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Abstract Soil respiration (Rs), the largest carbon emission flux in ecosystems, is usually modeled as an
empirically parameterized function of temperature, and sometimes water availability. The likely
contribution by other factors, such as carbohydrate substrate supply from photosynthesis, has been
recognized, but modeling capacity to use this information is limited. Wavelet transformations of the
residuals of a seasonal Q10 temperature response model indicated structure at different temporal scales.
We hypothesize that this indicates the lack of explicit representation of relevant processes in the models.
Using cross‐spectral analysis, we found that time series of photosynthetically active radiation explainedmost
of the diurnal variation, temperature, explained variability at multiple time scales (diurnal‐synoptic),
whereas volumetric soil water content correlated with variability in Rs at scales 15‐30 days. The results
suggest that the time domains of influence for different driving variables of Rs are discrete, and largely
nonoverlapping, and represent functional relationships between soil biological activity and its constraints.
Analysis of phase angles showed that Rs lagged photosynthetically active radiation by 1.5‐3.0 hr. As this
time lag was the same in both young and mature trees, with more than fivefold difference in
transport distances, we hypothesize that this finding adds to the body of literature that support the
pressure‐concentration‐wave model of carbohydrate availability in plants.

Plain Language Summary “Soil respiration” (RS) is the net emission of carbon dioxide (CO2)
from the soil to the atmosphere. Rs has traditionally been quantified as a function of soil temperature,
even though it originates from a suite of biological processes in the soil. Recent experimental studies have
shown strong dependence of both plant root and microbial activity on plant‐internal carbohydrate status.
Here we report how different physical (soil temperature and soil moisture) and biological (plant
carbohydrate supply, approximated with photosynthetically active radiation [PAR]) process covary with soil
CO2 emissions in two forest stands of different age. The individual and pairwise variation in Rs, soil
temperature, soil moisture, and PAR time series at different frequencies was used to infer causal
relationships between them. Environmental factor temperature and soil moisture significantly covaried with
Rs at weekly to seasonal time scales, whereas diurnal variability of Rs was attributed to carbohydrate
substrate availability. The consistent 1.5‐ to 3‐hr time lag between Rs and PAR (as a proxy for carbohydrate
availability) did not differ between forests of different stature. We hypothesize that this suggests that
carbohydrate availability throughout the plant was regulated by pressure‐concentration waves from phloem
loading rather than actual mass transport of the loaded carbohydrates.

1. Introduction

Soil respiration (Rs) is an important metric of ecosystem metabolism (Ryan & Law, 2005) and represents the
largest source of carbon dioxide (CO2) emitted to the atmosphere (Barron‐Gafford et al., 2011). It represents
the aggregate metabolic activity of roots and rhizosphere symbionts (autotrophic respiration, Ra) and free‐
living microbes in the soil that decompose organic matter (heterotrophic respiration, Rh; Hanson et al.,
2000). Regulated by both environmental and biotic drivers, each of these component processes have different
temperature sensitivities. Yet in ecosystem and Earth system models, they are often treated as a single pro-
cess described with a simple temperature response function (Davidson et al., 2006; Kirschbaum, 1995; Lloyd
& Taylor, 1994). While capturing long‐term mean system behavior (Carey et al., 2016), the temperature‐
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based models lack specificity with regard to underlying mechanisms and are unable to resolve short‐term
perturbations. As a result, uncaptured variability in soil carbon fluxes remains a key source of uncertainty
in global carbon cycle models (Friedlingstein et al., 2006, 2014; Suseela et al., 2012).

Factors such as soil water content (θ) and substrate availability have long been recognized as additional con-
trols on Rs and models incorporating these factors have been analyzed (e.g., Fang & Moncrieff, 2001). For
example, the effect of θ has been added to the Q10 model as an additive (Chang et al., 2012; Van Meeteren
et al., 2007), multiplicative (e.g., Davidson et al., 1998; DeForest et al., 2009) and even a nested term (Miao
et al., 2013). While all these formulations can increase model fit, they often lack universality that would
apply across sites and environmental conditions, possibly due to other, still unaccounted for processes, for
example, transient mineralization spikes triggered by rain pulses in arid sites, known as the “Birch effect”
(Jarvis et al., 2007), and hydraulic redistribution (Cardon et al., 2013; Kieft et al., 1987; Xu et al., 2004).
Similarly, the importance of substrate supply for Rs has been conclusively established following Hogberg
et al. (2001) and has since been confirmed in many ecosystems (Bahn et al., 2009; Baldocchi et al., 2006;
Han et al., 2007). However, models accounting for secondary drivers of Rs remain few and site‐specific
(e.g., Reichstein et al., 2003; Vargas & Allen, 2008).

Another layer of complication to developing multiparameter Rs models is that different controlling variables
may operate at different time scales, exhibiting lagged responses, and both direct and indirect effects (e.g.,
time lags due to diffusion; Kuzyakov & Gavrichkova, 2010; Mencuccini & Holtta, 2010). Combined, these
factors affect the time domain of Rs response (Reichstein & Beer, 2008; Vargas et al., 2011). The interaction
of these factors and processes is manifest in ontogenetic changes in ecosystem development—as plants grow,
progressively colonize the soil volume, and their allocation patterns shift according to changes in limiting
resources—the proportionality of different respiration components also changes (Amiro et al., 2010; Desai
et al., 2008; King et al., 1999; Magnani et al., 2007; Noormets et al., 2007; Noormets et al., 2012). Yet the direc-
tion of the age‐related change can vary. Some studies have found increased soil respiration with stand age‐
driven primarily by increase in root biomass and soil organic carbon (Litton et al., 2003; Xiao et al., 2014),
while others have reported decreases in Rs, attributed to decreased fine root activity (Gong et al., 2012;
Wang et al., 2002), and yet others have observed no change with stand age (Saiz et al., 2006; Tedeschi
et al., 2006).

In the current study, as a first step toward improved understanding of the multitemporal relationship of soil
respiration with biotic and abiotic drivers, we analyzed the performance of a conventional Q10 function
model of soil respiration along the time domain (Braswell et al., 2005). The conventional “lumped” error
analysis (e.g., root‐mean‐square error or Nash‐Sutcliffe efficiency; Nash & Sutcliffe, 1970) is blind to any
scale dependence (Reusser et al., 2009). The inability to identify the timing of model errors can prevent com-
prehensive model improvement (Liu et al., 2011). Second, we analyzed the cospectra and phase relationships
of Rs with soil temperature (Ts), θ, and photosynthetically active radiation (PAR). The work was carried out
in two different‐aged loblolly pine plantations with different structural characteristics, and among years
with contrasting water availability. The study site was located on drained organic soil in the lower coastal
plain of North Carolina, where the relative contributions from different respiratory processes and driving
variables were expected to differ. The main objectives of this study were (1) frequency domain error analysis
of a temperature response function fit to Rs and (2) analyze the multitemporal relationship of Rs to θ, Ts,
and photosynthesis.

2. Methods
2.1. Study Sites

The study site was located near the town of Plymouth in Washington County on the lower coastal plain of
North Carolina (35.8°, ‐76.67°). Owned and managed by Weyerhaeuser NR Company, and known locally
as “Parker Tract,” the area is dominated by loblolly pine (Pinus taeda) in roughly 1‐ to 2‐km2 block plantings.
The study sites captured the juvenile precanopy closure and midrotation closed canopy states of
stand development.

A network of parallel ditches (90‐100 cm deep; 80‐ to 100‐m spacing) were installed to improve stand produc-
tivity and reduce stress from high soil water content during wet periods. Based on long‐term records (1945‐
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2010), average annual precipitation across the site was 1,308 ± 201 mm, that was distributed uniformly
throughout the year (Sun et al., 2010). Mean annual temperature was 15.5°C with the highest and lowest
temperatures occurring in July (26.6°C) and January (6.4°C), respectively. Within Parker Tract, two blocks
(US‐NC1 and US‐NC2) of different age were selected for this study (Noormets et al., 2012; Sun et al., 2010).
Mean stand age of US‐NC1 and US‐NC2 in 2005 was 1 and 13 years, respectively. The vegetation structure
(height, diameter at breast height, and biomass) differed among the stands (Table 1; Noormets et al., 2012). A
complete description of the difference between the two sites has been provided in the online supplement
(Text S1 in the supporting information).

2.2. Micrometeorological and Rs Measurements

Meteorological variables measured above canopy at both sites included air temperature (Ta) and PAR
(LI‐190, Li‐Cor, Lincoln, NE, USA; starting June 2010 PAR‐Lite, Kipp & Zonen, Delft, Netherlands). PAR
was gap‐filled by incoming shortwave radiation (SWRin) in 2011 at US‐NC1. PAR was used as a substitute
for substrate availability, similar to Vargas et al. (2010). Instrument height was 6 m until February 2008 at
US‐NC1, which was then increased to 11.6m from August 2008 onward. Instrument height at US‐NC2
throughout the study period was 22.5 m.

Continuous Rs was measured near the central instrument tower on a permanently installed PVC collar with
a soil respiration measurement system that included an automated soil CO2 efflux chamber (LI8100‐104,
Licor Inc). The spatial representativeness of the single autochamber was validated against 30 spatially
distributed survey measurement locations (Noormets et al., 2012). The instantaneous fluxes, annual inte-
grals, and temporal dynamics were all well captured by the autochamber, lending confidence that the spec-
tral analysis characterizes the stand as a whole.

Rs was measured at the US‐NC1 site from 2009 until 2012 and has been continuously monitored at the
US‐NC2 site since 2005. Rs and micrometeorological data were collected at 30‐minute intervals. Gaps in
Rs data were due to multiple factors including power problems, system shutdown due to development of
excessive humidity inside chambers and high flux coefficient of variation (Miao et al., 2013). On account
of significant gaps in the data (>90%) during the growing season, certain years (e.g., 2008 and 2009 in
US‐NC2) were excluded from our analysis. Soil temperature was measured at 5‐cm depth (Ts5) with a
Campbell CS 107 temperature probe. Volumetric soil water content (θ) in the top 30 cm was measured with
a Campbell CS616 (CS) water content reflectometer (time domain reflectometer). Daily average precipita-
tion data for the town of Plymouth, located less than 5 miles from the study site, were obtained from the
National Climatic Data Center (NCDC; https://www.ncdc.noaa.gov/cdo‐web/).

2.3. Rs Modeling

As the site was not water‐limited, an exponential Q10 function was used to model the half‐hourly Rs mea-
surements (van't Hoff, 1898):

Rs ¼ RrefQ
Ts−10ð Þ=10
10 (1)

Reference respiration, Rref, refers to mean Rs at 15 °C while Q10 (unit less) quantifies the temperature sensi-
tivity of Rs. As the site remains characteristically warm for most of the year, a 15 °C base temperature was
used for doubling of respiration with a 10 °C increase in temperature. Rref andQ10 parameters were obtained
by minimizing the residual sum of squares. The difference between measured andmodeled Rs was identified
as the model residuals (Rr).

2.4. Spectral Analysis

Wavelet spectral decomposition was utilized to analyze the energetic frequencies of Rs and to relate those
frequencies with the timescales of variability in biotic and abiotic drivers. As the time series are nonstation-
ary and discontinuous, wavelet transformation (WT) is an appropriate tool for spectral analysis compared to
standard Fourier techniques (Cazelles et al., 2008). Mathematical description of the different wavelet ana-
lyses incorporated into this study has already been well documented, and therefore, only a brief summary
is provided here (Grinsted et al., 2004; Katul et al., 2001; Stoy et al., 2005; Torrence & Compo, 1998;
Vargas et al., 2010).
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Wavelets are mathematical functions characterized by a mean value of zero and localized in both time (t)
and frequency. WT of any time series x(t) involves convolution by a set of subwavelets to produce a third
function (Wave(τ, s)),which has both a real and imaginary component as shown below:

Wave τ; sð Þ ¼ ∑tx tð Þ 1
ffiffi

s
p ψ* t−τð Þ

sð Þ (2)

where ψ* is the complex component of the Morlet function (ψ).

WT allows the microscopic analysis of any time series by allowing the time scale to be stretched (or dilated)
by scale s (i.e frequency resolution) along the localized time index τ. WT of Rs therefore offers the advantage
of quantifying soil carbon flux as a function of both time and frequency. It allows the flexibility of the local
analysis of Rs, whereby it dilates the carbon flux time series to quantify low‐frequency oscillations, as well as
compresses it to a short function to analyze high‐frequency components. However, on account of
Heisenberg's uncertainty principle, accurate characterization of both these features (s , τ) at the same time
is not always possible.

Continuous wavelet transformation (CWT) analysis with the Morlet basis function (Grinsted et al., 2004)
offers a good trade‐off between the time and frequency resolutions. The parameter of interest in this complex
transformation, wavelet power, is defined as the amount of energy (i.e., average variance) present in the fre-
quency domain at any particular period (i.e., diurnal, synoptic, or phonological). Moreover, WT can also pro-
vide insight into the nature of the temporal changes of the different periodic components of Rs over time.
This is possible by drawing conclusions about the synchronization between Rs and biotic (photosynthesis,
approximated with PAR) as well as abiotic factors (Ts5, θ) at different temporal resolutions using cross‐
WT (XWT).

Analogous to cross correlation at multiple time points, XWT has been successfully applied to analyze the
phase relationship between different processes (Grinsted et al., 2004). WT of single time series (Rs, Rr), as
well as XWT (Rs and Ts5, Rs and θ, and Rs and PAR) generated wavelet power averages along with signifi-
cance levels of the averages. XWT analysis also produced “heat plots” that provide a graphical representation
of the convolution of the two time series. Analysis of the phase difference between Rs and Ts5, Rs and θ, and
Rs and PAR from the heat maps allows one to quantify causality between response and effector variables, as
well as calculate the time lag between the two time series (Banfi& Ferrini, 2012; Grinsted et al., 2004; Vargas
et al., 2010). Any delay between Rs and Ts5, Rs and θ, or Rs and PAR from the phase difference estimation can
provide insight about nature of mechanisms regulating soil carbon flux.

Table 1
Summary of Mean Diameter at Breast Height (dbh) and Height of Pine Trees Greater Than 5″ Diameter

US‐NC1 US‐NC2

Year
Pine dbh
(cm)

Pine
Height (m)

Aboveground biomass
(trees; gC/m2)

Total root biomass
(gC/m2)

Pine dbh
(cm)

Pine
Height (m)

Aboveground biomass
(trees; gC/m2)

Total root biomass
(gC/m2)

2004 0.2 0.1 0.03 24.5 11.9 3,727 925
2005 0.7 6.1 1.4 25.8 12.6 4,228 1,050
2006 2 1.6 56.5 11.9 26.8 13.5 4,814 1,195
2007 4.3 2.8 269.7 52.8 28 15.1 5,642 1,402
2008 6.5 3.9 529 131.2 28.7 16.0 6,236 1,547
2009a 10.2 5.7 1,204.7 234.60 29.4 16.5 6,741 1,671
2009 30.4 16.6
2010 10.6 6.9 1,899.1 362.90 31.6 17.4 2,892 720
2011 14.9 8.0 2640 518.5 33.2 17.7 3,182 794
2012 16.7 9.2 3,202.5 643.5 34.4 18.3 3,377 846
2013 35.7 19.0 3,736 946
2014 36.6 19.5 4,252 1,088

Note. Summary of aboveground biomass and total root biomass for both sites (US‐NC1 and US‐NC2) have also been provided.
aThinning was conducted at US‐NC2 in 2009.
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A complete description of the interpretation of the images generated from XWT analysis has been provided
in the online supplement (Text S2). The phase difference between PAR and Rs at the diurnal frequency
during the growing season (days of year 100–300) was converted to lag time. The statistical significance
(5 % significance level) of WT and XWT analyses was analyzed within the cone of influence (COI) using
Monte Carlo methods (1000 simulations). The surrogate data required for significance analysis were gener-
ated using white noise. The minimum and maximum sampling rates were 3 hr and 100 days, respectively.
The maximum sampling rate was not extended beyond 100 days because uncertainty of the wavelet coeffi-
cients impacted the cone of influence.

Gaps in Rs and the meteorological data were padded with zeros, which avoids wrap‐around effects without
introducing additional spectral information (see Considerations in the supporting information). WT and
XWT analyses require the data series to be continuous. Therefore, in order to further ensure that the results
generated from CWT analyses were robust and not an artifact of padding the time series with zero, we con-
ducted WT (and XWT) analyses of null time series (of white color) with the same gap structure as the obser-
vations. This allowed us to identify the frequencies that have significant erroneous power and hence were
excluded from subsequent discussions. Uncertainties from gaps and collinearity in data as well as sampling
points have been summarized in the online supplement section (Text S3).

All time series were normalized to have zero mean and unit variance prior to wavelet analysis. Nonlinear
regression modeling and continuous wavelet analysis were conducted in R (version 3.3.2, R Core Team,

Figure 1. Seasonal variation of (a–d) 30‐min soil respiration (Rs), (e–h) air temperature (Ta), (i–l) photosynthetically active radiation (PAR), (m–p) soil temperature
at 5 cm depth (Ts5), and (q–t) volumetric soil water content at 30‐cm depth (θ) for US‐NC1 across different years (2008, 2009, 2010, and 2011).
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2016) using the “nlrwr” (Ritz & Streibig, 2008) and “WaveletComp” (Roesch & Schmidbauer, 2014)
packages respectively.

3. Results

The study period captured hydrologic variability at both sites (Figure S1 in the supporting information),
with annual rainfall ranging from 854 to 1,609 mm (65‐123% of 30‐year normal). Peak midseason soil CO2

efflux was greater in US‐NC1 than US‐NC2 (Figures 1 and 2), ranging from 4 to 11 μmol CO2 · m
‐2 · s‐1.

The annual temperature response to soil captured 75‐85% of variability in Rs (extreme site‐years are
shown in Figure 3a and 3b; other years yielded a similar pattern and are not shown). WT analysis of
the residuals of the annual model fit exhibited consistent spectral peaks from diurnal to synoptic and phe-
nological timescales (from a few to 64 days; Figures 3c and 3d). The spectral signatures in the Rs time ser-
ies produced by WT (Figures 4a‐4i) analysis indicate significant cospectral peaks at multiple timescales.

The cospectrum between Ts5 and Rs shows peaks at diurnal, synoptic, and phenological scale (Figures 4j‐4r).
The heat plots detected regions of diurnal rhythm during the growing seasons in both young and old
stands (Figures 5a‐5i), but the phase angle (135°) showed that Rs peaked before Ts at the daily scale (period
[days] = 1). There were also other regions of strong common power between Rs and Ts (e.g., 2, 4, and 16
days), but with inconsistent phase angles (Figures 5a‐5i).

The cospectra of Rs and θ exhibited significant (p < 0.05) peaks at the synoptic (>7 days) and phenological
(>30 days) time scales (Figures 4s–4z and 4A1). Areas of high common power (red zones in Figures 6a‐6i)
between Rs and θ were concentrated either in the early part of the season when soil water content was high
or when soil water content peaked after precipitation. However, the phase angles of the Rs‐θ relationship
varied widely, indicating that at times Rs maxima lagged behind those of θ, and at times they were leading
(red zones in Figures 6a‐6i).

Figure 2. Seasonal variation of (a–e) 30‐min soil respiration (Rs), (f–j) air temperature (Ta), (k–o) photosynthetically active radiation (PAR), (p–t) soil temperature
at 5‐cm depth (Ts5),and (u–y) volumetric soil water content at 30‐cm depth (θ) for US‐NC2 across different years (2007, 2010, 2012, 2013, and 2014).
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Cospectra of Rs and PAR detected very strong and consistent peaks at the diurnal scale at both sites and in
each year (Figures 4 A2–A10). The heat maps from cross‐spectral transformation showed significant corre-
lation (red zone) at diurnal scale to be very strong and consistent during the growing season (days of year
100‐300), whereas at longer timescales the effects were weaker and more intermittent (Figures 7a‐7i).

The phase difference between PAR and Rs indicated an in‐phase relationship (based on direction of arrows),
with PAR leading Rs at the diurnal period. A day is a reasonable amount of time for a PAR/Rs lag if immedi-
ate osmoregulatory (i.e., root cells maintaining fluid balance with surroundings) root exudation is a minor
factor. This relationship appeared to be consistent across the growing period across all sites and years.
However, at the subdaily time scale, a generalization of the trend between PAR and Rs could not be estab-
lished. PAR and Rs appeared to be out of phase at certain times of the growing season. The average time
lag, corresponding to the region of common power between Rs and PAR, at the diurnal scale ranged from
1 to 3 hr (Figure 8). The only outlier was US‐NC2 in 2007: an exceptionally dry year, when Rs peaked about
1.5 hr before PAR (Figure 7e).

4. Discussion
4.1. Frequency Domain Error Analysis of a Temperature Response Function Fit to Rs

As soil respiration is a function of stand age (including biomass; Table 1), it was not surprising that CO2 flux
differed between US‐NC1 and US‐NC2 (Figures 1 and 2; Klopatek, 2002). Analysis of the residuals
(Figures 3c and 3d) of the annual temperature relationship (Figures 3a and 3b) highlighted structures at dif-
ferent temporal scales. Average wavelet power spectrum of Rs (Figures 4a‐4i) also identified significant peaks
at diurnal (12 hr), daily (24 hr), synoptic (7–14 days) and monthly to seasonal scales. These observations are
consistent with our understanding of the controls and mechanisms of control of Rs at both diurnal
(Heinemeyer et al., 2012; Vargas et al., 2010) and phenological timescales (Baldocchi et al., 2001).

Figure 3. (a and b) Seasonal variation of soil respiration (Rs) against soil temperature (Ts5) for two different stands
(US‐NC1 & US‐NC2) and two different years (2009 and 2010) along with the best line of the exponential Q10 function
fit. The continuous average wavelet power spectra for the residuals (Rr) of the corresponding exponential Q10 function fit
along with the p‐values of the average wavelet power at the (c) US‐NC1 and (d) US‐NC2 sites. Rr is the difference between
the measured and modeled Rs.
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Figure 4. (a‐i) Average wavelet power in the frequency domain generated from the wavelet transformation of soil respiration (Rs) at different sites (US NC1 and US
NC2) and different years (2007, 2008, 2009, 2010, 2011, 2012, 2013, and 2014) using continuous wavelet (CWT). Cross wavelet transformation (XWT) of soil
respiration (Rs) against soil temperature at (j‐r) 5‐cm depth (Ts5), (s–z and 4A1) volumetric soil water content (θ), (A2–A10) photosynthetically active radiation
(PAR) at different sites (US‐NC1 and US‐NC2) and for different years (2007, 2008, 2009, 2010, 2011, 2012, 2013, and 2014). The 5% significance level generated
against white noise has also been identified.
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The spectral footprints of Rs (Figures 3c and 3d and 4a‐4i) suggest the existence of multiple superimposed
influences. Earlier studies have proposed that these may include microbial decomposition, phenology, soil
water content, and soil temperature (Baldocchi et al., 2001; DeForest et al., 2006; Fierer et al., 2003; Irvine
et al., 2008; Xu et al., 2004), to name some. As carbon cycle models currently do not explicitly account for
the temporal dimension of different controls, and thus, they do not capture the variability on a number of
temporal scales (Dietze et al., 2011; Stoy et al., 2013). As the temperature dependence varies in time (noncon-
stant Q10), the challenge becomes one of disentangling the confounding effects of these variously lagged
effects with different spectral properties.

4.2. The Multitemporal Relationship of Rs With Ts

The annual temperature relationship (equation (1)) did not fully capture temperature dependence on
shorter timescales (Figures 3c and 3d). The temporal variability and the difference between short‐ and
long‐term temperature sensitivity have been the subject of discussion for well over a decade (Karhu et al.,

Figure 5. Heat maps highlighting the cross‐wavelet transformation (XWT) of soil respiration (Rs) and soil temperature (Ts5) at different sites (US‐NC1 and
US‐NC2) for different years. The phase relationship has been identified by arrows. The 5% significance level of the XWT analysis was generated within the cone
of influence (COI) against white noise and identified by a white contour lines. COI within the heat plot was identified by a light shade. Additional information to
interpreting the heat maps and phase angles are in the online supplement section (Text S2).

Figure 6. Examples of heat maps highlighting the cross‐wavelet transformation (XWT) of soil respiration (Rs) and volumetric soil water content (θ) at different sites
(US‐NC1 andUS‐NC2) for different years. The phase relationship has been identified by arrows. The 5% significance level of the XWT analysis was generated within
the cone of influence (COI) against white noise and identified by a white contour lines. COI within the heat plot was identified by a light shade. Additional
information to interpreting the heat maps and phase angles are in the online supplement section (Text S2).
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2014; Mahecha et al., 2010; Subke & Bahn, 2010; Meyer et al., 2018; Yan et al., 2017), but its mechanisms
have not been fully established. In the current study, notably, the cospectral peaks were often stronger
at weekly to monthly than at daily timescale (Figures 4j‐4r). In fact, in some years (2007, 2010, and 2013
at US‐NC2 and 2010 at US‐NC1) the diurnal peaks were not even statistically significant (Figures 4l, 4n,
4o, and 4q).

The phase angle (averaging at 135°) indicated that Rs peaked before Ts on daily scale, precluding the causal
role of temperature in the relationship (Figure 5a‐5i). Hysteretic response where Ts5 leads Rs5 could be
explained by substrate supply (Kuzyakov & Gavrichkova, 2010; Stoy et al., 2007; Tang et al., 2005), thermal
diffusivity (Graf et al., 2008; Pavelka et al., 2007), microbial abundance, soil moisture conditions, and atmo-
spheric turbulence (Flechard et al., 2007). In contrast, if Ts5 lags behind Rs, these explanations hold no value.

While divergent temperature sensitivity of the component processes that make up Rs (Conant et al., 2011)
could potentially give rise to cospectra we observed, the inconsistent phase relationships at synoptic scales
(2‐16 days) suggests that the observed relationships were correlative, not directly causal.

4.3. The Effect of Moisture Availability on Rs

The nonlinear and threshold relationship between Rs and θ makes their
cospectra difficult to predict from precipitation and moisture availability
data alone (Figures 4s‐4z and 4A1). The relationship between Rs and θ
also depends on the soil moisture status prior to rainfall, and the moisture
demand of the vegetation, which may explain the complex and continu-
ous power spectra at synoptic scales at our two forests with contrasting
water needs, rooting profiles, and the balance between auto‐and hetero-
trophic components of Rs (Figures 4s–4z and 4A1).

Furthermore, the nonlinearity of the Rs‐ θ relationship may have contrib-
uted to the inconsistent phase‐angle relationships even during periods of
high common power (Figures 6a‐6i). For example, a positive relationship
may have existed when water limitation was initially relieved, but not
when moisture availability exceeded a given threshold, often around
50% or relative extractable water (Domec et al., 2012).

4.4. The Effect of PAR on Rs

Rs and PAR co‐spectral analysis yielded strong consistency of the spectral
peak (Figures 4A2–A10), phase angle (Figures 7a‐7i), and time lag (1 to 3

Figure 7. Examples of heat maps highlighting the cross‐wavelet transformation (XWT) of soil respiration (Rs) and photosynthetically active radiation (PAR) at dif-
ferent sites (US‐NC1 and US‐NC2) for different years. The phase relationship has been identified by arrows. The 5% significance level of the XWT analysis was
generated within the cone of influence (COI) against white noise and identified by a white contour lines. COI within the heat plot was identified by a light shade.
Additional information to interpreting the heat maps and phase angles are in the online supplement section (Text S2).

Figure 8. Variation in average lag hours as a function of vegetation height.
The lag hours were calculated when soil respiration (Rs) lagged photo-
synthetically active radiation (PAR) at the diurnal scale across US‐NC1 and
US‐NC2. The lag hours corresponded to zones of significant common power
during the growing season (day of year 100–300) at the diurnal scale. Each
dot represents a year.
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hr; Figure 8) at daily scale across years and between the two sites with very
different canopy height, structure, and rooting profile (Table 1), suggest-
ing a strong causal relationship. We hypothesize that the connection
between Rs and PAR is through photosynthesis, and plant‐internal carbo-
hydrate availability for metabolic processes, including rhizosphere activ-
ity. Based on the fact that Rs lagged PAR by 1‐3 hr (Figure 8), we
hypothesize that carbohydrate availability in different plant parts was
regulated via pressure‐concentration waves (PCW; Thompson &
Holbrook, 2003; Zimmerman 1969). The PCW theory postulates that a
rapid propagation of turgor and osmotic pressure waves link plant photo-
synthesis with carbohydrate availability throughout the plant (Thompson
& Holbrook, 2003). Similar time series assessment has been done pre-
viously to calculate the lag hour between above and belowground plant
processes (Gorbenko & Panikov, 1989; Liu et al., 2006; Tang et al.,
2005). Our PCW hypothesis must be validated with independent field stu-
dies (e.g., pulse labeling and isotope analysis). The alternative view that
carbohydrate availability is determined bymass flow requires that a newly
synthesized sugar molecule be transported to its destination and has been
tested using isotope labeling methods (Mencuccini & Holtta, 2010;
Wingate et al., 2010).

This process is dependent on plant phloem length and takes in trees about 1‐3 days (e.g., Mencuccini &
Holtta, 2010), whereas most of the studies of time lags of carbohydrate transport find improved carbohydrate
availability within a few hours of increase in assimilation (Bahn et al., 2008; Baldocchi et al., 2006; Barron‐
Gafford et al., 2011; Carbone & Trumbore, 2007; Gaumont‐Guay et al., 2006; Hőgberg et al., 2001, 2009; Liu
et al., 2006; Tang et al., 2005). Kuzyakov and Gavrichkova (2010) presented a good summary of this debate.
Intermediate lag times (5‐24 hr), reported by many authors (e.g., references in Kuzyakov & Gavrichkova,
2010), may be the result of nonsynchronous compound processes (discussed above), and PCW of varying
magnitude. At times, additional lags have been invoked to consolidate the shorter observed lags with pre-
sumed “true” times of mass flow. For example, Vargas et al. (2011) hypothesized that delays due to diffusion
of CO2 from point of production to point of measurement may explain the observed patterns. However, this
may be unnecessary if we consider that carbohydrate availability in rhizosphere may be mediated by PCW,
which the findings of the current study lend support for with the highly consistent time lag and phase angles
between young and mature trees.

The only outlier in the time lag spectrumwas US‐NC2 in 2007 (Figure 8). However, it could be reasoned that
during this exceptionally dry year, when Rs peaked about 1.5 hr before PAR (Figure 7e), the source of the
carbohydrate substrate may have been different, possibly old carbohydrate reserves stored in roots
(Richardson et al., 2015). If the increase in the heterotrophic fraction of Rs in the drought year, that we have
reported earlier (Noormets et al., 2012), was fully independent of plant‐derived new carbohydrate supply, Rs
should have lagged in relation to Ts (and PAR), but it did not. This lends support to the idea that the meta-
bolic activity was supported by plant‐derived, but not fresh photosynthetic carbon.

4.5. Implications

The time series of soil temperature, water content, and PAR all showed distinct peaks in their cospectra with
Rs. PAR correlated with soil respiration at diurnal scale, temperature was significant on diurnal and synoptic
time scales, while soil water content dominated at synoptic to seasonal time scales (Figure 9). We hypothe-
size that multiple controlling factors modulate soil respiration flux across two pine plantations of contrasting
age and vegetation structure. These findings are important as they introduce the idea of temporal scale
dependence of different driving variables to simulating ecosystem processes, which currently is not done.
The traditional models implicitly assume the omnipresence of substrate, to the point where it can be omitted
from explicit consideration. Given physiological acclimation in all processes, this assumption may, indeed,
be justified when dealing with fluxes at synoptic scales and longer. However, it also invalidates some of the
approaches used for interpreting temporal trends. For example, it appears that assessing temperature sensi-
tivity on a daily scale may be meaningless. Combined, our results point to the need to develop spectrally

Figure 9. Conceptual figure highlighting the disentanglement between soil
respiration (Rs) and its biotic (photosynthesis) and abiotic drivers (volu-
metric soil water content [θ]) and soil temperature (Ts5) at different periods
(days). Photosynthetically active radiation (PAR) was used as a surrogate for
photosynthesis.
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truthful models of respiration dynamics, ones that would consider the influence of different driving variables
at their individual appropriate scale. This may also help us more meaningfully interpret the existing model
parameters, metabolic acclimation, rhizosphere interactions, and external episodic perturbations.

5. Conclusions

Wavelet analysis showed that Rs responds to soil temperature (Ts5), soil water content (θ), and PAR at
different temporal scales. Diurnal variation of soil respiration was driven primarily by PAR, and less by tem-
perature, which was more significant at synoptic time scales, while soil water content dominated at synoptic
to seasonal time scales. The result suggests a strong need to move beyond temperature‐based quantification
of soil carbon flux and develop respiration models that (1) more explicitly consider plant carbohydrate status
as a driver of Rs and (2) partition variability between different time domains, with appropriate attribution to
different environmental factors. As soil carbon dynamics remains a key uncertainty in ecosystem and Earth
system models (Suseela et al., 2012), such a new conceptual representation may alter the estimates of
terrestrial carbon fluxes. Furthermore, such spectrally sensitive models may also alter the estimates of
vegetation respiration.
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