
Parallel k-means Clustering of Geospatial Data Sets
Using Manycore CPU Architectures

1st Richard Tran Mills
Mathematics and Computer Science Division

Argonne National Laboratory
Lemont, IL, USA

rtmills@anl.gov

2nd Vamsi Sripathi
Data Center Group

Intel Corporation
Hillsboro, OR, USA

vamsi.sripathi@intel.com

3rd Jitendra Kumar
Environmental Sciences Division
Oak Ridge National Laboratory

Oak Ridge, TN, USA

jkumar@climatemodeling.org

4th Sarat Sreepathi
Computer Science and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN, USA

sarat@ornl.gov

5th Forrest M. Hoffman
Computational Science and Engineering Division

Oak Ridge National Laboratory
Oak Ridge, TN, USA

forrest@climatemodeling.org

6th William W. Hargrove
Southern Research Station

USDA Forest Service
Asheville, NC, USA

hnw@geobabble.org

Abstract—The increasing availability of high-resolution
geospatiotemporal data sets from sources such as observatory
networks, remote sensing platforms, and computational Earth
system models has opened new possibilities for knowledge dis-
covery and mining of weather, climate, ecological, and other
geoscientific data sets fused from disparate sources. Many of the
standard tools used on individual workstations are impractical
for the analysis and synthesis of data sets of this size; however,
new algorithmic approaches that can effectively utilize the
complex memory hierarchies and the extremely high levels of
parallelism available in state-of-the-art high-performance com-
puting platforms can enable such analysis. Here, we describe
pKluster, an open-source tool we have developed for accelerated
k-means clustering of geospatial and geospatiotemporal data,
and discuss algorithmic modifications and code optimizations we
have made to enable it to effectively use parallel machines based
on novel CPU architectures—such as the Intel Knights Landing
Xeon Phi and Skylake Xeon processors—with many cores and
hardware threads, and employing significant single instruction,
multiple data (SIMD) parallelism. We outline some applications
of the code in ecology and climate science contexts and present
a detailed discussion of the performance of the code for one
such application, LiDAR-derived vertical vegetation structure
classification.

I. INTRODUCTION

Observational and modeled Earth science data span vast

temporal and spatial scales. Due to advances in sensor develop-

ment, dramatic increases in computational capacity, and grow-

ing data storage densities, the volume, complexity, and resolu-

tion of Earth science data are rapidly increasing. While these

heterogeneous, multi-disciplinary, geospatial data offer new

opportunities for scientific discovery, the resulting explosion

of data has rendered traditional analysis methods ineffective.

The promise of scientific advances from this wealth of data has

stimulated development and application of data mining, ma-

chine learning, and information theoretic approaches—often

on large parallel supercomputers—for combining, integrating,

and synthesizing Earth science data. Cluster analysis [1] has

proven useful for segmentation, feature extraction, change

detection, and network analysis with a variety of geospatial

and geospatiotemporal Earth science data. Specifically, cluster

analysis is used for delineating ecoregions [2], [3], stratifying

climate regimes [4], quantifying the representativeness of

sampling networks [5]–[8], and classifying vertical vegetation

structure from airborne LiDAR data [9]—the use case we work

with in this paper.

As the volume of available Earth science data has grown, so

too has the power of the computational platforms available for

their analysis. In the past decade, however, much of this growth

in computational power has relied on increasing amounts of

parallelism, in the form of GPGPUs and multi- and many-

core CPUs that employ vector processing units. Traditional

software tools used in geostatistics, designed for sequential

processors, are unable to harness the computational power

of these resources and are therefore unsuitable for analysis

of these growing Earth science data sets, especially on new

emerging architectures. In this study, we explore strategies to

enable scalable, parallel performance of k-means clustering—
one of the most widely-used tools for unsupervised classi-

fication in geostatistical applications—targeting the second-

generation Knights Landing Intel Xeon Phi, as well as current

and recent generation Intel Xeon server processors with large

core counts and reliance on AVX2 and AVX-512 vector

instruction sets.

II. A DISTRIBUTED k-MEANS CLUSTERING CODE FOR
GEOSPATIO(TEMPORAL) APPLICATIONS

A. Basic k-means clustering implementation

We work with a distributed memory parallel k-means
code—which we have recently renamed pKluster—with a long
history. pKluster was originally developed in the mid 1990s
for clustering large ecological data sets on early “Beowulf”-

style distributed-memory cluster computers constructed out

2018 IEEE International Conference on Data Mining Workshops (ICDMW)

of surplus parts [10]. Because of the extreme heterogene-

ity of the clusters, a master-worker parallel programming

paradigm (implemented using the then new Message Passing

Interface, MPI) was used [3], [11], as this provided excellent

dynamic load-balancing. On modern, homogeneous machines,

the master-worker paradigm may be less efficient than a fully

distributed, masterless approach; and thus we developed a

scalable masterless k-means clustering code [12]. However,
some of the techniques described below introduce load im-

balance even on homogeneous machines. Here, we work with

the master-worker version of the code. When pKluster was
initially written, on-node parallelism was virtually nonexistent

on commodity PCs (a few had superscalar processors that

offered some instruction-level parallelism); the focus was

purely on distributed-memory parallelism.

The k-means algorithm is widely used to classify mem-

bers of a data set consisting of n observation vectors

(x1, x2, . . . , xn), each of dimension m, into k clusters, based
on some measure of similarity (we use Euclidean distance

here, but other metrics, such as cosine similarity, are possible

as well). The number of clusters, k, is a prescribed, fixed
parameter. This iterative algorithm starts with a collection of

k “seed centroids” (z1, z2, . . . , zk), and computes the distance
of each observation vector x to each centroid; the observation
is then assigned membership in the cluster associated with the

closest centroid. After all observations have been classified, a

new set of centroids is calculated by computing the centroid

(vector mean of all assigned observations) for each cluster.

Iteration continues until only a small proportion (we use

< 0.05%) of observations change their cluster assignment.
Our implementation of a master-worker parallel version of this

algorithm is straightforward. The master process assigns an

aliquot of observations to each worker process, and, for each
observation, the workers compute the distance to each cen-

troid, assign the observations to the closest cluster, and report

the new cluster memberships to the master. As aliquots are

completed, the master assigns additional aliquots to workers

from its task queue. When all aliquots have been processed,

the iteration ends and the master computes the new centroids

and broadcasts them to the workers. The aliquot size is a

tunable parameter. Small aliquots enable better load balance,

but increase the number and volume of MPI messages and the

demands placed on the master process. In this study, we divide

the data set into a number of aliquots equal to the number

of worker MPI processes. This allows each worker process

to work with the same set of observations throughout the

calculation, obviating the need for great deal of I/O, but at the

expense of losing any load balancing inherent in the master-

worker model. Prior experience on modern homogeneous

clusters has indicated that this is generally a reasonable choice

when running across multiple nodes.

B. Triangle inequality-based acceleration

For very large datasets or cases when the number of clusters

k is large, straightforward implementation of k-means proves
too expensive, despite the ability to harness many compute

d(i, j) ≤ d(p, i) + d(p, j)
d(i, j)− d(p, i) ≤ d(p, j)
if d(i, j) ≥ 2d(p, i) :

d(p, j) ≥ d(p, i)
without calculating d(p, j)

Fig. 1: Illustration of how the triangle inequality is used to

eliminate unnecessary distance calculations.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 20 40 60 80 100 120
C

LU
S

T
E

R
_T

IM
E

R
 (

s)

Iteration number

Decreasing Time per Iteration, Accelerated k-means Method

Fig. 2: Timings per iteration for clustering the GSMNP LiDAR

dataset for k = 2000 on a dual-socket Intel (“Broadwell-EP”)
Intel® Xeon® E5-2697 v4 machine (18 cores per socket) using

the accelerated k-means algorithm. The time required for each
iteration follows a decreasing trend because the accelerated

algorithm is able to avoid many distance comparisons.

nodes. pKluster “accelerates” the k-means process by using
two techniques described by [13], [14]. First, the triangle

inequality is employed to eliminate unnecessary point-to-

centroid distance computations based on the previous cluster

assignments and the new intercentroid distances; this ap-

proach is illustrated schematically in Figure 1. The expense

of distance calculations is further reduced by maintaining a

sorted list of the intercentroid distances: when searching for

the closest centroid to an observation p, the new candidate

centroids cj are evaluated in order of their distance from the

former cluster centroid ci. Once the critical distance 2d(p, ci)
is surpassed, no additional evaluations are needed, since the

nearest centroid is known from a previous evaluation. Figure 2

illustrates the dramatic reduction in time spent in distance

calculations that the acceleration technique enables. Typically,

the number of distance comparisons per iteration rapidly drops

off as the k-means clustering progresses—in fact, we have yet
to encounter a dataset for which this behavior is not observed.

III. MANYCORE CPUS AND THE INTEL XEON PHI

Although transistor density has continued to increase,

“power wall” considerations have limited practical CPU fre-

quencies to around 4 GHz since the middle of the 2000s,

when feature size reached 65 nm, below which Dennard

(or MOSFET) scaling no longer holds [15]. To continue

performance gains from one microprocessor generation to

another, CPU manufacturers now largely rely on increasing

levels of on-chip parallelism. In recent years, the number of

CPU cores and hardware threads has dramatically increased:

“manycore” processors, such as the Intel Xeon Phi line have

come to market, and this trend is also observed in standard

server processors. In addition to increases in core and thread

counts, there is increasing reliance on fine-grained parallelism

in the form of data-parallel vector processing units (VPUs)

that operate on many SIMD (single instruction, multiple data)

lanes. Recent generations of Intel Xeon processors have 256-

bit vector registers and support the AVX2 instruction set

and fused multiply-add (FMA) instructions, and the current

“Skylake” generation of Xeon processor has 512-bit vector

registers and supports the AVX-512 instructions.

The trend towards increased parallelism is particularly

exemplified in the second-generation Intel Knights Landing

(KNL) CPU [16], a manycore processor with up to 72 compute

cores, each of which has FMA-capable VPUs operating on

512-bit vector registers. Because exploring approaches to

obtaining good performance out of this architecture is the

main motivation in this paper (though the code optimizations

we have implemented are also beneficial for more mainstream

Intel Xeon platforms), we describe some relevant details of

KNL here. Figure 3 depicts the high-level organization of

the processor. The KNL CPU is organized into up to 36

tiles, connected via a 2D mesh interconnect. The mesh is a

departure from the ring architecture employed in Broadwell

and previous generation Intel Xeon processors and provides

improved scalability because of better on-chip bandwidth and

reduced latency. Each tile consists of two compute cores (each

with four hardware threads), which share a 1 MB L2 cache.

Each core has two VPUs, and because KNL is dual-issue, a

VPU can be saturated from a single thread.

A particularly noteworthy feature of KNL is the presence

of up to 16 GB of multi-channel DRAM (MCDRAM), a

special high-bandwidth memory that sits on the processor

package. MCDRAM provides roughly 5× the bandwidth that
standard DDR4 SDRAM (double data rate fourth-generation

synchronous dynamic random-access memory) can deliver,

and it can sustain up to 490 GB/s of memory bandwidth on the

well-known STREAM Triad benchmark. The trend over the

past decade has seen dramatic increases in peak FLOP rates

without commensurate increases in memory bandwidth, but

because many operations in scientific computing applications

are memory bandwidth-intensive, many of these codes operate

in a bandwidth-limited regime and are able to use only a

small percentage of the available FLOP/s. Effective utilization

of the high-bandwidth memory is critical for achieving good

performance on KNL for many applications, including our

clustering code.

Fig. 3: Block diagram (after [16]) of the second-generation

Knights Landing (KNL) Intel Xeon Phi CPU. Note that the

maximum number of active tiles is 36, but 38 tiles are shown;

the extra tiles are for yield recovery in the manufacturing

process.

IV. BENCHMARKING SETUP AND BASELINE

PERFORMANCE

A. Platform descriptions and configuration

We use three different platforms—to which we will refer by

the three-letter abbreviations corresponding to the Intel code

names of their CPUs—for our performance benchmarking

experiments. pKluster is designed for running large clus-
tering problems on distributed memory machines, but since

the optimizations we explore in this paper target on-node

performance, we present results from experiments using only

a single compute node. For problems of sufficient size to

provide an appropriate amount of local work per node, our

performance optimizations provide similar benefit when run-

ning problems spanning multiple nodes. Table I summarizes

the characteristics of the three types of compute nodes we

use. One system is a 68-core KNL node, and the others

are dual-socket systems with “EP” versions of the current

(Skylake, SKX) and previous (Broadwell, BDW) generation

Intel Xeon server processors. All of the systems have similar

power envelopes, so, from a power efficiency standpoint, a

comparison of their performance is appropriate. The SKX

system has some characteristics similar to KNL features that

are new to the Xeon line: it has 512-bit vector registers and

uses a variant of the AVX-512 instruction set, and it uses a

mesh-on-die interconnect instead of the ring architecture used

in previous Xeon generations. Both of the Xeon platforms

deliver much higher per-thread performance than does KNL.

Therefore, in general it is critically important for applications

to possess sufficient parallel scalability to use most or all of

the available cores or hardware threads in order to deliver

competitive performance on KNL.

The KNL processor has two important configuration options

that can be specified at boot time. The first is the cluster

TABLE I: Characteristics of the computing platforms used for performance benchmarking in this study.

Intel Xeon E5-2697 v4 Intel Xeon Gold 6148 Intel Xeon Phi 7250

Code Name Broadwell (BDW) Skylake (SKX) Knights Landing (KNL)
Sockets 2 2 1
Cores 36 40 68
Threads 72 80 272
CPU clock 2.3 GHz 2.4 GHz 1.4 GHz
High-bandwidth memory - - 16 GB
DRAM 128 GB @ 2400 MHz 192 GB @ 2666 MHz 98 GB @ 2400 MHz
Instruction set architecture AVX2 AVX-512F,DQ,CD,BW,VL AVX-512F,PF,ER,CD
Theoretical peak flops (FP32 / FP64) 2649 / 1324 6144 / 3072 6092 / 3046

mode, which affects the affinity between processor tiles, the
cache tag directory, and main memory. We configure our

KNL in quadrant mode, in which the CPU is divided

into four virtual quadrants and addresses are hashed to a

directory in the same quadrant as the memory. This mode

provides good latency and high bandwidth in a software-

transparent manner (that is, without requiring partitioning the

memory across four NUMA nodes). The second option is

the MCDRAM mode, which affects how the MCDRAM is

exposed. From an application programmer’s point of view, the

simplest MCDRAM mode is cache mode, in which the entire
MCDRAM is treated as a single, very large direct-mapped

cache. We choose to configure our KNL node in flat mode,
however, in which MCDRAM is exposed as a single NUMA

node, because this mode offers the highest performance. In

our experiments, we bind all memory requests to this NUMA

node via the numactl command-line tool.
We use the 2017 Intel C compiler with optimization level

-O3 and build binaries using the highest-level instruction set
flags available on each platform, namely, -xCORE-AVX2,
-xCORE-AVX512, -xMIC-AVX512 on BDW, SKX and

KNL, respectively. We experimented with Intel compiler in-

trinsics to explicitly produce vectorized versions of the most

computationally expensive routines, but found that this is not

necessary: the Intel compiler’s auto-vectorizer generates SIMD

instructions with the assistance of a few #pragma simd
directives we have inserted around the hot loops.

B. Benchmark problem: GSMNP LiDAR classification

In our performance benchmarking experiments, we cluster a

data set from a study described in [9]. This data set comes from

airborne multiple return Light Detection and Ranging (LiDAR)

surveys of the Great Smoky Mountains National Park [17] that

straddles the border between Tennessee and North Carolina.

LiDAR enables large scale remote sensing of topography, built

infrastructure, and vegetation structure. Raw LiDAR data are

in the form of point clouds. In this study, k-means clustering
of LiDAR point cloud data was used to construct vertical

density profiles to characterize vertical vegetation structure.

Figure 4 displays the vegetation cover maps and structure

class prototypes (centroids) generated using k = 30. 30 m
× 30 m horizontal and 1 m vertical (extending to a height

of 75 m) spatial resolution was used, with the input data set

consisting of 3,186,679 observations, each of 74 variables,

requiring 900 MB of storage in single precision.

We note that we have also tested our code with data

sets from remotely sensed vegetation phenology [18] and

global climate regime classification applications [19], but, due

to space considerations, we choose to present results from

the GSMNP LiDAR set only. We believe that performance

experiments with this data set are representative of the per-

formance trends to be observed when clustering many other

geospatial data sets of interest to us, because the data sets have

similar dimensionality and consist of continuous variables

following Gaussian distributions. Our experiments with other

geospatial data sets available to us have been consistent with

the performance trends reported here.

C. Baseline performance

To establish a baseline against which to evaluate the

algorithmic improvements and code optimizations made in

this study, we ran some initial performance tests using a

recent version of pKluster, which incorporates the triangle
inequality-based “acceleration” algorithm but no further code

improvements. Figure 5 summarizes the baseline performance

for clustering the GSMNP LiDAR data set with k = 2000,
which is the highest realistic value of k for this application
and best illustrates overall differences in performance for a

given platform and implementation. We used one MPI rank

per core on each test platform. Compared to BDW, SKX

exhibits a 1.3× speedup. KNL, however, shows surprisingly

poor performance, displaying a 2.2× slowdown versus BDW.
V. OPTIMIZATIONS FOR MULTICORE/MANYCORE CPUS

A. OpenMP threading for effective use of hyperthreads

When a pure MPI approach (with one MPI rank per core)

is used, performance of the accelerated k-means clustering
approach is surprisingly poor on the KNL processor. Attempts

to use more of the available hardware threads by using

multiple MPI ranks per core slightly decrease the time in the

actual clustering calculation, but increase the total time due to

greater overhead in master-worker coordination between the

MPI ranks. These results suggest that using more available

hardware threads can improve performance on KNL, if we

can avoid increasing master-worker overhead. To increase

the number of streams of execution without employing addi-

tional MPI processes, we have introduced OpenMP threading

(a) Geographic distribution of vegetation classes (b) Canopy prototypes from k = 30 clustering

Fig. 4: Vegetation structure classes and their distribution in the Great Smoky Mountains National Park (GSMNP) derived from

k-means clustering (k = 30) of the GSMNP LiDAR data set. The spatial distribution is shown at the left, and the prototype
canopy structures (cluster centroids) are shown at the right. The color scheme on the map correspond to the colors of the

prototypes.

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

BDW(MPI=36) SKX(MPI=40) KNL(MPI=68)

W
al

l C
lo

ck
 T

im
e

(s
ec

)

Performance of k-means with k=2000

Total Time
Compute Time

Fig. 5: Baseline performance of the three benchmarking

platforms for computing k = 2000 clusters for the GSMNP
LiDAR data set using the accelerated k-means algorithm.

in the most time-intensive routine, cluster_aliquot(),
which computes the distances between observations and

centroids and then assigns each observation to the cluster

with the nearest centroid. We have also introduced OpenMP

threading in the intercentroid distance calculation routine,

fill_distance_matrix(), which is called when using
the triangle inequality-based acceleration scheme.

Because using the accelerated k-means algorithm results

in some inherent load imbalance—since many observations

in an aliquot assigned to a thread might require more point-

to-centroid distance calculations compared with its peers—

we have explored the various loop scheduling strategies

available in OpenMP. The static strategy (the default in
many OpenMP implementations) assigns all loop iterations

to threads in equal chunks upon entry to a parallel loop.

This results in the lowest scheduling overhead but may be

undesirable when loop iterations differ in their computation

cost. For such cases, some variant of dynamic scheduling—in

which an interal work queue is used to dynamically distribute

loop iterations to threads—may offer higher performance,

despite the possibility of significantly higher scheduling over-

head. Figure 6 shows that this is the case for our accelerated

k-means implementation, with all non-static schedules

providing approximately 1.4× performance improvement for

the k = 2000 case, with dynamic providing marginally

better performance than the guided and auto options.

With our addition of OpenMP threading, we can now use all

272 hardware threads available on the KNL CPU, with the

best performance observed when pinning one MPI process

to each KNL tile and spawning 8 threads per process (4

threads per core). Using all the available hardware threads

through the hybrid MPI-OpenMP approach enables effective

utilization of VPU/FMA units and MCDRAM memory, and

at the same time reduces the communication bottlenecks on

MPI rank 0, resulting in performance improvement of up to

2.8× in the clustering calculation and 2.7× in overall wall-

 0

 20

 40

 60

 80

 100

 120

Static Dynamic Guided Auto

W
al

l C
lo

ck
 T

im
e

(s
ec

)

Impact of OMP Loop Scheduling

Fig. 6: Impact of different kinds of OpenMP loop scheduling

when finding k = 2000 clusters of the GSMNP data set on the
KNL platform. Setting schedule to dynamic, guided, or
auto provides significant speedup over the static default.

 0

 50

 100

 150

 200

 250

 300

 350

68 MPI (Baseline)272 MPI (Baseline) 34 MPI + 8 OMP

W
al

l C
lo

ck
 T

im
e

(s
ec

)

KNL(68C/272T): MPI Vs MPI+OpenMP

Total Time
Compute Time

Fig. 7: Comparison of times to cluster the GSMNP LiDAR

data set with k = 2000 on the KNL processor for different
numbers of MPI ranks and OpenMP threads. Using all 272

hyperthreads significantly benefits performance, with 34 MPI

processes each using 8 OpenMP threads configuration showing

best performance.

clock time (Figure 7). Although using a combination of MPI

processes and OpenMP threads is most important on the KNL

system because its relatively lightweight cores result in higher

communication latency between the MPI processes, we find

that the combination is also beneficial on the two Intel Xeon

systems that support two logical threads per core, though the

performance improvement is less dramatic. As shown in Figure

8, the hybrid MPI-OpenMP implementation delivers 1.3× and
1.4× improvements over pure MPI implementation on BDW

and SKX, respectively.

B. Improving computational intensity using level 3 BLAS

Although the addition of OpenMP threading greatly im-

proves the performance of the KNL platform, this performance

still only roughly matches that observed on the BDW platform.

As the theoretical peak performance of KNL is much higher

than that of BDW, and the calculation consists of operations

on numerical arrays that the compiler easily vectorizes, it

seems that it should be possible to further improve the KNL

performance. Achieving good performance on the KNL CPU

is strongly dependent on achieving good utilization of the

two VPUs present on each KNL core. Although vectorized

code is generated for the clustering calculations, the arithmetic

intensity—the ratio of floating-point operations to memory

loads and stores—is not high enough to keep the VPUs busy,

as they must spend too much time waiting for requests to

be fulfilled by the memory subsystem. Fortunately, we can

achieve greater computational intensity of the observation–

centroid distance calculations by expressing the calculation in

matrix form: For observation vector xi and centroid vector zj ,
the squared distance between them is Dij = ‖xi − zj‖2. Via
binomial expansion,

Dij = ‖xi‖2 + ‖zj‖2 − 2xi · zj . (1)

The matrix of squared distances can thus be expressed as

D = x1ᵀ + 1zᵀ − 2XᵀZ, (2)

where X and Z are matrices of observations and centroids,

respectively, stored in columns, x and z are vectors of the
sum of squares of the columns of X and Z, and 1 is a vector
of all 1s. The above expression can be calculated in terms of
a level-3 BLAS operation (xGEMM), followed by two rank-

one updates (xGER, a level-2 operation). Because xGEMM

operations admit efficient cache-blocking schemes, a good

xGEMM implementation can achieve a very high arithmetic

intensity, and hence good utilization of the VPUs. This is

desirable for all three of our test platforms, but is particularly

critical on KNL, which relies heavily on its many VPUs

with wide SIMD lanes for performance. We use the highly

optimized BLAS implementations from Intel’s Math Kernel

Library (MKL) in the experiments presented here. For all but

the smallest of matrix dimensions, distance calculations using

the above matrix formulation will generally be faster than

the straightforward loop over vector distance calculations, and

dramatic speedup can be achieved when many observation–

centroid distances must be computed.

Figure 9 compares, for varying k, the performance of the
accelerated k-means algorithm (using the MPI + OpenMP

implementation) and the algorithm employing the matrix for-

mulation on the KNL and BDW platforms. Although the

matrix formulation performs many more distance calculations,

the efficiency of xGEMM operations on KNL is so high that

it outperforms the acceleration scheme for all values of k;
it also shows the slowest growth in cost as k increases. On
BDW, the story is different: Though the matrix formulation is

more efficient in distance comparisons, using it can only speed

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

36 MPI
(Baseline)

72 MPI
(Baseline)

9 MPI +
8 OMP

18 MPI +
4 OMP

36 MPI +
2 OMP

W
al

l C
lo

ck
 T

im
e

(s
ec

)
BDW (36C/72T): Impact of HyperThreading

Total Time
Compute Time

(a) Intel Xeon E5-2697 v4 (“Broadwell”)

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

40 MPI
(Baseline)

80 MPI
(Baseline)

10 MPI +
8 OMP

20 MPI +
4 OMP

40 MPI +
2 OMP

W
al

l C
lo

ck
 T

im
e

(s
ec

)

SKX (40C/80T): Impact of HyperThreading

Total Time
Compute Time

(b) Intel Xeon Gold 6148 (“Skylake”)

Fig. 8: Comparison of times to cluster the GSMNP LiDAR data set with k = 2000 on the Broadwell (BDW) and Skylake
(SKX) Xeon processors for different numbers of MPI ranks and OpenMP threads.

Fig. 9: Comparison of timings for clustering the GSMNP

LiDAR dataset for different values of k on the KNL and BDW
platforms using the accelerated k-means algorithm and the

matrix formulation that uses level-2 and level-3 (xGEMM)

BLAS calls.

up the initial iterations (when many distance comparisons

are required); after that, the acceleration technique results in

dramatically faster iterations. We have not plotted performance

of the SKX platform because we did not collect data for all

values of k, but at k = 2000 (see Figure 10), the accelerated al-
gorithm also delivers the best performance, though the relative

difference in performance between the matrix and accelerated

version of the algorithm is smaller, which is consistent with the

improved xGEMM performance on SKX compared to BDW.

VI. SUMMARY AND FUTURE DIRECTIONS

We have adapted the pKluster code used for k-means
clustering of geospatial data to enable it to better utilize many

compute cores and vector processing units, and demonstrated

performance improvements on a true “manycore” CPU (the

Intel Knights Landing Xeon Phi), as well as two modern,

high core-count server processors employing AVX2 and AVX-

512 vector instruction sets (Broadwell and Skylake generation

Intel Xeon processors, respectively). Figure 10 summarizes

performance improvements we have made: 1.3×, 1.4× and

3.6× over baseline pKluster implementation on BDW, SKX
and KNL respectively. The addition of OpenMP threading

has allowed the code to significantly reduce the MPI master-

worker bottleneck when fully subscribing all available hard-

ware threads, which dramatically improves the performance

on KNL and also yields appreciable speedup on the BDW

and SKX platforms. Use of OpenMP dynamic scheduling also

helps to smooth load imbalance that arises naturally in the

accelerated k-means algorithm. The addition of a matrix-based
algorithmic formulation for the observation–centroid distance

comparisons to allow the use of highly optimized level 3

BLAS operations greatly improves arithmetic intensity and

enables efficient utilization of vector processing units, which

is especially important for KNL.

Although the addition of OpenMP threading significantly

reduces the cost of using a master-worker model to coordi-

nate work between the MPI processes, the overhead is still

significant on a platform like KNL. In the future, we may

reimplement a fully distributed, masterless approach in pKlus-
ter. We may also investigate a hybrid approach that combines
the accelerated k-means method with the matrix formulation
for calculation of the observation-centroid distances. In later

iterations, the centroids that must be compared against may

become fairly predictable, so it may be feasible to do most

of the necessary comparisons using a matrix-based approach,

with only a few, additional pointwise comparisons required

per iteration.

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

BDW SKX KNL

T
ot

al
 W

al
l C

lo
ck

 T
im

e
(s

ec
)

Comparison of k-means Implementations

BLAS
P2P-Baseline (MPI)

P2P-Optimized (MPI+OMP)

Fig. 10: Performance comparison of k-means implementations
for the GSMNP LiDAR dataset with k = 2000. Here P2P
refers to the pKluster implementation using triangle inequality-
based acceleration, and BLAS refers to the matrix formulation

of distance computations.

VII. ACKNOWLEDGMENTS

R. T. Mills was supported by the Exascale Computing

Project (17-SC-20-SC), a collaborative effort of the U.S.

Department of Energy Office of Science and the National

Nuclear Security Administration. JK and FMH were partially

supported by the Next Generation Ecosystem Experiments

- Arctic (NGEE Arctic) project, which is sponsored by the

Terrestrial Ecosystem Sciences (TES) Program, and the Re-

ducing Uncertainties in Biogeochemical Interactions through

Synthesis and Computation Scientific Focus Area (RUBISCO

SFA), which is sponsored by the Regional and Global Model

Analysis (RGMA) Program. The TES and RGMA Programs

are activities of the Climate and Environmental Sciences Di-

vision (CESD) of the Office of Biological and Environmental

Research (BER) in the U.S. Department of Energy Office of

Science. WWH, JK, and FMH claim additional support from

the Eastern Forest Environmental Threat Assessment Center

(EFETAC) in the U.S. Department of Agriculture Forest

Service. This manuscript has been authored by UChicago

Argonne, LLC under Contract No. DE-AC02-06CH11357

with the U.S. Department of Energy. This manuscript has

been co-authored by UT-Battelle, LLC under Contract No.

DE-AC05-00OR22725 with the U.S. Department of Energy.

REFERENCES

[1] J. A. Hartigan, Clustering Algorithms. New York: John Wiley & Sons,
1975.

[2] W. W. Hargrove and F. M. Hoffman, “Using multivariate clustering to
characterize ecoregion borders,” Comput. Sci. Eng., vol. 1, no. 4, pp.
18–25, Jul. 1999.

[3] ——, “Potential of multivariate quantitative methods for delineation and
visualization of ecoregions,” Environ. Manage., vol. 34, no. Supplement
1, pp. S39–S60, Apr. 2004.

[4] F. M. Hoffman, W. W. Hargrove, D. J. Erickson, and R. J. Oglesby,
“Using clustered climate regimes to analyze and compare predictions
from fully coupled general circulation models,” Earth Interact., vol. 9,
no. 10, pp. 1–27, Aug. 2005.

[5] W. W. Hargrove, F. M. Hoffman, and B. E. Law, “New analysis reveals
representativeness of the AmeriFlux Network,” Eos Trans. AGU, vol. 84,
no. 48, pp. 529, 535, Dec. 2003.

[6] D. Schimel, W. Hargrove, F. Hoffman, and J. McMahon, “NEON:
A hierarchically designed national ecological network,” Front. Ecol.
Environ., vol. 5, no. 2, p. 59, Mar. 2007.

[7] M. Keller, D. Schimel, W. Hargrove, and F. Hoffman, “A continental
strategy for the National Ecological Observatory Network,” Front. Ecol.
Environ., vol. 6, no. 5, pp. 282–284, Jun. 2008, special Issue on
Continental-Scale Ecology.

[8] F. M. Hoffman, J. Kumar, R. T. Mills, and W. W. Hargrove,
“Representativeness-based sampling network design for the State of
Alaska,” Landscape Ecol., vol. 28, no. 8, pp. 1567–1586, Oct. 2013.

[9] J. Kumar, J. Weiner, W. W. Hargrove, S. P. Norman, F. M. Hoffman, and
D. Newcomb, “Characterization and classification of vegetation canopy
structure and distribution within the Great Smoky Mountains National
Park using LiDAR,” in Proceedings of the 15th IEEE International
Conference on Data Mining Workshops (ICDMW 2015), P. Cui, J. Dy,
C. Aggarwal, Z.-H. Zhou, A. Tuzhilin, H. Xiong, and X. Wu, Eds.,
Institute of Electrical and Electronics Engineers (IEEE). Conference
Publishing Services (CPS), Nov. 2015, pp. 1478–1485.

[10] W. W. Hargrove, F. M. Hoffman, and T. Sterling, “The do-it-
yourself supercomputer,” Sci. Am., vol. 265, no. 2, pp. 72–79, Aug.
2001. [Online]. Available: http://www.sciam.com/article.cfm?articleID=
000E238B-33EC-1C6F-84A9809EC588EF21

[11] F. M. Hoffman, W. W. Hargrove, R. T. Mills, S. Mahajan, D. J. Erickson,
and R. J. Oglesby, “Multivariate Spatio-Temporal Clustering (MSTC) as
a data mining tool for environmental applications,” in Proceedings of the
iEMSs Fourth Biennial Meeting: International Congress on Environmen-
tal Modelling and Software Society (iEMSs 2008), M. Sànchez-Marrè,
J. Béjar, J. Comas, A. E. Rizzoli, and G. Guariso, Eds., Jul. 2008, pp.
1774–1781.

[12] J. Kumar, R. T. Mills, F. M. Hoffman, and W. W. Hargrove, “Parallel k-
means clustering for quantitative ecoregion delineation using large data
sets,” in Proceedings of the International Conference on Computational
Science (ICCS 2011), ser. Procedia Comput. Sci., M. Sato, S. Matsuoka,
P. M. Sloot, G. D. van Albada, and J. Dongarra, Eds., vol. 4. Amster-
dam: Elsevier, Jun. 2011, pp. 1602–1611.

[13] S. J. Phillips, “Reducing the computation time of isodata and k-means
unsupervised classification algorithms,” in Geoscience and Remote Sens-
ing Symposium, 2002 (IGARSS’02), vol. 3, Jun. 2002, pp. 1627–1629.

[14] ——, “Acceleration of k-means and related clustering algorithms,” in
ALENEX ’02: Revised Papers from the 4th International Workshop on
Algorithm Engineering and Experiments, D. M. Mount and C. Stein,
Eds. London, UK: Springer-Verlag, 2002, pp. 166–177.

[15] C. Martin, “Multicore processors: challenges, opportunities, emerging
trends,” in Proc. Embedded World Conference, vol. 2014, 2014, p. 1.

[16] A. Sodani, R. Gramunt, J. Corbal, H. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y. Liu, “Knights landing: Second-generation
intel xeon phi product,” IEEE Micro, vol. 36, no. 2, pp. 34–46, Mar 2016.

[17] T. Jordan, M. Madden, B. Yang, J. Sharma, and S. Panda, “Acquisition
of LiDAR for the Tennessee Portion of Great Smoky Mountains National
Park and the Foothills Parkway,” Center for Remote Sensing and
Mapping Science (CRMS), Department of Geography, The University
of Georgia, Athens, Georgia, USA, Tech. Rep. USGS Contract #
G10AC0015, 2011.

[18] R. T. Mills, J. Kumar, F. M. Hoffman, W. W. Hargrove, J. P.
Spruce, and S. P. Norman, “Identification and visualization of
dominant patterns and anomalies in remotely sensed vegetation
phenology using a parallel tool for principal components analysis,”
Procedia Computer Science, vol. 18, pp. 2396 – 2405, 2013, 2013
International Conference on Computational Science. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050913005541

[19] F. M. Hoffman, W. W. Hargrove, J. Kumar, Z. L. Langford, and D. M.
Maddalena, “High performance computational landscape ecology and
using clustering to define climate regimes,” 9th International Association
for Landscape Ecology (IALE) World Congress (July 5–10, 2015),
Portland, Oregon, USA, July 5-10 2015.

