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A B S T R A C T

Despite serving as invasion gateways for non-native forest pests, urban forests are less well understood than
natural forests. For example, only a fraction of communities in the USA and Canada have completed urban forest
inventories, and most have been limited to street trees; sample-based inventories that provide valid community-
wide estimates of urban forest composition are much rarer. As a proof of concept, we devised a three-step
approach to model urban tree distributions regionally using available street tree and whole-community in-
ventory data. We illustrate the approach for three tree genera – ash (Fraxinus spp.), maple (Acer spp.), and oak
(Quercus spp.) – that are hosts for high-profile insect pests. The objective of the first step was to estimate, for
communities with only street tree inventories, the proportion of the community’s total basal area (BA) in each
host genus. Utilizing data from communities with paired street tree and whole-community inventories, we ap-
plied polynomial regression to estimate whole-community BA proportion per genus as a function of a com-
munity’s street tree BA proportion and its geographic location. The objective of the second step was to estimate
per-genus BA proportions for communities in our prediction region (eastern and central USA) with no urban
forest inventory. We used stochastic gradient boosting to predict these proportions as a function of environ-
mental and other variables. In the third step, we developed a generalized additive model for estimating the total
BA of a community as a function of its canopy cover, geographic location, and area. We then combined the
outputs from the second and third steps to estimate ash, maple, and oak BA for the nearly 24,000 communities in
our prediction region. By merging these estimates with similar information on natural forests, we can provide
more complete representations of host distributions for pest risk modeling, spread modeling, and other appli-
cations.

1. Introduction

Invasive species have tremendous impacts globally, including dis-
ruption of ecosystem functions, loss of important agricultural crops,
declines and extinctions of native species, damage to infrastructure, and
direct as well as indirect (e.g., as a vector) effects on human health
(Parker et al., 1999; Allen and Humble, 2002; Clavero and García-
Berthou, 2005; Bradshaw et al., 2016). These impacts are challenging to
specify in economic terms. For example, insects, which comprise one of
the largest classes of invasive species, recently were estimated to have
an annual impact of US$77 billion worldwide in terms of direct losses of
goods and services, control costs, and associated human health costs

(Bradshaw et al., 2016). However, because there have been few dedi-
cated assessments of the economic impacts of insects, this number likely
underestimates the true costs by a large margin (Bradshaw et al., 2016).

Forest pests (i.e., insects and diseases that affect trees) account for a
considerable fraction of the impacts of all invasive pests of plants
(Liebhold et al., 1995; Kenis et al., 2009; Paini et al., 2016). For in-
stance, more than 450 non-native forest insect species have become
established in the continental USA since European settlement (Aukema
et al., 2010). Out of these, a subset of 62 high-impact species were
estimated to cost nearly US$1.7 billion annually in government ex-
penditures for management and control, and another US$830 million in
lost residential property values (Aukema et al., 2011). By changing
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forest composition and structure at a regional scale, forest pests also
affect critical ecosystem functions such as nutrient cycling and wildlife
habitat (Lovett et al., 2016). In urban forests (i.e., forests in cities,
suburbs, and other human settlements), extensive tree loss caused by
pests has been linked to negative impacts on human cardiovascular and
respiratory health (Donovan et al., 2013).

As with other categories of invaders, most forest pest invasions have
occurred as a result of human activities, especially the intentional or
accidental movement of species by trade or travel (Mack et al., 2000;
Perrings et al., 2002; Hulme, 2009). Urban forests play a principal role
in facilitating such invasions (US Government Accountability Office,
2006; Colunga-Garcia et al., 2010b, 2010a; Koch et al., 2011). Many
invasive species, including forest pests, are discovered initially in ur-
banized areas, which are frequent destinations for international cargo
and passengers (Colunga-Garcia et al., 2010b; Huang et al., 2012;
Liebhold et al., 2013). In the USA, insect species such as the European
gypsy moth (Lymantria dispar dispar L.; EGM), emerald ash borer
(Agrilus planipennis Fairmaire; EAB), and Asian longhorned beetle (An-
oplophora glabripennis (Motschulsky); ALB) first emerged as pests in
urban forests (Liebhold et al., 1995; Poland and McCullough, 2006;
Dodds and Orwig, 2011). Historically, urban forests have high rates of
invasive pest introductions (e.g., insects harbored by live plants for
landscaping purposes) and may provide habitat that is more conducive
to invasive pest establishment than natural forests, with fewer natural
enemies, greater abundance of preferred hosts, and favorably altered
environmental conditions, for example due to the urban heat island
effect (Alvey, 2006; McKinney, 2006). Furthermore, portions of many
urban forests in North America are dominated by a single tree species,
and the trees are often planted closely together, facilitating the spread
of any pest for which that species is a host (Greene and Millward,
2016). Once established in urban forests, invaders may expand into
surrounding natural forests (Tait et al., 2005; Alvey, 2006).

Urban forests are not just invasion gateways; for some pests, the
most noteworthy impacts actually occur in urban forests. For example,
Haack et al. (2010) reported that communities in Illinois, Massachu-
setts, New Jersey, and New York spent more than US$373 million on
ALB eradication efforts between 1996 and 2008, primarily for identi-
fication and removal of infested trees. Based on data from communities
across the USA, Hauer and Peterson (2017) estimated the nationwide
impact of EAB on municipal forestry budgets to be US$280.5 (± 79)
million annually; typically, municipal governments in invaded com-
munities spent twice as much on tree removal as in communities where
EAB was not present. Kovacs et al. (2010) predicted that the expansion
of EAB in the eastern USA between 2009 and 2019 would necessitate
treatment or removal and replacement of more than 17 million ash
(Fraxinus spp.) trees – both publicly and privately owned – within in-
vaded communities, at a total cost of US$10.7 billion. Similarly, Sydnor
et al. (2007) predicted eventual losses (including losses in landscape
value as well as tree removal and replacement costs) of US$1.8–US$7.6
billion in Ohio communities as a result of EAB expansion, while com-
bined losses in Illinois, Indiana, Michigan, and Wisconsin were pre-
dicted to reach between US$13.4 and US$26 billion (Sydnor et al.,
2011). The potential economic impact of ALB in the USA could be even
larger: Nowak et al. (2001b) projected a total value loss of US$669
billion (based on compensatory value of trees) if the insect were to
spread to communities throughout the country, as the preferred hosts of
ALB represent approximately 30% of all urban trees.

The impact projections in these studies were constrained by a lack
of information about the distributions of host trees in the communities
of interest. Kovacs et al. (2010) asserted that their estimates could be
improved markedly through systematic inventories of the communities’
forests. The concept of urban forest inventory, performed according to
standard protocols, gained momentum in the mid-2000s with advances
in mobile data collection and online management of geospatial data
(Abd-Elrahman et al., 2010; Miller et al., 2015), as well as the release of
urban forestry software applications such as i-Tree Eco (Nowak et al.,

2008b) and i-Tree Streets (Maco and McPherson, 2003; McPherson
et al., 2005). (Both applications are included in the freely available i-
Tree software suite, http://www.itreetools.org/.) Although these ap-
plications are promoted as tools to model potential benefits of urban
forests such as improved air quality and reduced building energy use
(Maco and McPherson, 2003; Nowak and Dwyer, 2007), the basic in-
ventory information that they collect has clear utility for management,
including for invasive forest pests. For example, i-Tree Eco data have
been applied in regional, continental, and global analyses of urban
forest composition and tree species diversity (e.g., Yang et al., 2015;
Blood et al., 2016; Jenerette et al., 2016), both of which affect how
those forests respond to invasions or other types of disturbances. In-
tegrating urban forest inventory data with similar data for natural
forests would provide a stronger foundation for forest health mon-
itoring and early pest detection, mitigation and control efforts, spread
modeling, and risk mapping (Dwyer et al., 2000; BenDor and Metcalf,
2006; Cumming et al., 2008; Venette et al., 2010; Hudgins et al., 2017).

Unfortunately, even in a relatively data-rich country like the USA,
there are pronounced data gaps with respect to urban forests, especially
in comparison to the far more comprehensive data available for natural
forests. For instance, the USDA Forest Service’s Forest Inventory and
Analysis (FIA) Program performs systematic, annualized inventories of
rural forestlands throughout the USA. The annualized FIA plot network
includes ≈135,000 forested plots nationwide, which translates to ap-
proximately one plot per 2400 ha of natural forest. At this sampling
intensity, and because they are distributed systematically across all
forestlands (i.e., excluding urban forests), FIA plots can be used to de-
velop regional-scale tree species distribution maps via spatial inter-
polation and statistical methods (e.g., Iverson et al., 1999; Moisen et al.,
2006). In contrast, the FIA Program only recently embarked on urban
forest inventories, conducting its first such inventory in 2014 (see
Nowak et al., 2016). Furthermore, urban FIA data collection has been
proposed for just a limited number (< 100) of relatively large cities
(USDA Forest Service, 2016). Upon completion, these efforts will pro-
vide consistent measurements of trees in the targeted cities, but will not
be sufficiently representative of the thousands of communities, both
large and small, across the USA.

Despite its limitations, the urban FIA initiative stands as a sig-
nificant step forward; prior to this, urban inventory data were not
collected systematically in the USA (Roman et al., 2013) or elsewhere,
although it is worth noting that communities throughout Sweden re-
cently have begun systematic collection of urban tree data (primarily
street tree data) according to standardized inventory protocols (see
Östberg, 2013; Östberg et al., 2013). In turn, the lack of systematically
collected data has restricted the scale of scientific inquiries regarding
urban forests. Indeed, the most extensive analysis of which we are
aware (Cowett and Bassuk, 2017) involved street tree data from 275
communities in New Jersey, New York, and Pennsylvania, representing
just ≈8% of the populated places identified by the US Census Bureau in
those states. Nevertheless, many communities have completed some
type of urban forest inventory for local purposes; for our own work, we
have compiled more than 1200 inventory data sets from communities
across the USA – especially the eastern USA – and Canada. They differ
widely in terms of data collection protocols (e.g., complete inventory
vs. sampling across land uses) and target tree populations (e.g., street
trees vs. all private and public trees), but they comprise a very large and
geographically representative compilation of urban forest inventory
data – to our knowledge, the largest such compilation ever assembled.
Boyer et al. (2016) identified a need for this sort of compilation to
address far-reaching research and management questions at a regional
scale. The challenge, of course, is determining how to best make use of
the data despite their differences.

We present a model-based approach that utilizes existing inventory
data from a sampling of North American communities to characterize
urban forests of communities across a large portion of the USA for
which inventory data were not available. Specifically, for each
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community in the eastern and central USA for which we did not have
inventories, we used the available data to construct a series of models
for estimating the abundance and importance of three tree genera: ash
(Fraxinus spp.), maple (Acer spp.), and oak (Quercus spp.). These genera
are the preferred hosts for EAB, ALB, and EGM, respectively. Our ob-
jective was to fill critical data gaps in the geographic distributions of
these host trees in urban areas and thus enable better assessments of the
risks and potential impacts posed by each pest. Additionally, our ana-
lysis was intended as a proof of concept to show that a multi-step
modeling approach, incorporating different types of urban forest in-
ventory data, can fill these data gaps effectively.

2. Material and methods

We define an urban forest as all publicly or privately owned trees
growing within the boundaries of a city or similar populated place
(Nowak et al., 2001a, 2010). This includes street trees, park trees, and
trees on residential or commercial property. Our prediction region

(Fig. 1A) included 37 states and the District of Columbia, and en-
compassed almost 24,000 populated places (hereafter referred to as
“communities”) identified by the US Census Bureau, ranging from very
small villages (< 100 residents) to large cities (ESRI, 2014b).

2.1. Urban forest inventory data

We used urban forest inventory data from 842 communities (see
Table S1 in Supplement 1). They included all communities in the pre-
diction region for which we had some type of inventory data (see
Fig. 1A) as well as additional communities in the western USA and
southern Canada that we used in one or more of our modeling steps (see
Fig. 1B and C). Fundamentally, the data were a convenience (i.e., non-
probabilistic) sample that we compiled from a wide variety of sources.
In some cases, we extracted the data from reports published by in-
dividual communities, or from open data made available online. In
other cases, we obtained data that were collected as part of a regional or
statewide initiative to inventory trees in communities according to

Fig. 1. (A) Communities with urban forest inventories used in the primary training data set, labeled according to inventory type. Target prediction region (eastern and central USA) is
shown in gray; (B) “Paired” communities (i.e., communities with both street tree and whole-community inventories) used to model basal area (BA) proportions in communities with only
street inventories (model step 1); (C) Communities with total BA estimates, used to model the relationship between canopy cover and BA (model step 3).
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standardized methods. Occasionally, we contacted community foresters
or arborists directly to get access to unpublished inventory data.
Readers are referred to Supplement 2, which is a detailed list of the
municipalities, companies, and individuals who provided data for this
project.

Regardless of source, the data were broadly from one of two pri-
mary inventory types (see Table S1 in Supplement 1 and Fig. 2): street
tree inventories or sample-based inventories that characterized the
communities’ entire tree populations (hereafter designated as “whole-
community” inventories). The large majority were street tree in-
ventories, although a small percentage (6.4%) of communities had both
street and whole-community inventories (hereafter designated as
“paired” inventories). With respect to both inventory types, there was
some variation in how they were implemented, which was likely in-
fluenced by community size (i.e., geographic extent) and resources
available for implementation. For example, some communities’ street

tree inventories included measurements of trees along all streets, while
in other communities only a subset of streets were inventoried as a
statistical sample (see Table S1 in Supplement 1). Furthermore, roughly
one-third of street tree inventories included measurements of additional
publicly owned trees, such as trees growing on the grounds of gov-
ernment buildings or in municipal parks (i.e., managed parks rather
than natural areas). For analytical purposes, we treated these “street
and public tree” inventories as if they were street tree inventories be-
cause they did not extend to any other land uses. There were also some
differences between inventories in how they recorded or reported tree
measurements. For instance, some communities reported tree diameters
(i.e., diameter at breast height, dbh) to the nearest whole unit (typically
inches), while others reported them by diameter class. In the latter case,
we set the diameter of each inventoried tree to the midpoint of its
diameter class. For simplicity, we assumed that tree measurements
among the inventories were equally accurate, and that differences in

Fig. 2. Conceptual diagram of the three-step modeling approach applied to each host genus. The modeling steps are represented by rectangles, while the final outputs – basal area (BA)
proportion and total BA for all communities in the prediction region – are represented by rounded rectangles. Ellipses depict the four types of input community data. Parallelograms
indicate a set of values for a metric of interest, either extracted from an input data set (solid border) or generated as output from one of the modeling steps (dashed border). Connector
arrows depict the direction of data flow through the modeling process. Solid arrows indicate data used for model training (or appended to one of the final outputs), dotted arrows indicate
data used for prediction, and dashed arrows indicate model output. A curved arrow indicates a subset of the data set from which the arrow originated. Sample sizes are shown for each of
the diagram elements as appropriate.
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measurement precision did not affect our results significantly.
Our analyses included whole-community inventory data collected

using either the i-Tree Eco approach or the approach adopted by the
Great Plains Tree and Forest Invasives Initiative (GPI). Primary aspects
of each approach are described in Nowak et al. (2008b) and Lister et al.
(2012), respectively. The GPI approach was developed for application
to four Great Plains states: North Dakota, South Dakota, Nebraska, and
Kansas. Within these states, which are largely non-forested (≈97%),
the GPI specifically targeted areas and land uses not normally con-
sidered forest. Both urban and rural areas in each state were sampled
using 0.067-ha circular plots (200 plots in urban and 100 plots in rural
areas statewide during the first year of sampling). We only used the
urban GPI plots in our analyses and assigned each of those urban plots
to the community in which it was located. Unlike the GPI, the typical
implementation of i-Tree Eco focuses sampling effort on an individual
community. Sampling intensity and plot size vary by community, but
most i-Tree Eco inventories include between 100 and 200 plots across
the community of interest, and the most common plot size is 0.04 ha,
consistent with recommendations from Nowak et al. (2008a).

Most of the inventories were collected during the period 2000–2015
(median year= 2009; see Table S1 in Supplement 1 for a complete
listing). Although we planned to omit inventories collected prior to
2000, to maximize the amount of whole-community data that we had
available for modeling, we included nine older i-Tree Eco inventories:
Atlanta, Georgia (1997); Baltimore, Maryland (1999); Boston, Massa-
chusetts (1996); Brooklyn, New York (1997); Calgary, Alberta (1998);
Greenville, South Carolina (1999); Jersey City, New Jersey (1998); New
York, New York (1996); and Philadelphia, Pennsylvania (1996). We
also used four street tree inventories that were collected prior to 2000:
Arlington, Massachusetts (1998); Bordentown, New Jersey (1999);
Manchester, New Hampshire (1998); and Mandeville, Louisiana (1996).
These inventories helped to fill in portions of our study area where we
felt the data were sparse geographically. However, we did not evaluate
their geographic representativeness formally.

2.2. Modeling approach

The ultimate goal of our analyses was to estimate basal area (BA) of
ash, maple, and oak species in our prediction region using statistical
models developed from existing community inventory data. We per-
formed our analyses for entire genera to limit the impact of variable
data quality between the inventories with respect to tree species iden-
tification; we reasoned that identification errors should be uncommon
at the genus level. We chose BA (i.e., the total BA of all trees or a
particular subset of the trees in a location, expressed per unit of area) as
our primary metric. With respect to the existing data, BA (in m2 ha−1)
per genus can be estimated for communities that have performed
whole-community inventories, which provide data on species, size (in
terms of dbh), and density (trees ha−1) of inventoried trees, typically
summarized by land use category (Nowak et al., 2008b). For this study,
we assumed that all BA estimates from whole-community inventories
were accurate representations of the true BA values for their corre-
sponding communities (but see Martin et al., 2013 regarding the suf-
ficiency of the standard i-Tree Eco sampling protocol). By contrast, it is
seldom possible to compute either BA per genus or total BA (i.e., of all
trees) accurately from street tree inventories because they are usually
non-representative samples of their communities’ forests. In short, a
community’s street tree population is likely to differ compositionally
and biometrically from its full population of trees (Nowak et al.,
2001a). We made the fundamental assumption that – despite this het-
erogeneity – some characteristics of communities’ street tree and
whole-community tree populations (e.g., the proportion of trees in a
particular genus) follow predictable coarse-scale relationships. Based
on this assumption, and since the majority of the existing data were
from street tree inventories, we developed a three-step modeling ap-
proach that allowed us to combine street tree data with whole-

community inventory data, thus creating a substantially larger data set
for estimating host tree genera BA across the prediction region. Fig. 2
shows a conceptual diagram of the approach. The modeling steps are
described below, and Table S1 (Supplement 1) indicates the step(s) in
which each community’s data were used.

We developed matching point and polygon geospatial data layers
that depicted the 842 communities listed in Table S1 (Supplement 1).
We extracted point features for most of the communities from a point
data layer of populated places developed from US Census data (ESRI,
2014b). A large majority of the communities were also represented in a
corresponding data layer of populated place areas (ESRI, 2014a), which
consisted of polygons defining the communities’ administrative
boundaries. If a community’s inventory documentation showed that the
inventoried area differed significantly from its defined boundaries, then
we edited its polygon (or polygons) to correspond to the inventoried
area described in the documentation. If a community did not have a
record in the populated place areas layer (e.g., communities in Canada),
we obtained its polygon(s) from other publicly accessible geospatial
data sources, such as a municipal GIS database. Since these commu-
nities also did not have records in the populated place point layer, we
generated point features based on the inner centroids (i.e., the internal
geometric centers) of their polygons.

2.2.1. Estimating BA proportions for communities with only street tree
inventories

Although we could not calculate accurate community-level BA es-
timates directly using the street tree inventories, these inventories did
include data on tree species, number, and dbh. From these data, we
were able to calculate the total BA of all inventoried street trees, and
subsequently, the proportion of the total street tree BA in each of the
three host genera. In turn, our first modeling step was to relate street
tree BA proportion for each host genus to a corresponding whole-
community BA proportion, utilizing data from communities for which
we had paired street tree and whole-community inventories. There
were 54 such communities distributed across the USA and Canada
(Fig. 1B and Fig. 2; Table S1 in Supplement 1). Twelve of these com-
munities – four in Canada and eight distributed across the western USA
– were outside our prediction region. We included them primarily to
maximize the number of observations in our paired data set for model-
building. As we assumed would be the case, preliminary analysis re-
vealed a strong correlation between street tree BA proportion and
whole-community BA proportion. This emphasized the value of using as
many observations as possible to model this relationship, even if some
of the observations were remote geographically.

For this paired data set, we employed polynomial regression in the R
statistical software environment (R Core Team, 2016) to estimate
whole-community BA proportion as our response variable. We used
polynomial regression because we suspected that, for some tree genera,
the relationship between street tree BA proportion and whole-commu-
nity BA proportion is non-linear. We fitted a small set of models sepa-
rately for each host genus: a full model including the street tree BA
proportion of the genus of interest and its second-order polynomial
(i.e., its square) as well as the x- and y-coordinates of each community,
plus the reduced models that could be constructed from these ex-
planatory variables. We did not include models with higher than
second-order polynomials. We applied the arcsine square root trans-
formation to the BA proportion variables (both explanatory and re-
sponse) prior to modeling.

We used the car package in R to perform diagnostics (Fox and
Weisberg, 2011; Fox et al., 2016). We tested the models for multi-
collinearity, outliers, influential observations, normality, and hetero-
scedasticity. We evaluated and compared models for each host genus in
terms of statistical significance (overall and of individual parameters),
adjusted R2, the pattern of the fitted values versus the measured values
and the residuals, and the results of ten-fold cross-validation using the
DAAG package in R (Maindonald and Braun, 2015). We then utilized
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the best-performing model for each genus to estimate whole-commu-
nity BA proportions for communities in our second-step data set for
which only street tree inventory data were available (N=739; see
Fig. 2 and Section 2.2.2, below).

2.2.2. Estimating BA proportions for communities without inventories
The training data set for our second modeling step included 84

communities with whole-community inventories (77 i-Tree Eco in-
ventories and 7 GPI inventories) and 739 communities with street tree
inventories (Fig. 1A and Fig. 2). We included communities beyond the
western boundary of the prediction region to ensure that the training
data had sufficient geographic coverage with respect to communities
near but inside this boundary. For the communities with street tree
inventories, we applied the regression equations from our first mod-
eling step (Section 2.2.1) to estimate whole-community BA proportions
for the three host genera. We assumed that these model-estimated BA
proportions were as valid as the proportions derived directly from the
whole-community inventory data.

The objective of this second modeling step was to estimate BA
proportions of ash, maple, and oak for each community in our training
data set as a function of environmental, geographic, land cover, and
demographic variables. We did this so we could estimate host BA pro-
portions for communities without any sort of urban forest inventory,
based on the assumption that, collectively, these other variables could
serve as effective predictors. We chose stochastic gradient boosting
(also known as boosted trees) as our modeling method. Details about
this machine learning method and some of its applications are available
elsewhere (Friedman, 2002; Moisen et al., 2006; De'ath, 2007). We
implemented stochastic gradient boosting models for the three genera
in DTReg predictive modeling software (Sherrod, 2007). We set the
maximum number of trees in the modeling sequence to 400 and the
maximum number of splitting levels in each tree to five. We also spe-
cified no splitting of nodes with fewer than 10 observations. We chose
to hold out a 20% random sample of the training data for model vali-
dation and pruning, which is recommended over k-fold cross-validation
when working with larger data sets (Sherrod, 2014). We tested other
software parameter settings, but these provided the best model per-
formance. Table 1 lists the explanatory variables used in the models,
and several of the variables are described further in Supplement 3.

2.2.3. Estimating total BA for communities without inventories
The objective of this third step was to devise a practical way to

estimate total BA (i.e., of all trees, whether in one of the host genera or
not) for communities without urban forest inventories. Although field
inventories of community trees are uncommon, remote sensing has
been used extensively to map key characteristics of urban forests at
broad spatial scales (Heynen and Lindsey, 2003). For example, one of
the derivative products of the 2011 National Land Cover Database
(NLCD) is a nationwide, 30-m resolution raster map of percent tree
canopy cover, developed in cooperation with the USDA Forest Service.
Methods used to create the map, which covers both urban and rural
areas of the United States, are discussed in Coulston et al. (2012) and
Coulston et al. (2013). We constructed a model based on the assump-
tion that the total BA of a community could be estimated adequately
from a measure of its canopy cover, perhaps in combination with a
small set of additional covariates.

Our training data set consisted of 76 communities across the USA
(Fig. 1C and Fig. 2; Table S1 in Supplement 1). Similar to our first
modeling step, we included twelve communities from outside our pre-
diction region in order to maximize the number of observations in our
data set for model-building. Each community had a total BA value de-
rived from a whole-community inventory (i.e., an i-Tree Eco inventory)
as well as an estimate of its degree of forested canopy cover, which we
determined via spatial overlay of the communities’ polygon features
(from the geospatial data layer described previously; see Section 2.1)
and the 2011 NLCD percent tree canopy cover map. Briefly, we

calculated a mean canopy proportion value for each community as the
average of the proportion values (converted from percentages) for each
30-m cell from the canopy cover map that fell within the community’s
polygon(s). We assumed that these values provided accurate re-
presentations of each community’s canopy cover. We applied the arc-
sine square root transformation to the mean canopy proportion values
prior to modeling.

We used the mgcv package in R (Wood, 2006, 2016) to build gen-
eralized additive models (GAMs). GAMs are semi-parametric extensions
of generalized linear models (GLMs) that have been used widely in
ecological analyses, including in modeling of species distributions
(Guisan et al., 2002; Moisen et al., 2006). Like GLMs, GAMs are based
on an assumed relationship between the mean of the response variable
and a function of the explanatory variables. In GLMs, this function is a
linear combination of the explanatory variables, although the data and
errors may be assumed to follow other probability distributions besides
the normal distribution, making GLMs more flexible than classical
linear models (Guisan et al., 2002). GAMs take this flexibility further by
assuming a relationship between the mean of the response variable and
a smooth (and additive) function of the explanatory variables (Hastie
and Tibshirani, 1986; Guisan et al., 2002); the form of the smooth
function is determined from the data directly rather than depending on
a linear or other parametric relationship between the response and
explanatory variables (Hastie and Tibshirani, 1987; Guisan et al., 2002;
Wood, 2006). With respect to estimation techniques, Wood (2006)
outlined the use of penalized regression splines to represent smooth
functions in GAMs, as well as the application of generalized cross-va-
lidation to estimate the appropriate degree of smoothness.

Our response variable was the log-transformed total BA (m2 ha−1)
of each community. In terms of explanatory variables, we tested several
other candidates besides mean canopy proportion. For instance, forest
cover tends to be highest in communities within predominately forested
regions (Nowak et al., 1996; Heynen and Lindsey, 2003). Therefore, we
included annual precipitation (i.e., mean annual precipitation for the
period 1961–1990; see Table 1) as a possible explanatory variable be-
cause it is strongly correlated with broad vegetation type (e.g., forest or
grassland), abundance, and density, and thus can serve as a simple
surrogate measure of regional forest cover. We also included the x- and
y-coordinates of the communities (i.e., their inner centroid coordinates)
as potential explanatory variables, with the idea that they might further
capture variation between geographic regions. In addition, we tested
two demographic variables, population density (people ha−1) and
housing density (housing units ha−1), that have been linked to the
amount of urban forest cover (Dwyer et al., 2000; Nowak et al., 2001a;
Heynen and Lindsey, 2003), as well as the area (ha) of each community.
Communities with high total land area often have a disproportionately
large amount of open space that can be inhabited by trees (Nowak et al.,
1996; Heynen and Lindsey, 2003).

We tested a large set of GAMs that utilized different combinations of
the explanatory variables. The explanatory variables were represented
by individual smooth terms (i.e., smooth functions estimated using
penalized regression splines). To select a best-performing GAM, we
focused initially on those models with the lowest generalized cross-
validation (GCV) scores, as recommended by Wood (2016). Ultimately,
we also considered other performance measures (e.g., explained de-
viance) as well as model parsimony; we ruled out models where one or
more of the smooth-term estimates was not at least moderately sig-
nificant (approx. P < 0.1). In addition, we evaluated whether the
models’ predictions were plausible and realistic (e.g., never exceeding
total BA values seen in natural forest stands). We performed ten-fold
cross-validation to estimate the expected out-of-sample prediction error
for the selected GAM.

2.2.4. Computing and evaluating the combined BA estimates
For each of the 22,856 communities in our prediction region

without any sort of urban forest inventory (see Fig. 2), we multiplied
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the per-genus BA proportions estimated via stochastic gradient boosting
(Section 2.2.2) by the total BA value estimated with the best-performing
GAM (Section 2.2.3). This yielded estimates of ash, maple, and oak BA
in m2 ha−1. Alternatively, for the 716 communities in our prediction
region with some sort of urban forest inventory but without measured
total BA values, we multiplied either their measured (N=22) or model-
estimated (N=694) BA proportions by their GAM-estimated total BA
values (see Fig. 2). Another 53 communities in our prediction region
had measured BA proportions from whole-community inventories as
well as measured total BA values, which allowed them to serve as
training data for the stochastic gradient boosting models as well as the
GAM. Because we had insufficient data to set aside beforehand for
model validation, we opted for a simple assessment of the combined
performance of our models, in which we computed and compared ash,
maple, and oak BA using both measured and model-estimated values
for these 53 communities. This assessment was also intended to provide
approximations of the propagated errors from the full modeling pro-
cess.

3. Results

3.1. BA proportions for communities with only street tree inventories

The best-fit polynomial regression model for each host tree genus is
summarized in Table 2. None of the models exhibited significant mul-
ticollinearity, influential observations, or outliers. Non-constant error
variance tests showed no significant heteroscedasticity, and errors were
normally and independently distributed (i.e., did not exhibit significant
autocorrelation). According to basic diagnostic measures, all three
models fit reasonably well. The model for maple (Table 2B) had the best
overall fit based on adjusted R2 and the F-statistic. The estimated
parameters of the maple model (i.e., other than the intercept) were
highly significant. The model for ash (Table 2A) fit nearly as well ac-
cording to basic measures, although its primary parameter estimates
were less significant than those for maple. (Note that it is standard

practice to include the first-order polynomial term in the model, even if
not significant, when the second-order term is significant.) According to
basic measures, the oak model (Table 2C) did not fit as well as the other
two, although this may be partially explained by it being a simpler
model with only two explanatory variables. The oak model was also the

Table 1
Explanatory variables used in stochastic gradient boosting models of basal area (BA) proportion of three host tree genera (Acer spp., Fraxinus spp. and Quercus spp.) in urbanized areas of
the eastern and central USA.

Variable Description Reference/data source

Province USFS ecoregion province Cleland et al. (2007)
X X-coordinate of community (m) Calculated in GIS from community point feature
Y Y-coordinate of community (m) Calculated in GIS from community point feature
Elevation Elevation (m) US Geological Survey National Elevation Dataset
Area Total area of community (ha) Calculated in GIS from community polygon feature
Population Census population of community as of 2010 US Census Bureau
Housing units Number of housing units in community as of 2010 US Census Bureau
Hardiness zone USDA plant hardiness zone USDA Agricultural Research Service (2012)
Extreme minimum temperature Mean extreme annual minimum temperature (°C)a PRISM Climate Group, Oregon State University
Maximum temperature Mean annual maximum temperature (°C)b The Climate Source (PRISM)
Summer maximum temperature Mean maximum temperature across June, July, and August (°C)b The Climate Source (PRISM)
Growing degree days Growing degree days (base 10 °C)c The Climate Source (PRISM)
Last freeze Median (Julian) date of last temperature ≤0 °C in springd The Climate Source (PRISM)
First freeze Median (Julian) date of first temperature ≤0 °C in autumnd The Climate Source (PRISM)
Freeze-free days Median number of days between last spring and first autumn temperature

≤0 °Cd
The Climate Source (PRISM)

Wet days Mean number of days annually with measurable precipitationc The Climate Source (PRISM)
Precipitation Mean annual precipitation (mm)b The Climate Source (PRISM)
Moisture index Balance between precipitation and potential evapotranspiration; scaled

between −1 and 1
Willmott and Feddema (1992); see main text and Supplement 2
for additional details

Road density Log-transformed road length (km) in a 1-km resolution map cell US Geological Survey, Fort Collins Science Center
Agriculture proportion Proportion agricultural land cover National Land Cover Database 2011 (Homer et al., 2015)
Developed proportion Proportion developed land cover National Land Cover Database 2011 (Homer et al., 2015)
Natural proportion Proportion natural land cover National Land Cover Database 2011 (Homer et al., 2015)
Forest proportion Proportion forested land cover National Land Cover Database 2011 (Homer et al., 2015)

a Mean of the lowest temperature recorded each year 1976–2005.
b Calculated from mean monthly values for the period 1971–2000.
c Calculated from mean monthly values for the period 1961–1990.
d Based on mean minimum monthly temperatures for 1961–1990; spring=March-June, autumn= September-December.

Table 2
Best-fit models for estimating whole-community basal area (BA) proportion of three host
tree genera: (A) Fraxinus spp., (B) Acer spp., and (C) Quercus spp. We developed the
models from data for communities (N=54) with paired street tree and whole-community
inventories. We applied arcsine square root transformations to the BA proportion vari-
ables (explanatory and response) prior to modeling. X and Y explanatory variables are the
geographic coordinates of the communities. Significance codes: P < 0.001=***,
P < 0.01= **, P < 0.05= *.

Parameter Estimate Std. Error t Prob(> |t|)

(A) Fraxinus spp., whole-community BA proportion
(Intercept) 0.111 0.072 1.55 0.1285
Street BA

proportion
0.299 0.195 1.53 0.1313

Street BA
proportion^2

0.224 0.111 2.03 0.0479*

X 4.883 * 10−8 2.190 * 10−8 2.23 0.0303*

Adjusted R2= 0.698; F= 41.9 on 3 and 50 degrees of freedom, P=1.11 * 10−13

(B) Acer spp., whole-community BA proportion
(Intercept) −0.098 0.110 −0.89 0.3765
Street BA

proportion
0.356 0.074 4.80 < 0.0001***

Y 2.498 * 10−7 6.340 * 10−8 3.94 0.0003***

X 1.299 * 10−7 3.010 * 10−8 4.32 0.0001***

Adjusted R2= 0.763; F= 57.9 on 3 and 50 degrees of freedom, P=2.7 * 10−16

(C) Quercus spp., whole-community BA proportion
(Intercept) 0.299 0.053 5.63 < 0.0001***

Street BA
proportion

0.502 0.075 6.70 < 0.0001***

X 7.680 * 10−8 3.020 * 10−8 2.54 0.0140*

Adjusted R2= 0.565; F= 35.4 on 2 and 51 degrees of freedom, P=2.26 * 10−10
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only one where the intercept was significantly different from zero,
which means that the predicted whole-community BA proportion will
always be greater than zero, even when the street tree BA proportion is
zero. Arguably, this is realistic: oaks are a significant component of
most natural forests in the central and eastern USA, yet they may be
excluded as street trees in some communities due to space constraints,
imposing size, and cost of establishment and maintenance. Therefore,

we might expect to see some oak presence in every community, at least
in parks or other open spaces, despite their absence as street trees.

Plots of measured versus predicted (i.e., back-transformed) BA
proportion for each host genus (Fig. 3) suggest that all three models
performed reasonably well. Nevertheless, it can also be seen from the
plots that the ash BA proportions (Fig. 3A) in the training data com-
munities were typically much lower than the proportions for the other
two genera: the mean measured BA proportion for ash was 0.07, while
it was 0.20 for maple (Fig. 3B) and 0.12 for oak (Fig. 3C). At the same
time, the mean absolute error (MAE) for ash was 0.03, while it was 0.06
for maple and 0.05 for oak. Thus, while the prediction errors for ash
were smaller on average than those for maple or oak, often they re-
presented larger percentages of the measured values.

The results described above document in-sample performance. Ten-
fold cross-validation is a reasonable approximation of the expected out-
of-sample error when there are insufficient data for true validation
(Davison and Hinkley, 1997; Borra and Di Ciaccio, 2010; Rodríguez
et al., 2010). The normalized root mean square error (RMSE) from ten-
fold cross-validation (i.e., the RMSE expressed as a percentage of the
mean of the measured values) was 43.6% for ash, 26.3% for maple, and
40.8% for oak.

Maps of the model-adjusted BA proportions for communities with
street tree inventories (Figs. S1, S2, and S3 in Supplement 4) exhibit
clear geographic trends. Ash presence was estimated to be highest in
communities in the northern part of the central USA and declined
quickly going both south and east from that portion of the prediction
region. Maple presence was estimated to be highest in communities in
the northeastern USA and declined gradually moving west and south
from there. Oak presence was estimated to be lowest in the north-
western portion of the central USA and comparatively higher moving
east and south from there.

3.2. BA proportions for communities without inventories

We estimated BA proportions of the three host genera for commu-
nities without urban forest inventories using stochastic gradient
boosting (Figs. 4–6). Of the three genera, ash (Fig. 4) was the most
difficult to model. This is illustrated by a plot of the input ash BA
proportion – either modeled with polynomial regression or measured
directly, depending on the inventory type – versus the BA proportion
predicted by the stochastic gradient boosting model (Fig. 4A). Although
the difference between the input and predicted BA proportion values
was usually small, a handful of communities were under-predicted
substantially. Notably, the two communities with the largest under-
estimates (Minot and Grand Forks, both in North Dakota) had whole-
community inventories where the measured ash BA proportions ex-
ceeded 0.8. These proportions may seem high, but green ash (F. penn-
sylvanica) is the most abundant tree species in North Dakota, which
is< 2% forested (Haugen and Pugh, 2014); in a community where, for
example, much of the limited urban forest is contained in riparian
areas, it is conceivable that green ash, which is frequently found along
riparian corridors (Poland and McCullough, 2006), could dominate an
inventory of the community’s trees. Furthermore, ash, and green ash in
particular, was widely planted in urban areas of the north central USA
as a replacement for elms (Ulmus spp.) killed by Dutch elm disease
(Ophiostoma ulmi and O. novo-ulmi) (MacFarlane and Meyer, 2005).

Regardless, the difficulty of modeling ash BA proportion is further
demonstrated by the disparity between the proportion of the variance
in the training data (0.70) explained by the model versus the proportion
explained in the held-out validation data (0.47). This is much larger
than the difference in explained variance between the training and
validation data for maple (0.92 and 0.82, respectively) and oak (0.78
and 0.71, respectively) and suggests that the ash model was the least
robust of the three models. The smaller disparities for maple and oak
with respect to the training and validation data are echoed in their plots
of input versus predicted BA proportion (Fig. 5A and Fig. 6A,

Fig. 3. Plots showing predicted versus measured whole-community basal area (BA)
proportion of three host tree genera: (A) Fraxinus spp., (B) Acer spp., and (C) Quercus spp.
The plotted points correspond to communities (N=54) with paired street tree and
whole-community inventories, which served as training data for the models described in
Table 1.
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respectively). The plot for the maple model suggests an excellent fit,
with most observation points (i.e., communities) falling close to the 1:1
line. The plot for the oak model indicates a good fit, with some com-
munities under-predicted, but a better overall performance than the ash
model.

Ecoregion province was one of the most important explanatory
variables for all three stochastic gradient boosting models. For ash
(Fig. 4B), ecoregion province was second to extreme minimum tem-
perature, while for maple (Fig. 5B) it was second to moisture index. It
was the most important explanatory variable for oak (Fig. 6B), ahead of
precipitation. These results are unsurprising: temperature and available
moisture are key factors governing the geographic distributions of trees,
including urban trees (Kendal et al., 2012a, b; Ramage et al., 2013),
while ecoregion province captures variation between large geographic
areas (mean province size in the continental USA≈ 216,000 km2) in
terms of the most prominent forest types and their constituent species.

3.3. Total BA for communities without inventories

We estimated total BA (i.e., of all trees) for communities without
urban forest inventories using a GAM. The GAM we identified as the
best-performing model (Table 3) included smooth terms for four ex-
planatory variables: canopy proportion, community x-coordinate,

community y-coordinate, and community land area. During the testing
process, models that included a smooth term for another variable,
precipitation, outperformed the selected model according to standard
statistical measures, but yielded unrealistic predictions (e.g., predicting
some of the highest total BA values for communities with relatively
intense development and therefore limited forest cover).

With respect to the best-performing GAM, the smooth function for
canopy proportion displayed a positive and essentially linear relation-
ship with the original (i.e., transformed) variable values (Fig. 7A).
Relationships between the smooth function and original values were
less straightforward for the other explanatory variables, but none were
unusual for a GAM. A plot of the measured total BA values versus the
predicted (and back-transformed) values for the communities in the
training data (Fig. 7B) suggests a good fit overall, although the two
communities with the highest measured values (Moorestown, New
Jersey and Orlando, Florida) were also the most under-predicted. The
mean of the measured total BA values was 5.48m2 ha−1, while the
mean of the predicted (i.e., back-transformed) total BA values was
5.18m2 ha−1. The MAE was 1.33m2 ha−1. The normalized RMSE from
ten-fold cross-validation was 20.2%, suggesting that the model should
perform reasonably well out-of-sample.

A map of total BA for more than 23,000 communities in the pre-
diction region (Fig. S4 in Supplement 4) shows generally higher values

Fig. 4. Stochastic gradient boosting results for basal area (BA) proportion of Fraxinus spp.: (A) plot showing input versus predicted ash proportion for the training data, where the input
proportions were either measured from a whole-community inventory (N=84) or estimated via polynomial regression (N=739); (B) relative importance of the explanatory variables in
the stochastic gradient boosting model. The twelve most important variables are shown. See Table 1 for full description of explanatory variables.

Fig. 5. Stochastic gradient boosting results for basal area (BA) proportion of Acer spp.: (A) plot showing input versus predicted proportion for the training data, where the input
proportions were either measured from a whole-community inventory (N=84) or estimated via polynomial regression (N=739); (B) relative importance of the explanatory variables in
the stochastic gradient boosting model. The twelve most important variables are shown. See Table 1 for full description of explanatory variables.
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in the eastern USA than in the central USA. In particular, the map shows
a large contiguous area of high total BA values extending from the
Florida Panhandle to southern Indiana, Ohio, and West Virginia. This
area included numerous communities with greater-than-average forest
canopy proportions, which – when fed into the best-performing GAM –
yielded high total BA estimates.

3.4. Combined model estimates

We combined the results from our modeling steps to estimate and
map ash, maple, and oak BA for all communities in the prediction re-
gion (Fig. 8; see Section 2.2.4 for details about combining values from
the different types of inventories). With the exception of some com-
munities in the north central USA (≈2% of all communities), ash was
estimated to be a lesser component of most urban forests than either
maple or oak. The mean ash BA estimate was 0.23m2 ha−1 (SE 0.001),
while the maximum estimate was 4.06m2 ha−1. By comparison, the
mean and maximum maple BA estimates were 1.34m2 ha−1 (SE 0.008)
and 8.61m2 ha−1, respectively, while the mean and maximum oak BA
estimates were 1.29m2 ha−1 (SE 0.008) and 12.37m2 ha−1. Maple
comprised the largest component of urban forests in ≈62% of com-
munities, mostly in the northern portion of the prediction region. Oak

Fig. 6. Stochastic gradient boosting results for basal area (BA) proportion of Quercus spp.: (A) plot showing input versus predicted proportion for the training data, where the input
proportions were either measured from a whole-community inventory (N=84) or estimated via polynomial regression (N=739); (B) relative importance of the explanatory variables in
the stochastic gradient boosting model. The twelve most important variables are shown. See Table 1 for full description of explanatory variables.

Table 3
Best-performing generalized additive model (GAM) for estimating total community basal
area (BA) of all trees in urbanized areas of the eastern and central USA. We developed the
model from data for communities with whole-community inventories for which we could
calculate valid total BA estimates (N=76). Prior to modeling, we applied the log
transformation to the response variable total BA (m2 ha−1) and the arcsine square root
transformation to one explanatory variable, canopy proportion. Each explanatory vari-
able z was represented by a smooth term, s(z). Note that in the Gaussian case, the scale
estimate is the square of the residual standard error. X and Y explanatory variables are the
geographic coordinates of the communities. Significance codes: P < 0.001= ***,
P < 0.01= **, P < 0.05= *.

Parametric coefficients:

Estimate Std. Error t Prob(> |t|)

(Intercept) 3.746 0.057 65.17 < 0.0001 ***

Approximate significance of smooth terms:
Estimated d.f. Reference d.f. F P-value

s(Canopy proportion) 0.894 9 0.905 0.0035**

s(X) 7.504 9 3.065 0.0013**

s(Y) 8.193 9 5.137 < 0.0001***

s(Area) 6.187 9 1.735 0.0211*

Adjusted R2= 0.752; deviance explained= 82.7%; scale estimate= 0.25116.

Fig. 7. Generalized additive model (GAM) results for total basal area (BA) of all trees: (A)
relationship between original and smooth function values for each explanatory variable in
the best-performing GAM: canopy proportion (with arcsine square root transformation),
x-coordinate of the community, y-coordinate of the community, and total area of the
community. Black dots represent the training data points, and the shaded area is the
approximate 95% confidence region around the smooth function (black line); (B) plot
showing measured versus predicted total BA for the training data (N=76).
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was the largest component of urban forests in ≈36% of communities,
primarily in the southern portion of the region. All three genera ex-
hibited significant spatial clustering of high (and low) urban BA values
(P < 0.0001 in global Moran’s I tests), but clustering was perhaps most
apparent for oak (see Fig. 8C), including a contiguous area of high BA
values extending across Mississippi, Alabama, Florida, Georgia, and
South Carolina. By comparison, the geographic distribution of urban

ash BA was relatively diffuse (Fig. 8A).
Error estimates (Table 4) from our assessment of the combined

performance of the models were based on a small subset of commu-
nities. Nevertheless, they should be passable approximations of the
propagated errors from the full three-step modeling process. Comparing
the RMSE to the mean measured BA for each host genus (Table 4), it is
clear that ash was modeled least successfully at the scale of a large
prediction region, although the mean absolute error (MAE), which is
less sensitive to outliers than RMSE, indicates that the modeling ap-
proach had some predictive value for ash as well as maple and oak. The
bias estimates suggest a tendency toward under-prediction regardless of
genus, although the degree of under-prediction was small for maple and
oak. Furthermore, a larger, and thus more representative, subset of
communities may have indicated less negative prediction bias (i.e., a
mean signed difference closer to zero) for all three host genera.

4. Discussion

One of the key elements that determine whether a location is vul-
nerable to invasion by a plant-feeding pest is host availability (Bartell
and Nair, 2004). Fundamentally, a location is suitable if it has sufficient
hosts to support establishment of a viable invader population. However,
the particular characteristics of the hosts (e.g., density or health) in a
given location may also influence an invasion’s overall trajectory by
affecting, among other aspects, when (i.e., under what conditions) an
invader spreads to other locations as well as its pattern and rate of
dispersal (Burdon, 1982; Mercader et al., 2011). This highlights the
importance of representing spatial heterogeneity in host resources
when analyzing or modeling plant pest invasions at a regional scale
(Hastings et al., 2005).

We maintain that depicting this heterogeneity appropriately for
forest pests requires integration of urban and natural forest distribu-
tions of host tree species. As a practical matter, the lack of urban forest
inventory data would not be problematic if urban forests resembled
nearby natural forests in terms of species composition. In that case, data
from natural forests (i.e., FIA plot data) could reasonably be extended
to represent their urban forest counterparts. However, other research
(e.g., McKinney, 2006; Kendal et al., 2012b; Ramage et al., 2013;
Aronson et al., 2015, 2016; Blood et al., 2016) has shown that prox-
imate urban and natural forests can be quite different in terms of spe-
cies composition. This disparity is due to a variety of factors, perhaps
most importantly the phenomenon of ecological homogenization,
wherein human modification of urbanized landscapes makes them re-
semble other urban systems – including geographically distant urban
systems – more closely than their neighboring native ecosystems
(Groffman et al., 2014). Regardless, this disparity reemphasizes the
importance of inventories dedicated to urban forests.

For the foreseeable future, modeling will remain the only practical
way to generate comprehensive (i.e., across all communities) urban
forest information for large geographic regions, which can then be in-
tegrated with FIA or other data describing the nation’s natural forests.

Fig. 8. Maps of estimated basal area (BA) by host genus for all communities (N=23,625)
in the prediction region: (A) Fraxinus spp.; (B) Acer spp.; (C) Quercus spp.

Table 4
Error summary for the subset of 53 communities used to assess combined model per-
formance in estimating basal area (BA) of three host tree genera (Fraxinus spp., Acer spp.,
and Quercus spp.) in urbanized areas of the eastern and central USA. Bias is the mean
signed difference between the measured and predicted BA values. All values are in
m2 ha−1.

Host genus Mean
measured
BA

Mean
predicted
BA

Bias Mean
absolute
error (MAE)

Root mean
square
error
(RMSE)

Fraxinus spp. 0.307 0.219 −0.089 0.180 0.313
Acer spp. 1.139 1.092 −0.048 0.375 0.577
Quercus spp. 0.916 0.878 −0.038 0.323 0.472
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Our three-step modeling approach utilizes urban forest inventories
whether they are whole-community or include only street trees. We
believe this is a key positive aspect of our approach: it avoids omitting
street tree data sets that, despite being partial inventories, are certain to
contain useful information about urban trees. The capacity to include
such data is critical since so many of the existing urban inventories in
the USA (and elsewhere) are street tree inventories. Furthermore, we
expect that many future inventories (i.e., outside of urban FIA data
collection or similar efforts) will also be limited to street trees, either
because community governments seek to minimize inventory costs or to
prioritize just those trees for which they are directly responsible and
require the highest degree of management intervention. Fortunately, as
long as some of the input data are from whole-community inventories –
or more properly, as long as there are some paired street tree and
whole-community inventories – then it should be possible to estimate
BA values at the genus level as we did in this study.

Indeed, the availability of paired inventory data is our approach’s
principal constraint. Paired data are instrumental to the first modeling
step (i.e., predicting whole-community BA proportion from street tree
BA proportion), and in turn, predictions from this first step serve as
input data in the second step. Unfortunately, relatively few commu-
nities have both street tree and whole-community inventories. In our
case, we deemed a sample of 56 communities across the USA and
Canada to be suitable for model-building, yet not large enough that we
could afford to set aside a portion of the communities for model vali-
dation. Nevertheless, based on typical model performance measures, we
feel confident in concluding that the first-step models were successful
for all three host tree genera. While we recognize that the results from
our second modeling step (i.e., predicting community-level BA pro-
portion using a suite of variables) were shaped by the first-step results,
we think they further support these conclusions.

Another constraint is the number of communities with total BA
values that can serve as input data for the third modeling step (i.e.,
predicting total BA in communities based on canopy cover and other
factors). Theoretically, it is possible to compute total BA for any com-
munity with a whole-community inventory, as long as the total area in
each sampled land use category is known, and the inventory was per-
formed according to standard protocols. In our case, just under 80
communities across the USA had useable estimates of total BA. This is a
larger sample than in our first modeling step, but again we did not set
aside any of these communities for model validation because we did not
want to omit potentially important geographic variation or size differ-
ences (i.e., in total land area) between communities during the model-
building process. Consequently, we had to rely on common statistical
measures to assess performance, and according to these, the chosen
model performed fairly well. Still, one of our eventual goals is to re-
assess the models via proper validation, and unless a centralized re-
pository for urban forest data becomes available for the USA (as re-
commended by Boyer et al., 2016), we will continue to gather inventory
data sets from additional communities to achieve this goal.

Ultimately, the data we used were samples of convenience. We
treated them as random for inferential purposes, but realize there were
inevitably some geographic and other kinds of biases. Furthermore, we
did not have a practical way to ascertain the relative data quality of the
inventories for some aspects of interest. For example, our assumption
that tree genus identification errors are uncommon seems reasonable
for inventories conducted by certified arborists or comparable profes-
sionals, but non-professionals (e.g., students and citizen scientists) are
demonstrably less skilled at identification (Bloniarz and Ryan, 1996;
Roman et al., 2017a). Unfortunately, we seldom had information about
the expertise of the field personnel who conducted the inventories.
Faced with such uncertainties, we chose to focus on the utility of the
various models for prediction rather than hypothesis testing. In this
regard, we were most concerned about the sets of predictions being
reasonable at a regional scale, rather than the accuracy of any in-
dividual prediction, especially since a moderate level of prediction

error can be anticipated when modeling phenomena that are relatively
high-frequency in space. Based on somewhat lower performance ex-
pectations, we feel comfortable in asserting that, overall, our modeling
approach was very successful for maple and oak, but only marginally
successful for ash. By extension, we believe our results also demonstrate
that our primary assumptions were reasonable for maple and oak, but
less so for ash.

Why was ash so difficult to model? We believe it is due to large
regional differences in the frequency and abundance of ash in urban
settings. In the original inventory data as well as the modeled outputs,
maple and oak (see Figs. S2 and S3 in Supplement 4) were especially
prevalent in certain portions of the prediction region, but were also
fairly common elsewhere. In contrast, ash (Fig. S1 in Supplement 4) was
prevalent in communities in the north central USA, but only a minor
component of urban forests throughout most of the prediction region,
particularly in the southeastern USA. Moreover, in communities where
ash was prevalent, the total BA (actual or predicted) was typically less
than in communities dominated by either oak or maple (Fig. S4 in
Supplement 4). This is probably because ash was most prominent in
areas with continental (i.e., relatively dry) climates, where tree cover,
both in urban and natural settings, is fairly sparse. The high degree of
regional variation and low ash levels in general would be challenging
for any statistical modeling effort. A case can be made that urban dis-
tributions of ash might be modeled best using smaller prediction re-
gions, which then could be combined if necessary.

One factor to consider with respect to ash is the timing of urban
forest inventories in relation to the pattern of EAB expansion. We could
not always determine whether communities in already-invaded areas
had performed their inventories before or after the arrival of EAB.
Likewise, for communities in the path of invasion, we usually could not
ascertain whether there had been any pre-emptive removal of ash in
anticipation of the pest’s arrival. Furthermore, ash was not the only one
of our target genera subjected to removals because of a pest; for in-
stance, approximately 30,000 maple trees were removed from a quar-
antine zone established after the discovery of ALB in central
Massachusetts in 2008 (Hostetler et al., 2013). Thus, we acknowledge
that uncertainty about the timing of the inventories was a potential
source of error in our modeling efforts, especially for ash, but note that
this does not diminish the validity of the modeling approach.

Another consideration that is relevant for all three host genera, but
perhaps especially for ash, is that the extent and composition of a
community’s urban forest are shaped by its tree planting history.
Sometimes, this history may have been driven by regional-scale factors.
For example, we have noted that many communities throughout the
USA planted ash to replace elms killed by Dutch elm disease
(MacFarlane and Meyer, 2005). In other cases, the trees planted in a
community may have been limited by the nursery stock available at the
time (e.g., Sydnor et al., 2010). Practical considerations (e.g., growth
rate, habit, or ease of care) likely also played a part in some past
planting decisions, as did cultural preferences for certain species
(Johnston, 2015; Jonnes, 2016). Regrettably, communities’ tree
planting histories are not always documented. Even when historical
data are available, they are seldom linked to the current composition
and pattern of communities’ forests, other than in a qualitative way
(e.g., Dorney et al., 1984; McPherson and Luttinger, 1998; Roman et al.,
2017b). A potentially fruitful area of research would be to identify and
integrate data describing historical events and trends – particularly if
they are understood to have affected urban forests at a regional scale –
into future modeling efforts directed at urban forests.

Our analysis was intended as a proof of concept. Regardless of the
constraints and uncertainties, we believe our results demonstrate the
promise of the approach. We also recognize that it may need to be re-
fined or applied differently in some circumstances. For instance, we
chose our modeling methods after a lengthy trial-and-error process with
this particular set of host genera. Other methods might work as well or
better for different hosts. However, we maintain that, at least until
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whole-community and relatively consistent data become widely avail-
able, a three-step approach remains the most practical way to deal with
the diversity in format and content of current urban forest inventories.

4.1. Potential applications

Because our modeling approach yields estimates of host presence
and abundance in terms of a commonly used forest metric (BA), it can
be integrated easily with similar information from inventories of nat-
ural forests. This feature is useful for broad-scale assessments of the
risks and potential impacts of invasive forest pests (Venette et al.,
2010). For example, the Forest Service’s 2012 National Insect and
Disease Risk Map (NIDRM) depicts, for each 240-m map cell, the risk of
significant forest mortality (i.e., expected loss of at least 25% total live
BA) due to insects and diseases over a 15-year period, 2013–2027 (Krist
et al., 2014). The 2012 version of the NIDRM improved on previous
iterations by incorporating simple representations of host distributions
in urban areas based primarily on land cover data. Nonetheless, Krist
et al. (2014) acknowledged the lack of detailed urban inventory data as
a limitation. This limitation could be addressed immediately for EAB,
ALB, and EGM (as well as other pests of ash, maple, and oak trees) using
the outputs from our study. Our approach could also be applied to other
potential hosts in the prediction region, and with some additional ef-
fort, could be extended to the western USA.

Moreover, our approach could be extended to countries other than
the USA. Canada is an obvious candidate, but urban forest inventories
have been conducted in many parts of the world, including in South
America, Australia, Europe, and Asia (Nielsen et al., 2014). As urban
forest inventories become more commonplace, an increasing number of
countries (or groups of countries) should have enough data to imple-
ment our three-step modeling approach with a fair degree of success.

Whereas we have presented our modeling approach in the context
of invasive forest pests (specifically insect pests), we see utility of the
approach and its outputs in a variety of other contexts. For instance, it
may facilitate estimation of ecosystem services (e.g., carbon seques-
tration) provided by trees in communities without urban forest in-
ventory data. Our approach may also enable better estimation of the
impacts of hurricanes, wildfires, and other disturbances that affect both
natural and urban forests. Model-based estimates of urban forest
characteristics may not be ideal in these cases – just as they are not
ideal in the invasive species context – but we maintain that they are a
practical substitute in the absence of numbers derived directly from
urban inventories.

Regarding the latter point, it is important to recognize the strides
that have been made in remote sensing of urban forest characteristics,
especially in the last decade. For example, by combining hyperspectral
imagery and lidar, it is possible to distinguish some tree species in
urban environments with reasonable accuracy (Zhang and Qiu, 2012;
Alonzo et al., 2014), and automated approaches continue to improve
for distinguishing individual tree crowns in high-spatial-resolution
imagery (Lee et al., 2016). Of course, there are limitations: tree metrics
such as dbh cannot be measured directly from remotely sensed images
(Lee et al., 2016), and smaller trees can be completely obscured by
dominant canopy trees (Alonzo et al., 2014). Still, remote sensing
provides the capacity to collect some urban forest information at far less
cost than field-based inventories, and analytical strategies for extracting
that information are evolving constantly. We see great potential for
integration of remote sensing and field-based measurements as a way to
enhance modeling efforts such as ours, particularly as certain types of
remotely sensed data (e.g., high-spatial-resolution hyperspectral ima-
gery) become more universally available.
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