association between social vulnerability and smoke plume
dispersion in the southeastern United States, ref. [20] utilized smoke plume data from the
National Oceanic and Atmospheric Administration’s (NOAA) Hazard Mapping System
(HMS). The HMS is an interactive processing system wherein trained satellite analysts
manually integrate data from a number of satellites to produce a quality-controlled daily
dataset of fires and significant smoke plumes detected [20]. Ref. [20] estimated potential
smoke exposure at the census block group level by counting the number of plumes passing
over a census polygon.

We build upon the work of [20] to align with our current analysis framework and
to address a key shortcoming of that previous work. To integrate the impact of potential
smoke exposure into our firescapes analysis, we consider potential smoke plumes from fire
occurrence in every 1000 ha hexagon in our regional analysis. For a fire in a given hexagon,
our source, we accumulate the human population of all hexagons that intersect a smoke
plume (considering all hexagons in a contiguous surface, not only those with at least 25%
forest). We assign this sum to the source hexagon, providing an estimate of the total number
of people potentially exposed to smoke from a fire starting in the source hexagon. This
calculation is performed for a social vulnerability-weighted population exposed. Social
vulnerability was estimated with the Overall Vulnerability index from the Socioeconomic
Data and Applications Center (SEDAC) and the Centers for Disease Control (CDC) [46],
the same social vulnerability data used elsewhere in our analysis.

In addition to an aggregate exposure being assigned to source locations, we have
utilized a simple gaussian plume model [86] to estimate at what distance the surface smoke
concentration decays below a threshold given by the Environmental Protection Agency’s
(EPA) level associated with conditions unhealthy for sensitive individuals. The addition of
the screening distance addresses a key limitation of [20] by providing a means of estimating
smoke concentrations at ground level, rather than relying on a simple proxy measure
of exposure such as the number of plumes intersecting a polygon of interest. With this
screening distance, we are not necessarily using a plume’s full extent, but rather following
along the plume centerline for a distance coinciding with surface smoke concentrations
decaying below a preset value. While Vargo [87] avoided the same shortcoming of using
the HMS plumes for estimating exposure by adding aerosol optical depth information to
the analysis to add smoke concentration information, such an approach is not amenable for
scenario-based projection aspects of the current study, where the use of the gaussian plume
model allows flexibility in adjusting the screening distance based on simulated changes in
fuel conditions [87].

While [20] and Vargo [87] focused on using the HMS plume information to assess
smoke exposure from actual burn events, we apply the HMS data to the problem of
assessment in all landscapes, which requires having plume information for every forested
hexagon. To accomplish this, the coordinates of each HMS plume are transformed into
coordinates relative to the source point, and then these source-relative plumes are assigned
to each hexagon based on an inverse distance squared interpolation process. Prior to the
interpolation step, hexagons are stratified based on fuel loading relative to the fuel load of
the hexagon to which values are being interpolated. This process provides each hexagon
with a collection of plume pathways that can be used to estimate potential smoke exposure.

Fuel load estimates for each hexagon were the same as those described in the main
text. In addition to using the estimated existing fuel load in each hexagon, we also ran the
analysis on the basis of a fuel-reduction scenario, wherein fuels are reduced by 50% from
the existing level. This produced two outputs: one estimating potential smoke exposure
from wildfire that occurs under existing fuel load conditions and one assuming that the
fuel management prior to wildfire occurrence had reduced available fuels.
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For each plume in the collection, exposure metrics are estimated by first determining
the screening distance using the gaussian plume model and then following each plume
out that distance and summing the vulnerability-weighted population for each hexagon
intersecting the plume. Key inputs for the plume model are emission rate, transport wind
speed, mixing height, and stability class. The emission rate is based on the available fuel
loading within the hexagon and an assumed 80% consumption for current climatic condi-
tions. Transport wind speed and mixing height values are extracted from the Ventilation
Climate Information System [45], while a constant stability class of Moderately Unstable,
sometimes labeled as class B or 2, is assumed (Figure A1).
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Figure A1. Monthly distributions of afternoon mixing height (A) and ventilation index (B) for a
location in north Florida. Plots were generated using the Ventilation Climate Information System
(https://tools-2.airfire.org/vcis/#/about, accessed on 25 January 2022). The red line at a mixing
height of 1000 m above ground level indicates where morning mixing heights are set in cases where
interpolation problems occur at very high elevations (rarely occurs in the Southern US).

https://tools-2.airfire.org/vcis/#/about
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Appendix A.3. Factor Loading Results for All 73 Variables Used in Large-Scale Data Synthesis for 13 States in the USDA Forest Service Southern Region

Table A2. Factor loading results for all 73 variables used in large-scale data synthesis for 13 states in the USDA Forest Service southern region. Loadings with a value
less than 0.10 are not shown.

Variable Climate and
Species at Risk

Wildfire Intensity
and Fire-Prone

Forests
Fire History

Population,
Infrastructure,

and WUI

Forests and
Carbon

Wildfire
Potential

Social
Vulnerability

Land
Use/Cover

Change

Risk to potential structures 0.142 0.229 0.945
Burn probability 0.227 0.937

Housing unit density 0.989
Wildfire hazard 0.344 0.122 0.718

Projected total basal area loss
from all pests −0.150 0.518 −0.101

Population density 0.989
Private forest ownership −0.262 −0.263 −0.140 0.110
Federal forest ownership 0.242 0.282

State forest ownership 0.129 0.122 0.132
Local forest ownership 0.140

Forest land cover 0.238 −0.245 0.887
Developed land cover 0.856 −0.173

Flame length exceedance (4 ft) −0.284 0.536 −0.154 0.155
Flame length exceedance (8 ft) 0.554 0.115

T and E Plants 0.290 0.141 0.149
T and E Wildlife 0.424 0.157 0.137 0.341

T and E Plants and Wildlife 0.443 0.183 0.132 0.314
Fire return interval 0.256 0.148

Vegetation departure index 0.290 −0.101 −0.174 −0.124
Forest burn frequency, 2001–2021 0.980
Forest burn frequency, 2012–2021 0.880

Vulnerability index: Overall 0.133 −0.150 0.967
Vulnerability index:

Socioeconomic 0.151 −0.224 0.811

Vulnerability index: Minority
status and language −0.300 0.343 0.122 0.428

Vulnerability index: Housing
type and transportation 0.755
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Table A2. Cont.

Variable Climate and
Species at Risk

Wildfire Intensity
and Fire-Prone

Forests
Fire History

Population,
Infrastructure,

and WUI

Forests and
Carbon

Wildfire
Potential

Social
Vulnerability

Land
Use/Cover

Change

Vulnerability index: Household
composition and disability −0.164 0.604

Wildland–Urban Interface
(WUI) Risk −0.120 0.123 −0.651 0.229

Growing season greenness
trajectory, 2001 to 2017 −0.105 −0.132 −0.119 0.225

Growing season greenness
trajectory, 2008 to 2017 −0.220 0.207

Natural cover density change,
2000 to 2019 −0.189 0.792

Natural cover density change,
2010 to 2019 −0.107 0.980

Exposure type −0.130 −0.216 0.391 0.115 −0.106
Agriculture cover density change

2010 to 2019 0.127 −0.951

Development density change
2010 to 2019 −0.177

Human-caused fires, 2009–2018 0.107
Natural-caused fires, 2009–2018 0.276 0.152
Fire acreage burned, 2009–2018
Human-caused fires, 2000–2018 0.137 0.111 0.125
Natural-caused fires, 2000–2018 0.330 0.181
Fire acreage burned, 2000–2018 0.112
Forest area burned, 2001–2021 0.977
MTBS Burned area, 2000–2020 0.701 0.113

Maximum burned area
(composite) 0.100 0.872

Agricultural land cover −0.802 0.104
Potential evapotranspiration

(PET), monthly −0.949 0.255

Min Precipitation, monthly 0.745 −0.225 0.142 −0.223
Min relative humidity, monthly 0.526 0.222

Max downward radiation
(SRAD), monthly −0.713 0.463
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Table A2. Cont.

Variable Climate and
Species at Risk

Wildfire Intensity
and Fire-Prone

Forests
Fire History

Population,
Infrastructure,

and WUI

Forests and
Carbon

Wildfire
Potential

Social
Vulnerability

Land
Use/Cover

Change

Max temperature, monthly −0.765 0.436
Watershed importance for

surface drinking water −0.623

Land use change risk to surface
drinking water, high scenario −0.162 0.265

Land use change risk to surface
drinking water, medium scenario −0.106 0.270

Downstream drinking water
population 0.312 −0.719 0.128

Proportion impervious 0.672
Natural land cover −0.225 0.654

Proportion of watershed with
high to very high WHP 0.557 0.147 0.103 0.279

Forest carbon stocks 0.360 0.112 −0.193 0.817
SPEI drought index 0.489 −0.328

Upland Conifer −0.438 −0.149 −0.102
Longleaf/Slash Pine 0.128 0.613 0.191 0.151 −0.128

Loblolly/Shortleaf Pine 0.409 0.238 −0.262 0.112
Bottomland/Moist Soil

Hardwoods 0.378 0.172

Upland Hardwoods 0.102 −0.819 −0.106
Non-stocked forest type group −0.344 0.239 0.104 −0.269 0.234

Stand size class: Large 0.446 −0.407 0.187 −0.111 0.101
Stand size class: Medium −0.470

Stand size class: Small −0.229 0.536 −0.197
Non-stocked size class −0.337 0.238 0.110 −0.194 0.235

Fuel Load 0.336 −0.109 0.546
Wildland–Urban Interface (WUI) 0.152 −0.225 −0.153 0.350 −0.302

Conservation Priority Areas 0.121 0.126 −0.211 0.453
Potential wildfire smoke

exposure 0.328 0.144 0.265 0.208

Potential wildfire smoke
exposure, Rx-reduced fuels 0.289 −0.119 −0.216 0.168 0.153 0.189
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