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Abstract

The reciprocal relationships between ecological process and landscape pattern are funda-

mental to landscape ecology. Landscape ecologists traditionally use raster maps portraying

classified features such as land use or land cover categories, and metrics suggested by the

patch-corridor-matrix conceptual model of pattern. Less attention has been given to the

landscape gradient conceptual model and raster maps portraying numeric features such as

greenness or percent vegetation cover. We introduce the open-source tool GraySpatCon to

calculate and map a variety of landscape pattern metrics from both conceptual models

using either categorical or numeric maps. The 51 metrics, drawn mostly from the landscape

ecology and image processing literatures, are calculated from the frequencies of input pixel

values and/or the pixel value adjacencies in an analysis region. GraySpatCon conducts

either a moving window analysis which produces a continuous map of a pattern metric, or a

global analysis which produces a single metric value. We describe an implementation in the

GuidosToolbox desktop application which allows novice users to interactively explore Gray-

SpatCon functionality. In the R desktop environment, we demonstrate several metrics using

an example map of percent tree cover and illustrate a multi-scale moving window analysis to

identify scale domains. Comparisons of computational efficiency indicate a substantial

GraySpatCon advantage over related software in the R environment.

Introduction

The reciprocal relationships between ecological process and landscape pattern are fundamen-

tal to landscape ecology [1–3]. Landscape pattern metrics quantify the composition and con-

figuration of the elements comprising a landscape [4, 5]. There is a long history of using

quantitative and qualitative metrics to examine pattern-process relationships from various per-

spectives [6–8]. While process-specific ecological interpretation of individual metrics often

depends upon local circumstances [c.f. 9, 10], some less-specific yet integrative metrics are

commonly applied in the context of biodiversity conservation at international scale [11–13].

Recent reviews demonstrate that research is needed to improve the science and practice of

landscape pattern measurement [14–16].

The quantitative analysis of landscape patterns has co-evolved with perspectives about

which patterns are important to know about, in turn driven partly by the data and software

available to operationalize those perspectives [17]. Early perspectives were dominated by the
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patch-corridor-matrix conceptual model [18] and spawned a generation of software for analy-

sis of categorical maps [4] as exemplified by FRAGSTATS [19] and landscapemetrics [20]. The

advent of maps portraying numeric data (e.g., surface maps of greenness or percent vegetation

cover) has contributed to the growing popularity of an alternate conceptual model known as

the landscape gradient [21] and recognition that a new generation of pattern analysis is

required [22].

While some early landscape ecology software provided limited analysis of numeric data

[23], recent ecological research with numeric data has typically used proprietary software from

the fields of surface metrology [22, 24–26] and image processing [27–32]. Among the open-

source packages available for the R desktop environment, patch-corridor-matrix metrics are

available in landscapemetrics [20], surface metrology metrics are available in GEODIV [33],

and image texture metrics are available in glcm [34] and fastGLCM [35]. However, none of

those tools were developed for both categorical and numeric input data. Furthermore, inte-

grated software systems designed for remote sensing (e.g., Earth Engine [36]), medical imaging

(e.g., 3D Slicer [37]), or geographic information systems (e.g., GRASS [38] and QGIS [39]) may

provide some relevant procedures but may also be less accessible to non-specialists in those

fields.

We developed the open-source C program GraySpatCon (Gray-scale Spatial Convolution,

version 1.1.1) to support analysis of a wide range of landscape pattern metrics used by land-

scape ecologists, including metrics applicable to categorical or numeric raster input data.

Despite the popularity of the patch-corridor-matrix conceptual model, its focus on metrics

which describe discrete patches in fixed-area landscapes is inconsistent with the landscape gra-

dient conceptual model, in which landscape pattern is a spatially continuous property of a

landscape. Furthermore, in contrast to patch-level metrics, pixel-level measures are arguably

the fundamental metrics of landscape pattern because patch-level metrics can often be esti-

mated from pixel-level measures [40]. The overall objective of our project is to stimulate and

facilitate the application of landscape gradient data in ecological research. The objectives of

this paper are to describe the functionality of GraySpatCon and its implementation within sev-

eral popular computing environments, to illustrate a multi-scale analysis using a selected land-

scape gradient metric, and to compare computational efficiency with several software

alternatives.

Methods

The 51 GraySpatCon metrics are calculated from frequencies of input pixel values and/or pixel

value adjacencies, and GraySpatCon is designed primarily for moving window analyses which

produce continuous maps of pattern metrics. The moving window algorithm moves an analy-

sis window across the input map, one pixel at a time, accumulating and discarding information

along the way. Based on the pixel values and/or adjacencies in the window at a given pixel loca-

tion, a metric is calculated and assigned to that location on the output map. Thus, the output

pixel value codes the landscape pattern context of that pixel location, and the spatial resolution

of the input map is preserved. The spatial scale of a moving window analysis is defined by the

size of the window; GraySpatCon optionally calculates metrics for a window defined as the

entire map extent.

To illustrate basic concepts, a 4 x 4 map contains 16 pixels and 24 adjacencies (Fig 1).

Depending on the metric, the moving window algorithm tracks the changing pixel values in a

window (summarized in a frequency distribution) and/or the changing pixel value adjacencies

in a window (summarized in an adjacency matrix, also known as a co-occurrence matrix).

Within an adjacency matrix, the rows and columns indicate the pixel values that are adjacent,
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and the elements of the matrix indicate the frequencies of each type of adjacency (Fig 2). In

GraySpatCon, adjacency matrices are constructed by counting each adjacency in a window

once to construct an ordered adjacency matrix; an unordered adjacency matrix is constructed

by collapsing the ordered matrix across the main diagonal (Fig 2). Where appropriate, Gray-
SpatCon provides two versions of metrics reflecting the difference between ordered and unor-

dered adjacencies.

Using the notation in Table 1, the GraySpatCon metrics are defined in Table 2 where the

metric numbers and names follow the nomenclature of the GuidosToolbox (GTB) and

GuidosToolbox Workbench (GWB) applications (see below). For consistency with common

practice in the image processing literature, the metric definitions assume that numeric data are

quantized (“binned”) as integer values in the range [0, 100]; nominal input data can take on

any values in that range. Because quantized numeric data are ordinal and therefore categorical,

all the metrics can be calculated for a given input map. However, not all metrics are meaning-

ful for all types of input data (Table 2); for example, the correlation metric is meaningless

when using nominal data, and the landscape mosaic metric is meaningless when using

numeric data. The development philosophy is to provide a generic tool that is potentially

applicable to a wide range of investigations. We assume knowledgeable users will select appro-

priate metrics for a specific circumstance and interpret the results in that context. We recog-

nize the algebraic and geometric correlations among many of the metrics, and we do not

advocate mindless calculation or application of them.

Some of the metric definitions in Table 2 differ slightly from other published definitions.

This is due partly to differences in the handling of input pixels which are coded as zero (Gray-
SpatCon optionally omits those pixels from calculations), and in the method used to construct

adjacency matrices (e.g., ordered, unordered, or symmetric). In addition, certain metrics have

the same name in the landscape ecology and image processing literature when different formu-

las are used, or different names when the formulas are the same.

The default output precision in GraySpatCon is 32-bit floating point, with optional conver-

sion to 8-bit integer precision. GraySpatCon optionally performs a global analysis using the

entire extent of the input data area, in which case the output is a text file instead of a map. The

moving window algorithm in GraySpatCon is parallelized using OpenMP and by default, will

use all cores available in the operating system. The GraySpatCon memory requirement is

Fig 1. Example of a 4 pixel x 4 pixel map containing 16 pixels (left) and 24 adjacencies (right).

https://doi.org/10.1371/journal.pone.0291697.g001
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approximately five times the number of pixels (bytes) in the input map (e.g., ~20 MB RAM for

a map of size 2000 x 2000 pixels).

While it is possible for a user to compile and execute a stand-alone application (S1 File), we

strongly suggest to first use GraySpatCon via its implementation in the free and open-source

image analysis software application GTB (GuidosToolbox) [54]. GTB contains a wide variety

of generic raster image processing routines, which are packaged into an interactive desktop

application for either Linux, macOS, or MS-Windows. In GTB, the authors have implemented

Fig 2. Illustration of ordered and unordered adjacency matrices for a 4 pixel x 4 pixel map containing nominal or ordinal

data (top). Using a 2-neighbor rule defined as “one pixel below or one pixel to the right,” adjacencies are tabulated to form

an ordered adjacency matrix (middle); an unordered adjacency matrix is formed by collapsing the ordered matrix across

the main diagonal (bottom). The notation follows that in Table 1. Proportions are rounded to two decimal places.

https://doi.org/10.1371/journal.pone.0291697.g002
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GraySpatCon with a dedicated popup window (Fig 3). This GUI-interface is designed to pro-

vide the most intuitive and user-friendly link to GraySpatCon, facilitating the correct interac-

tion and selection of the GraySpatCon parameter settings. Batch-mode, or automatic

processing of a series of images, is also available in GTB. The implementation of GraySpatCon
in GTB is described further in the GraySpatCon Guide (S1 File), which also contains important

usage information and general instructions for a GraySpatCon stand-alone application. For

workflow applications in a Linux desktop or server environment, GraySpatCon is also imple-

mented as the GWB_GSC module in the free and open-source software application GWB

Table 1. Notation for metric computation.

Notation Definition Notes

Notation for metrics based on the frequency of pixel values (gray levels)

i Gray level of the frequency array
i 2

ð0; 100Þif zero gray level is included

ð1; 100Þif zero gray level is excluded

(

Ng Number of gray levels

x(i) Element i in the frequency array

p(i) xðiÞP
i
xðiÞ

μ
P

i½i � pðiÞ�

σ2 P
i½ði � mÞ

2
� pðiÞ�

t1 User-selected gray level Target code 1

Notation for metrics based on the frequency of pixel value (gray level) adjacencies

i and j Gray levels i (row) and j (column) in the adjacency matrix
i; j 2

ð0; 100Þif zero gray level is included

ð1; 100Þif zero gray level is excluded

(

Ng Number of gray levels in the adjacency matrix

R Range of gray levels

x(i,j) Element i, j in the adjacency matrix Ordered adjacencies

x0(i,j) xði; jÞ þ xðj; iÞ; if i 6¼ j

xði; jÞ; if i ¼ j

(
Unordered adjacencies

p(i,j) xði;jÞP
i

P
j
xði;jÞ

p0(i,j) x0 ði;jÞP
i

P
j
xði;jÞ

px(i)
P

j pði; jÞ

py(j)
P

i pði; jÞ

μx
P

i½i � pxðiÞ�
μy

P
j½j � pyðjÞ�

s2
x

P
i½ði � mxÞ

2
� pxðiÞ�

s2
y

P
j½ðj � myÞ

2
� pyðjÞ�

px−y(k)
P

i

P
j whereji� jj¼k pði; jÞ

k 2
ð0; 100Þ if zero gray level is included

ð0; 99Þ if zero gray level is excluded

(

px+y(k)
P

i

P
j where iþj¼k pði; jÞ

k 2
ð0; 200 Þ if zero gray level is included

ð2; 200Þ if zero gray level is excluded

(

Nk Number of k levels in the adjacency matrix

t1 User-selected gray level Target code 1

t2 User-selected gray level Target code 2

k* User-selected k level For the kContagion metric only.

https://doi.org/10.1371/journal.pone.0291697.t001
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Table 2. GraySpatCon metrics.

Metric

(1)

Short name (2) Description (3) IT (4) OT (5)

1 Mean Mean: ∑i [i�p(i)] O R

[0,100]

2 EvennessOrderedAdj Evenness (ordered adjacencies) [ref. 41]:
½M4�

2�logNg
; for Ng>1 A R [0,1]

3 EvennessUnorderedAdj Evenness (unordered adjacencies) [ref. 42]:
½M5�

½logðN2
gþNg Þ� log2�

; for Ng>1 A R [0,1]

4 EntropyOrderedAdj Entropy (ordered adjacencies) [ref. 43]: �
P

i

P
j ½pði; jÞ � logpði; jÞ�; for pði; jÞ > 0 A R

5 EntropyUnorderedAdj Entropy (unordered adjacencies) [ref. 42]: �
P

i

P
j�i ½p

0ði; jÞ � log p0ði; jÞ�; for pði; jÞ > 0 A R

6 DiagonalContagion Diagonal Contagion [ref. 44]: ∑i p(i,i) A R [0,1]

7 ShannonDiversity Shannon Diversity (gray levels): �
P

i ½pðiÞ � log pðiÞ�; for pðiÞ > 0 A R

8 ShannonEvenness Shannon Evenness (gray levels):
½M7�

logNg ; for Ng>1 A R [0,1]

9 Median Median: median [x(i)] O I [0,100]

10 GSDiversity Gini-Simpson Diversity (gray levels): 1−∑ip(i)2 A R [0,1]

11 GSEvenness Gini-Simpson Evenness (gray levels):
½M10�

1� ð1=Ng Þ
; for Ng>1 A R [0,1]

12 EquitabilityOrderedAdj Equitability (ordered adjacencies) [ref. 45]:
½M14Þ

1� ð1=N2
g Þ
; for Ng>1 A R [0,1]

13 EquitabilityUnorderedAdj Equitability (unordered adjacencies) [ref. 46]:
½M15Þ

1� ½ 2=ðN2
gþNg Þ�

; for Ng>1 A R [0,1]

14 DiversityOrderedAdj Gini-Simpson Diversity (ordered adjacencies) [ref. 43, 45]: 1 �
P

i

P
j ½pði; jÞ � pði; jÞ� A R [0,1]

15 DiversityUnorderedAdj Gini-Simpson Diversity (unordered adjacencies): 1 �
P

i

P
j�i ½p0ði; jÞ � p0ði; jÞ� A R [0,1]

16 Majority Majority: i|p(i) = maximum[p(i)] A I [0,100]

17 LandscapeMosaic19 Landscape Mosaic (19 classes; see LM product sheet):

Ternary classification of ½ pð1Þ; pð2Þ; pð3Þ�; if f
P3

i¼1
pðiÞ ¼ 1

N N [1,19]

18 LandscapeMosaic103 Landscape Mosaic (103 classes; see LM product sheet):

Ternary classification of ½ pð1Þ; pð2Þ; pð3Þ�; if f
P3

i¼1
pðiÞ ¼ 1

N N

[1,103]

19 NumberGrayLevels Number of Gray Levels: Ng A I [1,100]

20 MaxAreaDensity Maximum Area Density: maximum[p(i)] A R [0,1]

21 FocalAreaDensity Focal Area Density: p(t1) A R [0,1]

22 FocalAdjT1
Focal adjacency (t1):

P
j
x0 ðt1 ;jÞ

P
i

P
j

xði;jÞ

A R [0,1]

23 FocalAdjT1andT2

Focal adjacency (t1 and t2) [ref. 47]:

xðt1; t2Þ þ xðt2; t1ÞP
i

P
jxði; jÞ

; if t1 6¼ t2

xðt1; t1ÞP
i

P
jxði; jÞ

; if t1 ¼ t2

8
>>>><

>>>>:

A R [0,1]

24 FocalAdjT1givenT2

Focal adjacency (t2 given t1) [ref. 48, 49]:

xðt1; t2Þ þ xðt2; t1ÞP
jx0ðt1; jÞ

; if t1 6¼ t2

xðt1; t1ÞP
jx0ðt1; jÞ

; if t1 ¼ t2

8
>>>><

>>>>:

A R [0,1]

25 StandardDeviation
Standard Deviation (population estimator):

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

i½ði � mÞ
2
� pðiÞ�

q
O R

[0,100]

26 CoefficientVariation Coefficient of Variation: 100 �
½M25�

m

� �
; for μ>0 O R

27 Range Range: maximum(i)−minimum(i) O I [0,100]

28 Dissimilarity Dissimilarity] [ref. 50]:
P

i

P
j ½ji � jj � pði; jÞ O R

29 Contrast Contrast [ref. 43, 51]:
P

i

P
j ½ði � jÞ2 � pði; jÞ� O R

30 UniformityOrderedAdj Uniformity (ordered adjacencies) [ref. 43]:
P

i

P
j ½pði; jÞ � pði; jÞ� A R [0,1]

31 UniformityUnorderedAdj Uniformity (unordered adjacencies):
P

i

P
j�i ½p

0ði; jÞ � p0ði; jÞ� A R [0,1]

32 Homogeneity Homogeneity [ref. 43, 50]:
P

i

P
j

pði;jÞ
1þði� jÞ2

h i
O R [0,1]

(Continued)

PLOS ONE Mapping landscape patterns

PLOS ONE | https://doi.org/10.1371/journal.pone.0291697 November 15, 2023 6 / 15

https://doi.org/10.1371/journal.pone.0291697


(GuidosToolbox Workbench) [55]. If computer memory is limited, large images can be pro-

cessed efficiently by using the GWB_SPLITLUMP module.

Results and discussion

Examples

We illustrate the functionality of GraySpatCon with five landscape pattern metrics applied to a

map of percent tree cover in the conterminous United States [56] resampled to a resolution of

Table 2. (Continued)

Metric

(1)

Short name (2) Description (3) IT (4) OT (5)

33 InverseDifference Inverse Difference [ref. 51]:
P

i

P
j

pði;jÞ
1þji� jj

h i
O R [0,1]

34 SimilarityRMax Similarity (R = 100) [ref. 52]: 1 �
P

i

P
j
ji� jÞ�pði;jÞ

100

� �
O R [0,1]

35 SimilarityRGlobal Similarity (R = global range) [ref. 52]: 1 �
P

i

P
j
ji� jÞ�pði;jÞ
global range

h i
O R [0,1]

36 SimilarityRWindow Similarity (R = window range) [ref. 52]: 1 �
P

i

P
j

ji� jÞ�pði;jÞ
window range

h i
O R [0,1]

37 DominanceOrderedAdj Dominance (ordered adjacencies) [ref. 50]: maximum[p(i,j)] A R [0,1]

38 DominanceUnorderedAdj Dominance (unordered adjacencies): maximum[p0(i,j)] A R [0,1]

39 DifferenceEntropy Difference Entropy [ref. 43]: �
P

k½px� yðkÞ � log px� yðkÞ�; for px� yðkÞ > 0 O R

40 DifferenceEvenness Difference Evenness [ref. 46]:
½M39�

logNk
; for Nk>1 O R [0,1]

41 SumEntropy Sum Entropy [ref. 43]: �
P

k½pxþyðkÞ � log pxþyðkÞ�; for pxþyðkÞ > 0 O

42 SumEvenness Sum Evenness [ref. 46]:
½M41�

logNk
; for Nk>1 O R [0,1]

43 AutoCorrelation Autocorrelation [ref. 50]:
P

i

P
j ½ði � jÞ � pði; jÞ� O R

44 Correlation Correlation [ref. 43, 51]:
P

i

P
j

i� mx
sx

� �
�

j� my
sy

� �
� p i; jð Þ

h i
; for sx; sy > 0 O R [–1,1]

45 ClusterShade Cluster Shade [ref. 53]:
P

i

P
j ½ ðiþ j � mx � myÞ

3
� pði; jÞ� O R

46 ClusterProminence Cluster Prominence [ref. 53]:
P

i

P
j ½ ðiþ j � mx � myÞ

4
� pði; jÞ� O R

47 RootMeanSquare Root Mean Square:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i½i2 � pðiÞ�
p

O R

48 AverageAbsDeviation Average Absolute Deviation:
P

i½ji � mj � pðiÞ� O R

49 kContagion k-contagion [ref. 46]:
Pk∗

k¼0
px� yðkÞ O R [0,1]

50 Skewness
Skewness:

P
i
½ði� mÞ3 �pðiÞ�

s3 ; for σ>0
O R

51 Kurtosis
Kurtosis:

P
i
½ði� mÞ4 �pðiÞ�

s4 ; for σ>0
X R

Columns 1–2: the metric number and short name as used in the parameter popup window (GTB) and the text parameter file (GWB). Column 3: metric description

(“[MX]” in equation indicates substitution of metric number X; “[ref. X]” refers to citation number X). Column 4: input data type (“A” = all, “N” = nominal, “O” =

ordinal). Column 5: output data type and bounding range (if any] (“I” = integer, “N” = nominal, “R” = real).

https://doi.org/10.1371/journal.pone.0291697.t002

Fig 3. Popup window used to set GraySpatCon parameters in the GuidosToolbox application (S1 File).

https://doi.org/10.1371/journal.pone.0291697.g003
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2430m (Fig 4 and S2 File). The five metrics include first-order (mean, range) and second-

order (correlation, k-contagion) metrics, and a second-order metric targeted at adjacencies

involving a specific input pixel value (focal adjacency_1). While a visual comparison of the

output maps may suggest the five metrics capture different aspects of the pattern of percent

tree cover, the choice of metrics in a specific study naturally depends on the circumstances and

the results and interpretations will vary accordingly. Ultimately the perception of pattern

depends on the observer. For example, investigations of habitat patterns for different species

should use appropriate habitat data and metrics which describe the aspects of pattern that are

believed to be important from the perspective of each species [4]. Since all potential observers

cannot be known in advance, GraySpatCon is designed to quantify and map many pattern

metrics in a consistent way such that comparisons among different studies may be facilitated.

It is also well known that the perceived pattern depends on the observation scale. In ecology

this is often translated to a requirement of selecting an observation scale which is appropriate

Fig 4. Illustration of GraySpatCon map output for five metrics applied to a map of percent tree cover for the conterminous

United States. Five landscape pattern metrics were mapped using a window size of 31x31 pixels (5675 km2). The panels show the

input data (a) [56] and output data (b–f) for five metrics (respectively, metric numbers 1, 44, 27, 22, 49 in Table 2). Darker colors

indicate larger values, ecoregion boundaries [57] are shown for comparisons, and the data range in each panel is indicated.

https://doi.org/10.1371/journal.pone.0291697.g004
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for a specific ecological process or species [4]. In a broader view, ecologists are also interested

in how pattern per se changes with observation scale in different landscapes; for example, “sca-

lograms” [58] may suggest “scale domains” [59] over which pattern-process relationships may

be stable. The “scale parameter” In GraySpatCon is only one aspect of observation scale–the

window size which defines the spatial extent of the analysis. Fig 5 illustrates the effect of chang-

ing the window size on the Gini-Simpson diversity metric as applied to the map of percent tree

cover. An example of a scalogram was constructed using 21 window sizes from 5x5 pixels to

45x45 pixels and plotting the maximum metric value (over all windows) versus window size

(Fig 6). The stability of the maximum metric value in window sizes from 11x11 to 25x25 sug-

gests a plausible scale domain, which could be tested for significance and subsequently com-

pared to an ecological process which was measured at the same 21 observation scales.

The example in Fig 6 used the maximum metric value over all windows to illustrate a simple sca-

logram. While beyond the scope of this illustration, the multi-scale results for each location (i.e., each

window) could be collectively analyzed to identify and map the locations of prevalent scalograms

[60] and identify the scales and locations of transitions from global to local scaling relationships [61].

While the traditional patch-corridor-matrix metrics may be better suited for describing discrete

patches, similar multi-scale procedures could be applied to nominal data to describe imputed patches

in terms perimeter characteristics, juxtaposition, size, and spatial distribution [62, 63].

Computational efficiency

Computational efficiency is an important aspect of landscape pattern analysis, especially when

addressing problems requiring calculations for large or numerous input maps, or for many

metrics or window sizes. A full comparison of all GraySpatCon metrics with other software is

Fig 5. Illustration of changing the observation scale (window size) for the Gini-Simpson diversity metric (Table 2; metric 10) as

applied to a map of percent tree cover (a) [56]. The diversity of percent tree cover was mapped for the three indicated window

sizes (b, c, d) corresponding to window areas of 53 km2, 714 km2, and 5675 km2). Darker colors indicate larger values, ecoregion

boundaries [57] are shown for comparisons, and the data range in each panel is indicated.

https://doi.org/10.1371/journal.pone.0291697.g005
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not possible because no other software implements all the GraySpatCon metrics. We selected a

set of comparable metrics for illustration and conducted all trials in the R desktop environ-

ment [64] using the map of percent tree cover described above (S2 File). We compared Gray-
SpatCon moving window analyses of four second-order Haralick [43] texture metrics with the

R packages glcm [34] and fastGLCM [35] (Table 3). We also compared GraySpatCon global

Table 3. Comparison of moving window execution times for four image texture metrics in glcm, fastGLCM, and

GraySpatCon. The gray-scale input map (Fig 4A) is 1990 X 1289 pixels, the window size is 31x31 pixels, and the

reported time is the mean of three trials.

Software

glcm1 fastGLCM GraySpatCon
Metric: homogeneity

1 core 3.7 minutes 1.6 minutes 17.2 seconds

8 cores – 27.4 seconds 4.1 seconds

Metric: entropy

1 core 4.9 minutes 1.7 minutes 48.3 seconds

8 cores – 27.8 seconds 10.6 seconds

Metric: contrast

1 core 3.1 minutes 1.6 minutes 17.5 seconds

8 cores – 26.9 seconds 4.2 seconds

Metric: angular second moment

1 core 2.9 minutes 1.6 minutes 16.9 seconds

8 cores – 26.4 seconds 4.1 seconds

1glcm is single-core only.

Hardware: CPU– 2 x Xeon E5-1620 @ 3.7GHz; RAM– 64GB @ 1866MHz.

Platform: Windows10(x64); R version 4.1.3 (2022-03-10); RStudio 2022.02.1+461.

Software versions: glcm 1.6.5; fastGLCM 1.0.2; GraySpatCon 1.1.1.

Execution time was measured by the R function Sys.time() before and after the relevant function or program.

https://doi.org/10.1371/journal.pone.0291697.t003

Fig 6. Illustration of a scalogram showing the maximum Gini-Simpson diversity metric over all windows, over a

range of observation scales (window sizes) for a map of percent tree cover (c.f., Fig 5). The observation scale is

indicated by the side length of the moving window, for example an observation scale of 15 corresponds to a window

size of 15x15 pixels. The plausible scale domain is a range of observation scales over which the maximum value is

relatively stable.

https://doi.org/10.1371/journal.pone.0291697.g006
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and moving window analyses of one second-order and two first-order metrics with the R pack-

age landscapemetrics [20] (Table 4). In the moving window comparisons GraySpatCon was sub-

stantially faster than all three alternatives. In the global analysis comparisons, GraySpatCon was

substantially faster than landscapemetrics for two of the three metrics tested. While alternate

software may be required for metrics not implemented in GraySpatCon, we believe these limited

comparisons are a compelling argument to consider using GraySpatCon when there is a choice.

Conclusion

Landscape ecologists use a variety of software and metrics to quantify and map landscape pat-

terns using raster data, but there are relatively few open-source software alternatives for con-

ducting many of the analyses commonly used to explore pattern-process relationships,

particularly software that supports analysis of numeric input data. We developed GraySpatCon
to quantify and map a wide range of landscape pattern metrics using categorical or

numeric input data, and our comparisons with alternate software indicated a significant

advantage in computational efficiency. We implemented GraySpatCon in the popular

GuidosToolbox desktop application so that novice users can interactively explore its capabili-

ties, and in the GuidosToolbox Workbench so that experienced users can easily integrate its

capabilities in computationally intensive workflows. Alternatively, binary executable versions

of GraySpatCon are available for three popular operating systems for implementation in other

desktop applications such as R (S2 File). For developers, the source code for GraySpatCon is

distributed on GitHub under CC0 (CC0 1.0 Universal [CC0 1.0] Public Domain Dedication)

(S2 File). Through these efforts we hope to stimulate increased attention to application of

numeric maps in ecology and related fields, and consistent treatment of nominal and numeric

data where appropriate.

Supporting information

S1 File. The Guide describes implementation in the GuidosToolbox application and pro-

vides important usage notes.

(PDF)

Table 4. Comparison of moving window and global analyses for landscapemetrics and GraySpatCon. The gray-scale input image (Fig 4A) is 1990 X 1289 pixels, the

window size is 3x3 pixels, and the reported time is the mean of three trials. Multi-core times were not compared because landscapemetrics supports only single-core usage,

and for practical reasons the smallest possible window size was used.

Moving window (3 x 3) Global analysis

Software Software

Landscapemetrics GraySpatCon Landscapemetrics GraySpatCon
Metric lsm_l_pr NumberGrayLevels lsm_l_pr NumberGrayLevels

1.2 hours 0.4 seconds 0.18 seconds 0.17 seconds

Metric lsm_l_contag EvennessOrderedAdj lsm_l_contag EvennessOrderedAdj

1.5 hours 19.3 seconds 0.36 seconds 0.17 seconds

Metric lsm_l_siei GSEvenness lsm_l_siei GSEvenness

6.9 hours1 0.5 seconds 8.11 seconds 0.16 seconds

1One trial completed in this time; two others were stopped after 3 hours.

Hardware: CPU– 2 x Xeon E5-1620 @ 3.7GHz; RAM– 64GB @ 1866MHz.

Platform: Windows10(x64); R version 4.1.3 (2022-03-10); Rstudio 2022.02.1+461.

Software versions: landscapemetrics 1.5.6; GraySpatCon 1.1.1.

Execution time was measured by the R function Sys.time() before and after the relevant function or program.

https://doi.org/10.1371/journal.pone.0291697.t004
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S2 File. This archive contains example input maps and R scripts used for examples and

comparisons, and instructions to download GraySpatCon source code and binary execut-

able files for 64-bit Linux, macOS, and MS-Windows operating systems.

(ZIP)
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