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Introduction: Under climate change, drought is increasingly affecting forest

ecosystems, with subsequent consequences for ecosystem services. An

historically exceptional drought in Texas during 2011 caused substantial tree

mortality. We used 2004–2019 Forest Inventory and Analysis (FIA) data and

state-wide weather data to examine the climatic conditions associated with this

elevated tree mortality.

Methods: We measured moisture extremes (wet to dry) using the Standardized

Precipitation Evapotranspiration Index (SPEI) at two timescales (12- and 36-

month). We quantified heat wave severity using the Heat Wave Magnitude

Index daily (HWMId) over the same period. We performed statistical modeling

of the relationship between tree mortality and these indices across four Texas

regions (Southeast, Northeast, North Central, and South) and for prominent tree

genera (Pinus, Juniperus, Quercus, Liquidambar, Prosopis, and Ulmus) as well as

selected species: Quercus stellata, Q. virginiana, and Q. nigra.

Results: The highest tree mortality was observed between 2011 and 2013. We

found similarity in the trends of the 12- and 36-month SPEI, both of which

exhibited more extreme negative intensities (i.e., drought) in 2011 than other

years. Likewise, we found that the extreme heat experienced in 2011 was much

greater than what was experienced in other years. The heat waves and drought

were more intense in East (i.e., Southeast and Northeast) Texas than Central

(i.e., North Central and South) Texas. In gradient boosted regression models,

the 36-month SPEI had a stronger empirical relationship with tree mortality

than the 12-month SPEI in all regions except South Texas, where HWMId had

more influence than SPEI at either timescale. The correlations between moisture

extremes, extreme heat, and tree mortality were high; typically, mortality peaked

after periods of extreme moisture deficit rather than surplus, suggesting that the

mortality was associated with hot drought conditions. The effects of extreme

heat outweighed those of SPEI for all tree genera except oaks (Quercus). This

was also true for oak species other than water oak (Q. nigra). In generalized

additive models, the median trend showed tree mortality of Prosopis was higher

during conditions of moderate drought (SPEI36∼ –1) or worse, but for Pinus and

Quercus, mortality started to become apparent under mild drought conditions

(SPEI36 ∼ –0.5). The impacts of extreme heat on the mortality of Juniperus

occurred when heat wave magnitude reached the ultra extreme category

(HWMId > 80) but occurred at lower magnitude for Liquidambar.
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Discussion: In summary, we identified risks to Texas forest ecosystems from

exposure to climate extremes. Similar exposure can be expected to occur more

frequently under a changing climate.

KEYWORDS

heat wave, drought, Texas forests, tree mortality, machine learning, hot drought

1 Introduction

Globally, climate change continues to exacerbate the severity,
frequency and duration of drought, and forests are particularly
vulnerable (Intergovernmental Panel on Climate Change [IPCC],
2013; Allen et al., 2015; Crausbay et al., 2017). In particular, tree
mortality has increased due to drought across different world
regions. In Europe, drought stress caused 500,000 ha of forest
mortality between 1987 and 2016 (Senf et al., 2020). Besides
this mortality, drought caused a substantial (between 2 and 5%)
increase in defoliation, extensive dieback, and growth decline
(Allen et al., 2015; Colangelo et al., 2017; Sousa-Silva et al., 2018).
In the United States, drought has also been identified as a major
contributor to tree mortality in California, where over 129 million
trees died between 2012 and 2016 (Restaino et al., 2019). Drought-
associated tree mortality is exacerbated by increasing temperatures
(Williams et al., 2013; Crausbay et al., 2017; Crausbay et al., 2020).
As climate warms, there have been higher magnitude and more
frequent heat waves, and heat waves are expected to become
even more commonplace in many regions as warming increases
(van Oldenborgh et al., 2022). Thus, it is imperative to examine
the combined effects of drought and extreme heat on forested
ecosystems (AghaKouchak et al., 2020).

Hot drought—the co-occurrence of abnormally dry and
hot conditions (Overpeck, 2013)—can cause more severe and
widespread destruction of forests than drought alone (Overpeck,
2013; Schwantes et al., 2017). Evidence of this is available from
many parts of the world. For instance, in the mid-2000s, ∼1.6 Pg
C of biomass was reported to be either impaired or lost in the
Amazon rainforest due to hot drought (Phillips et al., 2008). In the
Southwestern U.S., hot drought has become a frequent occurrence,
resulting in large declines of various tree species such as pinyon
pines (Pinus) (Breshears et al., 2005; Pan and Schimel, 2016; Wolf
et al., 2016). The projected global rise in the prevalence of hot
drought has made it important to examine and, when possible,
quantify the subsequent responses of forests over space and time
(Frank et al., 2015).

A basic measure of forest response to stress or disturbance
is tree mortality. With respect to drought or extreme heat,
understanding forest response requires that relationships between
climate and tree mortality are quantified based on the sensitivity
and exposure of forest ecosystems (Adams et al., 2012). There
is a dearth of studies on quantifiable direct measurements
of tree mortality through in situ observations. Consequently,
information about the immediate and long-term response of forests
to drought or extreme heat is limited. We address this gap by
predicting tree mortality using climate anomalies caused by high
temperatures, reduced precipitation, and increased evaporative

demand (Allen et al., 2015; Schwantes et al., 2017). We achieve this
through statistical modeling of empirical relationships between tree
mortality and climatic indices.

We focus on forests in the state of Texas, which experienced
extensive tree mortality after a 2011 drought event. The 2011
drought featured some of the most extreme drought conditions
ever recorded in the state. Several studies (e.g., Schwantes et al.,
2017; Klockow et al., 2018) examined the effects of the 2011 drought
on trees in Texas and found variable impacts. However, these
studies were done over a limited area of Texas, particularly over
East Texas, which is the more humid part of the state. There are
insufficient studies on the impacts of droughts on forests in Central
Texas, which is generally drier than East Texas, has different
communities or assemblages of plants as well as distinct biomes.
Because the magnitude of heat and drought was high across most
of Texas, it is critical to study impacts over wider areas of the
state, while acknowledging that the political boundary of Texas has
no ecological relevance vis-à-vis drought impacts. Often, studies
have focused on the drought (i.e., moisture deficit) aspect of the
2011 event rather than the compounding effect of extreme heat.
Crouchet et al. (2019) is a notable exception in that they examined
the relationship between hot drought and tree mortality, but their
study was limited to 30 sites in Ashe juniper (Juniperus ashei)
woodlands on the Edwards Plateau of Texas.

Capturing robust set of observations of forest conditions
requires data that account for spatiotemporal variability. Some
studies of drought impacts have used remotely sensed data as
a measure of tree mortality (Carlson et al., 1990; Kogan, 2002;
AghaKouchak et al., 2015). However, remote sensing data do not
provide a comprehensive inventory of how drought effects differ
by tree species or genera, tree density, basal area, diameter, or the
undergrowth (Norman et al., 2016; Lawal et al., 2021). They also
lack the capability to differentiate important details such as variable
mortality among tree species or genera (Klockow et al., 2018). To
address these limitations, an established network of field inventory
that incorporates direct observations of forest composition and
mortality is necessary. The Forest Inventory and Analysis (FIA)
Program of the USDA Forest Service administers the U.S. national
forest inventory, which collects a range of information on an annual
basis that can be used to assess the status and trends of U.S.
forests, including tree mortality levels (Bechtold and Patterson,
2005; Klockow et al., 2018). We used FIA data for this study
because they allow for examining different tree species separately,
by providing species-specific information on mortality tendencies
during hot drought conditions.

To characterize and quantify meteorological drought, drought
indices are typically applied (Beguería et al., 2014). These indices
are broadly categorized into traditional and remote sensing derived
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indices (Lawal et al., 2021). Traditional indices are computed from
meteorological variables, usually measured at weather stations,
or from gridded data. Traditional indices are easily computed
and have a relatively long record, which extends back to 1895
for (most of) the continental US. Common indices include the
Palmer Drought Severity Index (PDSI; Palmer, 1965) and its
derivatives (Karl, 1986) as well as the Palmer Z-Index (Soule, 1992).
Limitations of these indices include their fixed temporal scale,
lack of spatial precision, and their treatment of snow (Karl, 1986;
Akinremi et al., 1996; Lawal, 2018). To address these limitations,
the Standardized Precipitation Index (SPI; McKee et al., 1993) was
developed. However, SPI is also limited because it does not account
for the influence of temperature, wind, or humidity in actual or
potential evapotranspiration (Teuling et al., 2013). Therefore, the
multivariate Standardized Precipitation Evapotranspiration Index
(SPEI; Vicente-Serrano et al., 2010; Ault, 2020) is now widely
used. The SPEI is computed as a difference between precipitation
and potential evapotranspiration (PET). SPEI is measured on
multiple timescales and is sensitive to evaporation demand based
on soil and other atmospheric and environmental factors that make
plants susceptible to water stress (Hao and AghaKouchak, 2013).
Nevertheless, calling SPEI or any of the aforementioned indices a
drought index is something of a misnomer, as they characterize
both dry and wet departures from historical moisture conditions.

Similarly, extreme heat can be represented using indices
computed from meteorological variables. Regarding forest response
to extreme heat, there has been increasing interest in indices related
to heat waves (Breshears et al., 2021), which are defined as periods
of three or more consecutive days where the daily maximum
temperature exceeds a percentile threshold (commonly 90%) based
on observations from a historical reference period (Russo et al.,
2014, 2015). For example, the Heat Wave Magnitude Index Daily
(HWMId) is an indicator that accounts for the intensity and
duration of heat waves. Computed annually, the HWMId is defined
as the maximum magnitude of the heat waves occurring in a year
(Ceccherini et al., 2017).

Our objective in this study was to model the relationship
between moisture and high temperature extremes and tree
mortality for the forests of Texas. We examined the role of
extreme heat in exacerbating the impacts of moisture extremes
(i.e., drought) using data from FIA to assess observable tree
mortality across 16 years (2004–2019). We characterized the
moisture extremes using SPEI and extreme heat using HWMId.
We examined relationships between these factors and tree mortality
using spatiotemporal statistical models, thereby accounting for
trends over time and space, as well as variations in effects
based on sub-regions (East and Central Texas) and forest
species composition. Our study also compared different models’
performance in examining these relationships. We investigated the
following hypotheses: (1) East Texas forests are less adaptable and
more vulnerable to hot drought conditions than Central Texas
forests. East Texas is expected to be less adaptable because it
generally has a moist climate, while Central Texas has a more
arid climate. Therefore, the species assemblages in East Texas are
less likely to be composed of drought-tolerant trees, and the latter
represent a smaller proportion of total trees in the region; (2)
Extreme heat is the principal driver of widespread tree mortality
under conditions such as those observed in Texas, i.e., prolonged
and intense heat waves coinciding with exceptional drought; and

FIGURE 1

State of Texas showing the seven FIA survey units as well as forest
cover. The map of forest cover (30-m resolution) is adapted from
the 2016 USFS tree canopy cover product developed for the 2016
National Land Cover Dataset (NLCD) of the Forest Inventory and
Analysis National Program (FIADB). The green pixels indicate greater
than 0% tree canopy cover (i.e., a simple, binary forest mask that
also captures open-canopy woodlands). The survey unit boundary
map was developed from a county map available from the Forest
Service’s geodata archive which is also available on FIADB.

(3) Some trees exhibit delayed mortality during peak drought.
This was informed by previous studies suggesting that oaks (in
East Texas; Klockow et al., 2018) experienced mortality more
quickly than other species commonly found in the region. We
tested these hypotheses using a mortality index computed from
the FIA data.

2 Data and methodology

2.1 Study area

We selected Texas as our study area. The FIA Program divides
Texas into seven survey units (Figure 1). For this study, we focused
on four of the survey units—Southeast and Northeast, and North
Central and South—which we clustered into East Texas and Central
Texas, respectively, for analytical purposes. We excluded the West,
Northwest and West Central survey units from our study.

Due to its large size and diverse geography, climatic conditions
in Texas are highly varied (Kimmel et al., 2016). One defining
feature is what is known as the “dry line,” which separates the
humid eastern part of the state—influenced by moist air from the
Gulf of Mexico—from the arid or semiarid part (Kimmel et al.,
2016). In turn, precipitation follows an east-west gradient, with
the mean annual precipitation ranging from 1500 mm in the east
to 355 mm in the west. There is also a north-south gradient in
temperature (USDA-NRCS, 2006; PRISM, 2014; National Centers
for Environmental Information [NOAA], 2018).
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TABLE 1 Number of live trees (in millions) of selected tree genera and species on forest land in a survey area (Source:
https://www.fia.fs.usda.gov/tools-data/).

Genus Texas Northeast Southeast South North central

Pinus 2000 (11%) 720 (21%) 1000 (33%) 0.3 (0.02%) 20 (0.6%)

Quercus 2900 (15%) 560 (17%) 700 (18.2%) 100 (6.6%) 500 (20%)

Liquidambar 1000 (5.5%) 650 (19%) 400 (10%) – 2 (0.1%)

Ulmus 1400 (8%) 450 (13%) 200 (5%) 60 (3.3%) 500 (22%)

Juniperus 3300 (17%) 140 (4%) 400 (1.1%) 2 (0.1%) 300 (12%)

Prosopis 2900 (15%) 0.9 (0.03%) 0.3 (0.01%) 800 (44%) 200 (8%)

Q. stellata 450 (6%) 3 (10%) 2 (14%) 0.5 (48%) 0.11 (7%)

Q. nigra 30 (5%) 6 (8%) 8 (7%) 1 (32%) 2 (19%)

Q. virginiana 30 (5%) 0.02 (80%) 0.04 (62%) 5 (20%) 3 (19%)

The values in parentheses are the percentage of all trees in a region. For the three oak species, it is the percentage of all oaks in a region.

Droughts are common in Texas. A study by the Texas Water
Commission and Climate Impact Assessment found that drought
is likely to occur at least once every 16 months on average
(Banner et al., 2010). However, the state has experienced an
increasing number of droughts and heat waves and thus is ideal for
assessing drought-induced tree mortality (Schwantes et al., 2017;
Deng et al., 2018).

Texas was the epicenter of a hot drought in 2011 (Crouchet
et al., 2019; Klockow et al., 2020). The region experienced
the driest 12 months on record during 2011, with total
precipitation 410 mm (60%) less than the 20th century 12-month
average (686 mm; Nielsen-Gammon, 2012; National Centers for
Environmental Information [NOAA], 2018). In addition, the state
experienced exceptionally high temperatures, particularly during
the summer months (June-July-August), when it recorded an
average temperature of 30.4◦C, which was 2.9◦C greater than the
long-term average (Hoerling et al., 2013; Klockow et al., 2018).
The historically unusual magnitude and temporal pattern (i.e.,
intensified to exceptional levels and dissipated relatively quickly) of
these conditions have been the subject of some research (Hoerling
et al., 2013; Fernando et al., 2016), but similar intense episodic
events are predicted to become routine in the region and other parts
of the United States (Overpeck and Udall, 2020).

Texas has 200 ecological plant communities and high tree
species tree diversity (Elliott et al., 2009–2014; Subedi et al.,
2021). Generally, the state’s forests and woodlands can be divided
into several ecologically distinctive regions. East Texas, which
encompasses the Gulf Coastal Plain and extends south toward
the Gulf of Mexico, is the most densely forested region and is
dominated by pines (Pinus) common throughout the southeastern
U.S. (Burns and Honkala, 1990); oaks (Quercus) and sweetgum
(Liquidambar) are also common (Table 1). Central Texas consists
foremost of a karst landscape commonly known as “Texas Hill
Country.” It is covered by a mix of closed-canopy forests and open-
canopy woodlands featuring junipers (Juniperus) as well as oaks,
elms (Ulmus), mesquite (Prosopis), and other deciduous species.
Areas within the southern portion of Central Texas are dominated
by relatively short trees (mesquite, oaks, and other hardwoods) and
numerous, often thorny shrubs, although larger trees, especially
certain oak species, are more common in the milder conditions
near the Gulf Coast.

2.2 Tree mortality

To estimate tree mortality, we used data from FIA plots across
Texas. The FIA conducts an annualized survey; some plots in each
state are measured every year, enabling annual estimates of forest
conditions and attributes (Edgar et al., 2009).

The FIA plot design consists of a standard plot, subplots
and micro-plots (Bechtold and Patterson, 2005). A standard
plot comprises four 24.0 radius subplots, where trees ≥5 inches
(12.7 cm) in diameter are measured. For more details about the
FIA plot design, please see Bechtold and Patterson (2005). Data
collected by the FIA include tree species, tree basal area (BA),
diameter at breast height (DBH), recent disturbances, and status
(live or dead) of the trees. Each FIA plot is associated with a
geographic location (i.e., a set of x, y coordinates). Due to privacy
concerns, the true locations are perturbed (i.e., coordinates are
coarsened spatially) and swapped (i.e., attributes of some plots are
switched with other plots). Prior studies have found that perturbing
and swapping plot data did not have a significant effect on regional-
scale analyses (e.g., McRoberts et al., 2005; Coulston et al., 2006),
or analysis such as this where the spatial data being overlaid
had a relatively coarse resolution [see section “2.3.1 Standardized
precipitation evapotranspiration index (SPEI)”].

As noted earlier, the FIA program splits Texas into seven
survey units (Figure 1). The FIA program uses an annualized
system, where a percentage of the FIA plots in each survey unit
are inventoried every year. In the Southeast (1) and Northeast (2)
units, measurements of all plots in the unit (i.e., one inventory
cycle) is completed every 5 years (Bechtold and Patterson, 2005).
A 10-year inventory cycle is implemented in the North Central
(3), South (4), West Central (5), Northwest (6), and West Texas
(7) units (Bechtold and Patterson, 2005). Information that tracks
the inventory cycle (and inventory year within that cycle) of a plot
record allows for internal consistency. Instead, our study used the
“measurement year” (i.e., the year a plot was visited) of plots as the
time of observation, which provided comparable annual estimates
of tree parameters across the survey units and enabled matching
of the FIA estimates with indices of drought and extreme heat.
We should note that a perceived shortcoming of the FIA inventory
cycle is that some disturbances with localized or limited impacts are
sometimes not captured promptly. However, this did not affect our
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model setup or findings since our focus was on widespread impacts.
In our analyses, we focused on East Texas (Northeast and Southeast
survey units) and Central Texas (North Central and South units)
because forests in these regions are known to have been highly
affected by the 2011 hot drought (Schwantes et al., 2017; Klockow
et al., 2018; Crouchet et al., 2019). Moreover, the other three
FIA survey units have sparser inventory data and are dominated
by markedly different plant communities, with a much larger
component of open woodlands is dominated by juniper species
(e.g., Juniperus ashei or J. pinchotii). In addition, we examined the
impacts of hot drought on six tree genera that are abundant in
the target regions: pine (Pinus), juniper (Juniperus), oak (Quercus),
sweetgum (Liquidambar), mesquite (Prosopis), and elm (Ulmus).
Preliminary analyses suggested that oaks were among the most
sensitive trees to the conditions in 2011, exhibiting mortality more
rapidly than other tree genera. In turn, we also examined impacts
on the three oak species that are most abundant in Texas: post
oak (Q. stellata), live oak (Q. virginiana), and water oak (Q. nigra)
(Klockow et al., 2018).

We estimated tree mortality over time using the ratio of dead-
to-live tree basal area (hereafter, “RDA”) which is the ratio of the
total basal area (BA) of standing dead trees >12.7 cm diameter
at breast height (dbh) to the total BA of live trees >12.7 cm dbh,
calculated per plot. The RDA was calculated directly from the FIA
data. We used FIA adjustment factors to estimate these values per
plot from the subplot and microplot measurements (Bechtold and
Patterson, 2005). We selected RDA as an index because it is a
relative measure of mortality impact at the plot level. We focused
on trees with dbh >12.7 cm because that is one of the FIA criteria
for recording standing dead trees, but also because we wanted
to constrain the measure to larger (i.e., older) trees that are less
subject to competition and other factors. This allowed us to better
isolate tree mortality associated with heat and moisture conditions
for the period 2004–2019. This period was selected because we
wanted a time series spanning several years before and after the
2011 drought, and that was the period for which annualized FIA
data were available across the state. We should note that, since we
are using measurement year and standing dead tree parameters,
the year of mortality observation in the FIA dataset should be
reasonably close to the year when the mortality occurred.

2.3 Characterization of moisture and
high temperature extremes

2.3.1 Standardized precipitation
evapotranspiration index (SPEI)

We focused on meteorological drought, which is defined as
a period when the magnitude of water deficit is high compared
to the long-term normal in a region (Wilhite and Glantz,
1985; National Drought Mitigation Center, 2023). The primary
factors that influence water deficit are temperature, wind, and
humidity. We adopted a meteorological drought definition because
it does not make assumptions about surface run-off and other
soil attributes. In addition, we used meteorological drought
because we could easily compute the associated index values from
readily available data. We characterized and quantified drought
using SPEI (Vicente-Serrano et al., 2010), calculated using data

TABLE 2 Classes of drought intensity for the standardized precipitation
evapotranspiration index (SPEI).

SPEI Drought intensity

2 or more Extreme wetness

1.5 to 1.99 Severe wetness

1 to 1.49 Moderate wetness

0 to 0.99 Mild wetness

0 to−0.99 Mild drought

−1 to−1.49 Moderate drought

−1.5 to−1.99 Severe drought

−2 or less Extreme drought

The classes show the values of SPEI in terms of relative wetness or dryness. Source: Vicente-
Serrano et al. (2010), Wang et al. (2014) and Lawal (2018).

for precipitation (P) and potential evapotranspiration (PET) at
different timescales. The timescale refers to the temporal period
(e.g., 12 months) over which the monthly difference between P
and PET is aggregated when computing SPEI (Table 2). As noted
earlier, SPEI actually measures both wet and dry moisture extremes,
although our principal interest here was in the latter.

We used gridded daily climate data from gridMET, which
have a spatial resolution of ∼4 km and spans from 1979 to
present (Abatzoglou, 2013). The dataset has spatial coverage of
the contiguous US; primary climatic variables include maximum
temperature, minimum temperature, precipitation humidity,
downward shortwave radiation, specific and relative humidity.
These variables were used in the computation of reference
evapotranspiration. PET was calculated based on ASCE Penman-
Monteith (Abatzoglou, 2013), which is the preferred PET
calculation method for use in SPEI (Beguería et al., 2014).
The gridMET dataset is an interpolation of gridded PRISM
data (Parameter-elevation Regressions on Independent Slopes
Model; PRISM, 2014), due to its spatial attributes, and NLDAS
(North American Land Assimilation System) because of its hourly
temporal scale (Cosgrove et al., 2003). The gridMET datasets
have been validated with weather station data and show robust
agreement with observation (Abatzoglou, 2013). The gridMET data
are limited in their ability to capture micro- and mesoscale features
and are not well calibrated for topographic influences (Abatzoglou,
2013), although this did not affect our study because we examined
broader scales. In this study, we used data for the period 2004–2019
to compute SPEI as well as HWMId, as further described below.

We computed SPEI by first subtracting PET from (Eq. 1) P.
This difference is a representation of climatic water balance and is
calculated at different timescales to get SPEI. Thus,

D = P− PET (1)

where D is the aggregate measurement of water surplus or
deficit at a specified timescale, obtained through accumulation
of individual monthly timescales. The computation of drought
timescales is retrospective. For instance, a 12-month timescale
is derived from the previous 12 months including the current
month (Beguería et al., 2014). D-values are standardized using
the log-logistic distribution to achieve acceptable statistical
distribution (Beguería et al., 2014; Lawal et al., 2019b, 2021, 2022).
A detailed description of D-values and timescale calculation can be
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found in https://cran.r-project.org/web/packages/SPEI/index.html
(Vicente-Serrano et al., 2010). To match the FIA data, we computed
SPEI for 2000–2019 to cover important changes in trends of
temporal and geographical drought coverage. We calculated 12-
month SPEI (hereafter, SPEI12) and 36-month SPEI (hereafter,
SPEI36). We selected these two timescales because they provide
alternative depictions of the climatological phenomenon (i.e., hot
drought) that triggered tree mortality. Although the start and end
months of a drought (or excessively wet) event are effectively
arbitrary, the 2011 drought in Texas played out over the 12 calendar
months of that year: drought conditions developed in East Texas
in January, spanned virtually the entire state by August and then
dissipated after December because of a wet winter (Fernando et al.,
2016). Thus, a 12-month timescale seemed appropriate. However,
we felt a 36-month timescale was also relevant because forests
typically do not show impacts unless a drought persists for multiple
years (Berdanier and Clark, 2016). Additionally, we considered
including 24-month SPEI, but preliminary analyses revealed that
it was highly correlated with SPEI12 and SPEI36 and therefore
unlikely to contribute much unique information to our models.
We plotted the spatial distributions of SPEI12 and SPEI36, and
then calculated their time series by decomposing them into three
components: trend, seasonality, and noise.

We should note that we looked at SPEI12 and SPEI36 in
the years prior to the RDA measurement year. This is under the
assumption (borne out by literature) that tree mortality is lagged
relative to SPEI (or HWMId). We also acknowledge that there is
some noise in the mortality signal due to background mortality and
mortality due to other larger-scale disturbances (e.g., fire).

2.3.2 Heat wave magnitude index daily (HWMId)
The HWMId provides a straightforward way to characterize the

relative importance of extreme heat during a given year in different
regions. The HWMId is computed from the Heat Wave Magnitude
Index (HWMI), the number of heat waves with durations greater
than or equal to three consecutive days above a daily temperature
threshold, with 1981–2010 as the reference period (Russo et al.,
2014). The reference period follows what was used in previous
studies. The threshold is described as the 90th percentile of the daily
maximum temperature distribution over a 31-day window (Russo
et al., 2014) (Eqns. 2, 3).

Ad =

2010⋃
y=1981

d+5⋃
i=d−15

Ty,i (2)

where
⋃

denotes the union of sets and Ty,i is the daily maximum
temperature of the day i in the year y.

The HWMId is then calculated as the sum of the magnitude of
consecutive days comprising a heat wave, with the daily magnitude
computed as

Md(Td) =

{ Td−T30y25p
T30y75p−T30y25p

if Td > T30y25p

0 if Td ≤ T30y25p
(3)

Where “Td is the maximum daily temperature on day d of
the heatwave, and T30y25p and T30y75p are, the 25th and 75th
percentile values, respectively, of the time series composed of 30-
year annual maximum temperature within the reference period
1981–2010. The slope of the Md(Td) is defined at each specific

TABLE 3 Categories of HWMId (Russo et al., 2014).

Value HWMId category

0 to 4.9 Normal

5 to 9.9 Moderate

10 to 14.9 Severe

15 to 29.9 Extreme

30 to 49.9 Very Extreme

50 to 79.9 Super Extreme

80 and above Ultra Extreme

Source: Russo et al. (2014).

location depending on T30y75p and T30y25p which are different in
places with different climates” (Russo et al., 2015). Table 3 shows
the categories of HWMId. These categories were considered in the
model and summarized in figures below. We computed HWMId
from gridMET data for the 1981–2019 period over Texas.

2.4 Statistical analyses of tree mortality
response to moisture and heat extremes

To estimate the contribution of moisture extremes (i.e.,
drought) and extreme heat to tree mortality, we used two statistical
methods: gradient boosting regression (GBR) and generalized
additive models (GAM). GBR is a machine learning model that
can assess a non-linear relationship between a target variable
and other features. It provides better accuracy than most other
statistical models (such as logistic regression), requires minimal
data for pre-processing, is highly flexible and handles missing data
well in model fitting (Prettenhofer et al., 2014). We used GBR
to predict tree mortality based on SPEI12, SPEI36 and HWMId
as independent variables. We used GBR to build a base model
to predict observations. We excluded FIA plots where there were
only dead trees as those trees may have died before the period
of interest. Preliminary analyses showed that, there was only one
plot each in 2009 and 2015 where there were no live trees. We
transformed the data using StandardScaler, which ensures that
the variables were treated equally and not given higher weight
relative to other variables (Raju et al., 2020). StandardScaler
eliminates biases in predictions by scaling the data (e.g., mean is
0 and the standard deviation/variance is 1) (Raju et al., 2020).
GBR is a combination of multiple models (also known as base
estimators or weak learners) to produce final predictions. This
allows for the combined model to capture various signals from
the variables.

We evaluated the GBR results to assess their capacity to
predict tree mortality response successfully based on the predictors.
While we were confident that the mortality was associated with
moisture deficits rather than surpluses, the predictors in question
(SPEI12 and SPEI36) depict departures across the moisture
gradient (wet to dry).

GAM is a linear model that can learn non-linear relationships.
GAM does not limit the relationship between variables and
models the outcome through summation of arbitrary functions of
individual features. This type of flexible function is known as a
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spline or, in the GAM context, a “smooth” function. Qualitatively,
the difference in the two models is particularly in terms of focus
on the predictor (GBR) vs. maximizing explained variance (GAM).
We should note that the partial dependence plot is a representative
of variable influence (i.e. SPEI and HWMId) on the response
variable (i.e. RDA) and not representation of the values. Therefore,
the negative numbers on the y-axis are not raw probabilities but
those of probabilities logits. While GBR reduces over-learning or
overfitting to increase predictive performance, for GAM, there is
freedom in reducing the multicollinearity effect (Elith et al., 2006;
Leathwick et al., 2006). In simpler terms, we applied GAM to
increase the robustness of our findings by confirming the results
of the GBR model. Similar to GBR, we predicted tree mortality
using SPEI12, SPEI36 and HWMId as predictors and RDA as the
response variable. To compare our GBR and GAM results, we used
the mean absolute error (MAE). The MAE measures the average
absolute magnitude between observed (actual) and predicted values
by the model.

3 Results

3.1 Temporal variability of tree mortality

The dead-to-live ratio (RDA) varied across the different regions
of Texas (Figure 2). Generally, there was a higher median RDA
between 2011 and 2013, similar to the findings of Moore et al.
(2016). Over East Texas (both Southeast and Northeast survey
units, Figures 2A, B), the median RDA trend was largely negligible
between 2004 and 2010, before increasing from 2011 to 2014.
For South Texas (Figure 2D), the trend increased between 2014
and 2015. In North Central Texas (Figure 2C), there was another
increase in median RDA in 2016. It should be noted that the
90th percentile of RDA is higher for Central Texas (i.e., North
Central and South units) than East Texas, even though the median
of the latter is higher, as shown by the percentage of RDA in
Supplementary Figure 1.

There was tree genera variability in RDA across years
(Figures 2F–J). Juniperus, Liquidambar, and Prosopis mostly had
the highest median RDA (about 0.5) between 2011 and 2013. In
2014, about 75% of Quercus plots had an RDA of 0.5 which was the
largest value for the period 2004–2019. Pinus had a considerable
increase of RDA during 2013–2014, however, it had the lowest RDA
in 2012. On the other hand, Liquidambar exhibited a large drop
in RDA in 2005, which was unique to the genus. Quercus had the
longest increasing trend in RDA (2007–2010) in comparison to
other genera. For Ulmus, there was similarity in the tree mortality
for the period 2011–2014. The variation among genera and in
different years across regions suggest highly variable responses by
Texas forests to drought, extreme heat.

3.2 Temporal evolution of drought and
heat wave magnitude

The trends of SPEI12 and SPEI36 were similar and largely
increased between 2000 and 2005, thus suggesting increasing
wetness for the period (Figures 3A, B). However, wetness declined

from 2008 to 2014, suggesting an increasing intensity of drought
(Figures 3A, B). The years 2011–2013 had the lowest values for
SPEI at both timescales. Although the pattern of variability is
similar for East and Central Texas, the magnitudes differ. The
spatial magnitudes of SPEI are also depicted in Supplementary
Figures 2, 3, which show that, for 12-month SPEI, extreme drought
(<−2) was more commonly observed in East Texas (2011–2013).

Heat wave magnitude, as measured by HWMId, was higher
in 2011–2013 than at any other time in the 2004–2019 analytical
period (Figure 4). The Southeast, Northeast and North Central
survey units experienced ultra-extreme (HWMId > 80) heat wave
magnitudes during these three years. Among these units, the
Southeast and Northeast (i.e., East Texas) experienced the highest
magnitudes, while the South experienced the lowest magnitude.
East Texas and part of the semi-arid region (i.e., North Central) falls
in super extreme or ultra-extreme HWMId categories. Although
the conditions were not nearly as bad as in 2011–2013, East
Texas also had extreme heat wave magnitude in 2015–2016.
Supplementary Figure 4 shows the spatio-temporal distribution of
HWMId over Texas survey units.

3.3 Statistical modeling of forest
ecosystem response to drought and heat
waves in east and central Texas

The impacts of drought and heat waves on forest mortality is
illustrated in the relationship between the predicted and observed
RDA from gradient boosted regression (Figure 5). Here, we used
SPEI12, SPEI36 and HWMId as predictors of tree mortality as
measured by RDA. SPEI36 had a stronger relationship than SPEI12
or HWMId. Except for the South survey unit (Figures 5D–H),
where HWMId was most important, SPEI36 was largely more
influential than the other variables. In the same vein, SPEI12 was
the least influential factor except for in the South (Figure 5H).
The largest correlation (r = 0.97) between observed and predicted
mortality (i.e., observed and predicted RDA) was also in the South
survey unit (Figure 5H).

For the six selected tree genera, the correlations between
observed and predicted mortality were generally high (r ∼ 0.97).
Typically, peak tree mortality occurred after moisture deficits rather
than surpluses (see Figures 2E–H). When combined with the
presence of extreme heat, this suggests a strong association between
mortality and hot drought conditions (Figure 6). The model set-up
of predictors and RDA is given in section “2.4 Statistical analyses
of tree mortality response to moisture and heat extremes.” In
short, the impacts of HWMId on tree mortality outweighed those
of SPEI12 or SPEI36 for all genera, except oak (Quercus), for
which SPEI36 played a dominant role. Notably, with respect to the
three oak species, HWMId was the most influential for post oak
(Q. stellata) and live oak (Q. virginiana), while SPEI12 was most
influential for water oak (Q. nigra) (Figure 7).

GAM results were largely consistent with the GBR results, so
most of the former results are only shown in the Supplementary
information. Figure 8 shows only the marginal effect results for
the tree genera (i.e., the contribution of the marginal impacts
of each predictor to tree mortality). Supplementary Figure 11
shows GAM outputs for Quercus species. Note that each partial
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FIGURE 2

Temporal variability of tree mortality over Texas survey units, including Southeast and Northeast (East Texas) and North Central and South (Central
Texas) (A–D), and genera (F–J) for the period 2004–2019. Data on dead trees were scant for Ulmus spp for 2019. The percentages of dead trees in
each year are shown in Supplementary Figure 1. The boxplots show the minimum, 25th percentile, 50th percentile, interquartile range, maximum
values, and outliers of RDA.

dependence plot represents the influence of a predictor on RDA
and is not a representation of the values. We should also note that
the larger the range of the feature values, the more dominant the

influence of a predictor. In this case, for most of the genera, we
observe a higher impact on RDA when SPEI12 was between 0 and
−0.5 but a reduced impact when SPEI12 was lower (≈ −1). For
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FIGURE 3

Temporal evolution of 12- and 36-month drought timescales across Texas and individual survey units in East Texas (Southeast and Northeast) and
Central Texas (North Central and South). (A,B) Show trends of 12- and 36-month SPEI, respectively. The 12-month timescale is derived from the
previous 12 months including the current month while 36-month timescale is derived from the previous 36 months including the current month.

Liquidambar, there was very little change in the impacts of SPEI12
at different magnitudes. On the other hand, for Pinus and Quercus,
the marginal impact of SPEI12 was higher when the drought
magnitude was greater (i.e., when SPEI12 was more negative), and
for Quercus in particular, when SPEI12 was−1 or less,. This implies
that Quercus was more affected by the greater magnitude of the
12-month drought (i.e., lower values of SPEI12) than the other
genera. For SPEI36, there was a higher marginal impact on Pinus
and Quercus when SPEI36 fell between 0 and −0.5. For Juniperus
the marginal impact was higher when SPEI36 values were less
than −0.5. For Prosopis, the marginal impact was higher when
SPEI36 was about −1. In the case of HWMId, mortality response
was variable to the heat wave magnitude for different tree genera.
For example, the highest marginal impact of heat wave magnitude
occurred when HWMId was ∼ 50 for Pinus and Liquidambar,
suggesting that the genera were most susceptible during extreme
heat. However, for Juniperus, the greatest susceptibility occurred
during ultra-extreme heat, i.e., when heat wave magnitude was
exceptionally high.

We also show the evaluation of the models with MAE.
Generally, GBR performed much better (with lower MAE) than
GAM (Table 4).

4 Discussion

4.1 Tree mortality and risk to forest
ecosystems of hot drought in Texas

We examined relationships between moisture extremes
(principally drought), heat, and forest mortality across a large
portion of Texas that spans a range of ecoregions, physiographic
characteristics, and forest communities. We found that there was a
strong mortality signal in humid East Texas, and the relationship
between this mortality and hot drought conditions is a robust
finding. This finding was consistent with other research (Klockow
et al., 2018; Subedi et al., 2021; Chaudhary et al., 2023), but it
is important to note that most previous studies regarding the

FIGURE 4

Time series of Heat Wave Magnitude Index daily (HWMId) in Texas
and across the Southeast and Northeast survey units (East Texas) as
well as the North Central and South units (Central Texas). The
dashed black line (HWMId > 80) delineates the ultra-extreme.
HWMId category (see Table 3). Supplementary Figure 5 shows
HWMId values for an extended period and for all seven Texas survey
units, while Supplementary Figures 6, 7 show spatial distributions
of a mixture of drought and extreme heat.

2011 drought event focused exclusively on East Texas. Notably,
we found drought-related mortality signals in semiarid Central
Texas, too. Moore et al. (2016) also looked across all of Texas and
they argued that East Texas did not have higher mortality as a
percentage of all trees; rather, it was central Texas that saw the
greatest percent mortality.

We showed the risks to Texas forests from the 2011 event. We
found that tree mortality across the region was associated with
the magnitude of both heat and moisture extremes (Figures 2, 5
and Supplementary Figure 2). Our findings are mostly in
agreement with previous studies (Moore et al., 2011; Moore
et al., 2016; Klockow et al., 2018). Although many endogenous
(e.g., stand characteristics, soil properties) and exogenous (e.g.,
climate-related) factors contributed to these impacts, drought has
been identified as the primary cause (Elkin et al., 2015; Saud
et al., 2016). The combination of these factors (such as longer
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FIGURE 5

Performance of gradient boosted regression (GBR) models of tree mortality as represented by RDA, using 12- and 36-month SPEI and HWMId as
predictors, for East and Central Texas. The left panels (A–D) show the scatterplots of model fit (predicted vs. observed) and the r-values (inset), while
the panels on the right (E–H) show the relative importance of the predictors. The red line is the regression line while the dashed black line is the 1:1
line. The evaluation results are shown in Table 1 while the model results of the relationship between individual independent variables and RDA are
given in Supplementary Figures 8–10.

hydraulic paths and increased atmospheric demand) likely explains
some of the variation in temporal variability of tree mortality
among species (Figure 2). Also, there are many other factors

(including tree physiology) that influence species’ susceptibility
to drought (Seleiman et al., 2021), thus there is variability in
mortality among species. Nevertheless, we found mortality trends
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FIGURE 6

Performance of gradient boosted regression (GBR) models of tree
mortality as represented by RDA, using 12- and 36-month SPEI and
HWMId as predictors, for East and Central Texas. (A–F) The left
panels show the scatterplots of model fit (predicted vs. observed)
and the r-values (inset), while the panels on the right (G–L) show
the relative importance of the predictors. The red line is the
regression line while the dashed black line is the 1:1 line.

increased rapidly in relation to a combination of drought and
extreme heat (i.e., hot drought). We note that, with respect to tree
mortality in Texas, heat waves have not really been considered in
previous research.

Mortality was especially prominent in East Texas. However,
drought conditions were not appreciably more intense in East
Texas than Central Texas. The hypothesis that East Texas is
less drought-adapted than Central Texas and therefore more
vulnerable to drought-induced tree mortality is not definitely
supported in our analysis, but it is not fully refuted, either.
Our alternative hypothesis is that what most distinguished East
Texas from the rest of the state was the significantly higher heat
wave magnitudes in 2011. This overrode any variation in drought
tolerance among the dominant tree genera in East Texas. The heat
wave magnitudes in East Texas in 2011 were substantially higher
than anywhere else in the state. Moore et al. (2016) observed

greater mortality of larger trees in East Texas and posited that
this was because the canopies of taller trees are more exposed in
this region and therefore more vulnerable to high temperature
extremes and associated vapor pressure deficits. In summary,
our data and models point to extreme heat as a contributing
factor. Thus, the impact of hot drought, an extreme event, to
tree mortality is elucidated, and the hypothesis is supported
in this study.

4.2 Variations in the response and
adaptive mechanisms of trees to hot
drought

This historically exceptional event could be an indication of
future climate conditions where hot drought not only becomes
more frequent but more intense in Texas. For example, we showed
that pines, the predominant tree genus in East Texas, endured the
event better than most other genera in the region. This is consistent
with the findings of Schwantes et al. (2017). In addition, we showed
that drought impacts were lagged for pines relative to oak and
sweetgum, both of which are prominent in East Texas. A study
by Klockow et al. (2018) similarly showed a lag in mortality for
loblolly pine (P. taeda) compared to sweetgum (L. styraciflua),
winged elm (U. alata), and three oak species (Q. falcata, Q. nigra,
and Q. stellata) in East Texas. Besides mortality lagging for species
of pine, some studies have revealed lower mortality overall, which
may be attributed to effective management (including fertilizing,
thinning, prescribed burning as well as reduced competition) and
the capacity of the species to succeed under a broad range of
conditions (Fox et al., 2007). Bottero et al. (2017) and Gleason
et al. (2017) reported that, across Texas, pine species benefit
from active thinning and stand density reduction because these
activities mitigate water stress. With regards to the mechanisms
for reducing water stress, pines preserve a high leaf water potential
and reduce leaf surface area, i.e., an isohydric water conservation
approach. These mechanisms may have permitted the lagging of
mortality due to the 2011 drought conditions (Maggard et al.,
2016). Another physiological process of pines that could manifest
as delayed mortality is the disconnection of roots from the soil
to conserve the leaf water potential, which may allow the trees to
appear as alive with green needles even though they are unable
to reconnect to the soil; in turn, the trees may appear to die
(turn brown and lose needles) later even if there is subsequent
rainfall (Li et al., 2022; McDowell et al., 2022). We posit that the
disconnection might occur because pines do not actively maintain
the connection and the delayed mortality is a consequence of that.
Regardless of mechanism, the significant mortality of pines after
two years suggest that the 2011 drought was so severe that it
caused trees to suffer low rigor, terminal hydraulic damage, and
carbon depletion (Anderegg et al., 2013; Berdanier and Clark,
2016). Perhaps because it was a hot drought, the pines—which may
have been able to tolerate drought for months or even years under
different circumstances—eventually were overcome by the added
physiological stress caused by extreme heat.

The impacts among the hardwood genera were varied. For
example, like Klockow et al. (2018) we found that oaks were
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FIGURE 7

Post oak (Quercus stellata), live oak (Q. virginiana) and water oak (Q. nigra): Performance of gradient boosted regression (GBR) models of tree
mortality as represented by RDA, using 12- and 36-month SPEI and HWMId as predictors, for East and Central Texas. The left panels (A–C) show the
scatterplots of model fit (predicted vs. observed) and the r-values (inset), while the panels on the right (D–F) show the relative importance of the
predictors. The red line is the regression line while the dashed black line is the 1:1 line.

most readily impacted by—and therefore most vulnerable to—
the extreme conditions that occurred in 2011. Generally, we can
attribute this impact to water use efficiency of the oaks. The
three oak species on which we focused, live oak (Q. virginiana),
water oak (Q. nigra), and post oak (Q. stellata), all experienced
considerable mortality. This decline may be attributable to these
species experiencing negative water balance and transpiration
beyond a sustainable threshold due to drought, thus leading to
hydraulic failure and making them anisohydric plants; and an
inference that as drought become more severe under a changing
climate, oaks are among the most vulnerable (Adams et al., 2012;
Cailleret et al., 2017; Rodríguez-Calcerrada et al., 2017). Other
species such as sweetgum (L. styraciflua, the only North American
species in the genus) showed mortality from 2011 but peaked two
years post-drought (Figure 2I). Since sweetgum is an isohydric
species, this attribute may have enabled sweetgum to have longer-
term resistance to drought (Esperon-Rodriguez and Barradas, 2015;

Klockow et al., 2018). A possible explanation for the eventual
vulnerability of sweetgum, particularly in East Texas may be that it
was outcompeted (since it is an intermediate species in the region)
by pines which are more dominant (Burns and Honkala, 1990).
Similar to pines, sweetgum trees may also disconnect from the soil
but appear as “living” plants because they still store water in their
tissue. Thus, while mortality might start during peak drought, it
becomes visible later when the plant reconnection to soil revives
other species. Our study offers evidence affirming the notion (and
hypothesis) of delayed mortality in some isohydric species such as
pines and sweetgum, so we think that possible mechanisms such
as the disconnection of roots from soil may be fruitful subjects
of future research. It may be also worth noting, however, that
sweetgum is a stump-sprouter and can regenerate more easily than
oaks, the other dominant hardwoods in East Texas.

The tree mortality of some species was attributed to secondary
stressors by the FIA. Several studies (e.g., Anderegg et al., 2013;
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FIGURE 8

Partial dependence effects of SPEI12, SPEI36, and HWMId on tree
mortality. The r-value is given in brackets on the right panels.
Summary statistics of Generalized Additive Model (GAM) are shown
in Supplementary Table 1. The y-axis shows the degree of partial
dependence while the x-axis plots the predictions i.e., 12-month
SPEI (SPEI12), 36-month SPEI (SPE36) and heat wave (HWMId). The
histogram shows the distribution of observed RDA, which displays
the intervals (bins) and frequency of count of data points that fall in
each interval. It provides insight into how RDA values are distributed
across different ranges of each feature and how the partial
dependence plots are influenced by variations in RDA.

Kolb et al., 2016) have also found that the susceptibility of
some trees to pests is a result of the aftermath effect of
drought.

TABLE 4 Results of evaluation of statistical performance for the
GBR and GAM models.

Region/species MAE

GBR GAM

Southeast 0.1 0.4

Northeast 0.1 0.7

North Central 0.2 1.0

South 0.1 2.1

Pinus 0.2 0.2

Juniperus 0.3 0.9

Quercus 0.3 0.9

Liquidambar 0.2 0.2

Prosopis 0.4 1.3

Ulmus 0.2 0.9

Q. stellata 0.2 0.4

Q. virginiana 0.21 0.8

Q. nigra 0.13 0.3

The statistics reported is the mean absolute error (MAE).

4.3 Variability in regional response to hot
drought

We found spatial variation in the response to hot drought
across Texas and this reflects a combination of underlying factors.
Foremost, the regions have different forest types and dominant
tree species, as already noted. Physiological attributes (mesophytes
vs. xerophytes or hydrophytes) substantially determine how
plants respond to drought, so the regions’ characteristic species
assemblages are likely to show some level of variation. Some of
the differences are probably related to forest ecological dynamics.
For example, East Texas forests have greater biomass and more
shade-tolerant species, thus suggesting that successional dynamics
do not play a major role in the response (van Mantgem et al., 2009;
Schwantes et al., 2017). We must acknowledge that dissimilarities
in response between East Texas and elsewhere in the state might
be confounded by the contrasting FIA inventory cycles of the two
East Texas survey units vs. the units in Central (and West) Texas,
as the plots are visited half as frequently in the latter. Nevertheless,
there are several factors that one would expect to affect regional
variation in response. Of course, for instance, studies have shown
that the general moisture regime of a region can play an important
role in mortality of trees and other plants. We should point out
that vapour pressure deficit (VPD) could be playing a role in
South Texas. We should note that extreme heat (as measured by
HWMId) observed in South Texas was still high at about 52 and
had considerable impacts on the forests. Our hypothesis is that the
effects of VPD in South Texas can be distilled using a different
measure of heat wave magnitude (see Russo et al., 2017 for AHWI—
Apparent Heat Wave Index), which accounts for the contribution
of relative humidity to apparent temperature (often called the “heat
index” temperature) and its capacity to prolong or worsen heat
waves. However, this is still quite difficult to disentangle and is an
area for future exploration. Furthermore, parts of the South region
(along the coast) have a humid climate like East Texas and thus,

Frontiers in Forests and Global Change 13 frontiersin.org

https://doi.org/10.3389/ffgc.2024.1280254
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-07-1280254 April 16, 2024 Time: 11:6 # 14

Lawal et al. 10.3389/ffgc.2024.1280254

may show strong response to drought if there are small changes in
moisture supply. The lower mortality observed in more arid parts of
Texas may be because the plants are better adapted to low moisture
than species in humid East Texas (Fridley and Wright, 2012; Lawal
et al., 2021, 2022). In addition, the characteristics of soils are likely
another important factor. This is especially true in East Texas where
the soils are heavy (i.e., rich in clay), thus affecting water retention
and their porosity (Subedi, 2016). Furthermore, all of these regional
distinctions may be amplified by climate change; previous studies
(e.g., Stone, 2007; Intergovernmental Panel on Climate Change
[IPCC], 2021) have suggested that the rate of climate warming in
some U. S. regions has differentially affected the capacity of trees to
cope with multiple stressors.

We also note that, because the 36-month SPEI had a higher
relative influence than the 12-month SPEI in East Texas, we can
infer that the tree mortality in the region was largely driven by the
more prolonged 36-month hot drought (drought and heat wave;
the composite and mixed effects are shown in Supplementary
Figures 5A, 6, 13) rather than the shorter-term 12-month hot
drought. The spatial distribution of compounded impacts of hot
drought in Texas are shown in Supplementary Figures 6, 7. Our
findings broadly agree with those of McDowell et al. (2015), who
reported that the more significant impacts of plants to a hot
drought is because of the increased evapotranspiration thus causing
high water demand and strong water stress, i.e., an increasingly
D-water balance (P–PET). Supplementary Figure 12 further
shows the temporal evolution of SPEI12 and SPEI36 over Texas.
We recognize that, while geographical (i.e., regional) response
is important, similarities and dissimilarities are probably more
obvious among tree genera/species because their varied responses
are due to inherent characteristics and traits such as rooting depth,
xylem hydraulic conductivity and stomatal conductance. We are
exploring the roles of these and other traits in ongoing research.

4.4 Quantifying tree mortality with FIA
inventory data

The quantification of tree mortality using the RDA (dead-to-
live ratio) index was fundamental to our findings. As discussed
in section “2.1 Study area,” we used the tree data from the FIA
inventory to compute RDA. The FIA data are not exhaustive and
contain uncertainties. One limitation, mentioned earlier, is that
Central and West Texas have longer inventory cycles than East
Texas, meaning that the Northeast and Southeast FIA survey units
have substantially more data with which to analyze tree mortality
with respect to both short-term changes and long-term trends.
Furthermore, this sparser spatial sampling in Central and West
Texas (where only ∼10% of the FIA plots are surveyed yearly)
may not capture disturbances (or other conditions) in a timely
manner unless their impacts are generally pervasive. A way to
overcome this is to establish two-tier sampling methods involving
independent sampling as well as a harmonized inventory cycle.
Because FIA data are represented on an annual timescale, it is
generally incompatible with climate variables which are either 6-
hourly (e.g., CRUJRA, NCEP) or monthly (CRU, gridMET). This
necessitated that SPEI12 and SPEI36, which are computed as
monthly variables, had to be converted to annual averages, which

might have resulted in some loss of information. In addition, the
spatial resolution of FIA data is high, although not consistent (i.e.,
regularly spaced) like climate variables that are represented using
a regular grid. But the climate data are derived from inconsistently
located weather station observations, with a consistent grid which
is created using kriging. FIA plots are represented by points that
are not regularly distributed in space, unlike the raster data used
for climate variables. Again, this required spatial interpolation
of the climate data to match those of FIA. We also should
acknowledge that while the FIA has a parameter, “MORTYR,”
which is the year mortality occurred, we could not use this
because it is a tree-level (and not plot-level) parameter variable
and is not consistently recorded for all trees in Texas, with more
than two-thirds of dead trees inventoried between 2004 and 2013
lacking a MORTYR value.

4.5 Model suitability in examining
drought impact on tree mortality

There is no consensus on the most suitable model to
examine the response of plant communities to moisture and
temperature extremes. For example, Vicente-Serrano (2013) and
Lawal et al. (2019a, 2021, 2022) used various dynamical models
to analyze observed and modeled drought impacts. However,
no study has used machine learning (ML) statistical models to
investigate hot drought-tree mortality relationships, particularly
in Texas. We used regression analyses of these models with ML
methods, which were found to be appropriate (see section “3
Results”). Overall, our methods have shown capacity to predict
tree mortality across regions and species (as evaluated in Table 4
and Supplementary Table 1), although our approach had some
shortcomings. These range from underestimations of predicted
RDA, which might have been due to excluding some dead trees
because of grid size matching or averaging. In addition, since
we only used trees greater than or equal to 12.7 cm dbh, the
contribution of undergrowth influences to mortality were not
accounted for in the models (McDowell et al., 2015). Also, our
models may not have fully accounted for a lag of mortality due
to drought, as some trees may have continued to die beyond the
analytical period (McDowell et al., 2015). Finally, we should note
that our definition of the empirical relationship between climate
and FIA data did not consider the roles of other local-scale factors
(soil, topography) nor heterogeneity of the landscapes as this was
beyond the scope of our study.

5 Summary, conclusion, and
recommendations

Drought is a recurring event in Texas, but its impact on
forests in 2011 was especially intense because of its coincidence
with extreme heat in the same period, thereby making it a hot
drought. In this study, we estimated two timescales of drought
(12- and 36-month SPEI) for the period 2004–2019. The severity
of drought was a major filter for the plant communities in
Texas. We modeled the relationship between drought and tree
mortality across survey units and on plant species in Texas.
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We also estimated extreme heat using HWMId. We found that
the trends of the two drought timescales were similar and had
greater magnitudes in 2011 than other years (Supplementary
Figures 13, 14). Moreover, the heat wave magnitudes in 2011
were almost double those observed in other years of the analytical
period. Both drought and heatwaves were most intense over East
Texas. However, these magnitudes did not coincide over the same
location in other years.

We performed statistical modeling of forest ecosystem response
to hot drought and evaluated the spatio-temporal distribution of
selected genera and species to drought (36-month SPEI). Our
results show the following:

• Using the gradient boosted regression (GBR) models, the 36-
month SPEI showed a higher empirical relationship with tree
mortality than 12-month SPEI. For genera, the correlations
between hot drought and forest ecosystem were mostly
high (r∼0.9).
• Using generalized additive models (GAM), typically, the

median trend showed a positive and linear relationship with
tree mortality though the change was more variable with
HWMId. Furthermore, HWMId showed more significant
impacts on modeling mortality by genera than modeling
mortality by region.
• The impact of hot drought was more intense over East Texas

than Central Texas. The higher magnitude was consistent in
both regions between 2011 and 2013.

The present study has demonstrated that the tree mortality that
occurred between 2011 and 2013 was in response to the 2011 hot
drought. Supplementary Figure 12 shows the timeseries evolution.
This event was so severe that it left tree species vulnerable to other
post-drought stressors, particularly pests. Although robust, we note
that future analyses of mortality due to drought may show higher
tree mortality when longer-term records are used. Here, we used
FIA plots across a large swath of Texas to model drought- and heat-
induced mortality of trees. This approach and our findings may be
used as a basis to predict future impacts on the forest ecosystems
during the periods of hot drought, which could be the new normal
in the near future.
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