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Abstract
1.	 Climate	change	vulnerability	assessments	are	commonly	used	to	identify	species	
or	populations	at	risk	from	global	climate	change,	but	few	translate	impact	assess-
ments	to	climate	change	adaptation	actions.	Furthermore,	most	climate	change	
adaptation	efforts	emphasize	where	to	implement	management	actions,	whereas	
timing	remains	largely	overlooked.	The	rate	of	modern	climate	change	introduces	
urgency	in	evaluating	whether	delaying	conservation	actions	compromises	their	
efficacy	for	reaching	important	conservation	targets.

2.	 We	evaluated	the	importance	of	multiple	climate	change	adaptation	strategies	includ-
ing	timing	of	actions	on	preventing	extinctions	for	a	threatened	climate-sensitive	spe-
cies,	 the	Eastern	Massasauga	 rattlesnake	 (Sistrurus catenatus).	We	parameterized	a	
range-wide	population	viability	analysis	model	that	related	demographic	sensitivities	
to	drought	events	and	human-modified	land	cover	to	assess	vulnerability	to	future	
climate	change.	Using	simulations,	we	assessed	the	efficacy	and	trade-offs	associated	
with	alternative	climate	adaptation	strategies	aimed	at	maximizing	the	number	of	fu-
ture	populations	including	when	to	initiate	conservation	actions,	duration	of	manage-
ment,	number	of	managed	populations,	and	local	management	effectiveness.

3.	 Population-level	 projections	 under	 future	 climate	 change	 scenarios	 revealed	 a	
broad-scale	pattern	of	range	contraction	in	the	southwestern	portion	of	the	cur-
rent	range.	Along	the	extinction	gradient,	we	identified	demographic	strongholds	
and	 refugia	 critical	 for	 population	 persistence	 under	 climate	 change	 as	well	 as	
populations	at	high	risk	of	extinction	and	candidates	for	climate	change	adapta-
tion	actions.

4.	 In	the	context	of	future	climate	change,	the	timing	of	conservation	actions	was	
crucial;	acting	earlier	maximized	chances	of	achieving	conservation	targets.	Even	
considering	uncertainty	in	climate	change	projections,	delaying	actions	was	less	
efficient	and	introduced	undesirable	trade-offs	including	the	need	to	implement	
conservation	actions	for	longer	or	targeting	more	populations	to	achieve	a	similar	
conservation	target.

5. Synthesis and applications.	Our	findings	highlight	how	acting	quickly	reduces	risk	
and	 improves	 outcomes	 for	 a	 highly	 vulnerable	 species	 under	 future	 climate	
change.	 Climate	 change	 vulnerability	 assessments	 require	 translation	 of	
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1  | INTRODUC TION

During	periods	of	rapid	environmental	change,	conservation	actions	
that	are	not	implemented	in	a	timely	manner	may	miss	windows	of	
opportunity	resulting	in	inefficient	use	of	resources,	or	at	worst,	fail-
ure	to	reach	conservation	goals.	Delays	can	occur	at	various	points	
in	decision-	making	processes	for	threatened	species	management,	
including	listing	a	species	(Martin	et	al.,	2012)	or	delayed	implemen-
tation	of	on-	the-	ground	conservation	measures	(Martin,	Camaclang,	
Possingham,	Maguire,	&	Chadès,	2017).	Decisions	on	how	quickly	or	
how	 long	 to	 act,	 or	when	 actions	 should	 change,	 such	 as	 shifting	
resources	 from	monitoring	 to	alternative	actions,	 impact	 strategic	
interventions	 aimed	 at	 threatened	 species	 management	 and	 ulti-
mately	biodiversity	 conservation	 (Lindenmayer,	Piggott,	&	Wintle,	
2013;	Ng,	McCarthy,	Martin,	&	Possingham,	2014).	Managers	faced	
with	limited	resources	must	make	these	decisions	in	the	context	of	
other	considerations	such	as	how	many	sites	or	populations	to	man-
age,	and	how	aggressively	 to	manage.	 Improved	understanding	of	
the	long-	term	consequences	of	timing	of	conservation	actions,	and	
of	 the	 trade-	offs	 involved	 in	 a	 broader	management	 context,	 can	
aid	decision	making	during	periods	of	rapid	environmental	change.

Anthropogenic	 climate	 change	 introduces	 both	 uncertainty	
and	urgency	to	the	timing	of	management	actions.	Climate	change	
varies	 not	 only	 regionally,	 but	 across	multiple	 ecologically	 rele-
vant	 temporal	 scales	 (e.g.,	 past	 and	 future	 changes	 in	 extremes	
and	variability)	(Garcia,	Cabeza,	Rahbek,	&	Araújo,	2014).	There	is	
increasing	evidence	of	“tipping	points”	when	small	changes	in	the	
climate	 system	 result	 in	 strongly	 nonlinear	 responses	 and	 rapid	
shifts	 in	novel	climate	space	(Lenton,	2011).	Consequently,	both	
the	 rate	 and	 magnitude	 of	 exposure	 to	 climate	 change	 charac-
terize	how	stressors	or	opportunities	for	adaptation	vary	across	
a	 species’	 range	 over	 time.	 Even	 independent	 of	 the	 additional	
complexities	 added	 by	 synergies	 with	 land-	use	 change	 (Brook,	
Sodhi,	 &	 Bradshaw,	 2008),	 spatial	 heterogeneity	 and	 temporal	
nonlinearities	in	climate	change	necessitate	that	assessments	and	
actions	be	optimized	both	regionally	and	for	specific	time	periods.

Climate	change	vulnerability	assessments	(CCVAs)	evaluate	the	
propensity	and	susceptibility	of	multiple	species	to	be	adversely	im-
pacted	by	modern	climate	change	(Pacifici	et	al.,	2015).	CCVAs	in-
corporate	a	combination	of	intrinsic	and	extrinsic	factors	to	capture	
sensitivity,	exposure,	and	adaptive	capacity,	and	link	the	spatial	and	
temporal	heterogeneity	of	 future	climate	change	 to	species	 traits	

or	population	trends	(Williams,	Shoo,	Isaac,	Hoffmann,	&	Langham,	
2008).	Population	viability	 analysis	 (PVAs)	 is	one	quantitative	ap-
proach	used	to	model	extinction	risk	under	climate	change	and	as-
sociated	range	shifts	 through	the	 interaction	between	population	
dynamics	 and	 changes	 in	 habitat	 suitability	 over	 space	 and	 time	
(Keith	et	al.,	2008).	Although	PVA	models	are	one	of	the	more	data	
intensive	approaches	used	in	a	CCVA	context,	they	are	amenable	to	
integrating	the	important	components	of	vulnerability:	sensitivity,	
exposure,	and	adaptive	capacity	 (e.g.,	McCauley,	Ribic,	Pomara,	&	
Zuckerberg,	2017;	Naujokaitis-	Lewis	et	al.,	2013).	From	a	practical	
standpoint,	these	models	present	a	powerful	approach	to	compare	
alternative	 climate	 change	 adaptation	 strategies	 using	 a	 common	
(probabilistic)	currency	of	extinction	risk	(Pe’er	et	al.,	2013).

CCVAs	can	support	decisions	for	managing	climate-	sensitive	spe-
cies	and	serve	as	a	platform	to	assist	with	prioritization	of	adaptation	
actions.	 Given	 the	 resource	 constraints	 in	 conservation	 planning,	
quick	management	 decisions	 need	 to	 be	made	 regarding	 the	most	
effective	and	efficient	actions	 for	 reducing	 threats	associated	with	
future	climate	change	(Pacifici	et	al.,	2015).	For	individual	species	that	
are	deemed	to	be	especially	vulnerable,	translating	model-	based	vul-
nerability	to	practical	climate	change	adaptation	strategies	requires	
quantifying	 climate-	demographic	 relationships	 and	 simulating	 the	
potential	 benefits	 of	 specific	 conservation	 actions	 (Game,	 Kareiva,	
&	 Possingham,	 2013);	 however,	 moving	 from	 impact	 assessment	
to	 climate	 change	 actions	 is	 a	 step	 that	 still	 few	 CCVAs	 consider	
(Akçakaya,	Butchart,	Watson,	&	Pearson,	2014).	Previous	studies	ap-
plying	PVA	models	to	evaluate	alternative	actions	to	reduce	climate	
change	impacts	tend	to	emphasize	the	spatial	dimensions	of	manage-
ment	such	as	how	many	populations	to	manage,	which	populations	
to	translocate,	and	where	and	how	much	habitat	 is	required	to	off-
set	climate	change	impacts	(Fordham	et	al.,	2013;	Naujokaitis-	Lewis	
et	al.,	2013;	Regan	et	al.,	2012).	By	comparison,	the	consideration	of	
the	timing	of	conservation	actions,	has	been	less	frequently	assessed	
in	 PVA-	based	management	 scenarios	 (but	 see	McDonald-	Madden,	
Runge,	Possingham,	&	Martin,	2011).	PVA	model	outputs	can	include	
estimates	of	expected	time	to	extinction	and	can	be	used	to	inform	
early	warning	 signals	 of	 climate	 risk,	 which	 are	 relevant	 for	 listing	
and	 categorizing	 species	 at	 risk	 of	 extinction	 (Stanton,	 Shoemaker,	
Pearson,	&	Akçakaya,	2015).	However,	such	metrics	do	not	directly	
inform	decisions	related	to	when	to	start	or	how	long	to	implement	
an	action.	In	the	context	of	climate	change	and	other	rapidly	changing	
threats	it	is	imperative	to	consider	the	timing	of	management	actions.

model-based	 outputs	 into	 tractable	 information	 for	 climate	 change	 adaptation	
planning.	 Quantifying	 trade-offs	 associated	 with	 the	multidimensional	 decision	
space	related	to	species	conservation	and	recovery	planning	 is	a	critical	step	 in	
climate	change	adaptation.

K E Y W O R D S

climate	adaptation,	climate	change,	conservation	planning,	decision	science,	population	
dynamics,	stage	matrix	model,	threatened	species,	vulnerability	assessment
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The	goal	of	our	study	was	 to	develop	a	novel	 species-	specific	
CCVA	for	comparing	trade-	offs	associated	with	alternative	adapta-
tion	strategies	used	for	promoting	persistence	of	a	climate-	sensitive	
species.	In	doing	so,	we	evaluate	a	set	of	decision	points	that	man-
agers	commonly	 face	 including	 (a)	when	to	 implement	actions,	 (b)	
how	long	to	manage,	(c)	how	many	populations	to	target	for	man-
agement	actions,	and	(d)	how	aggressively	to	manage.	We	first	built	
a	 range-	wide	PVA	model	 that	 incorporates	 relationships	between	
demographics	 and	 climate	 change	 for	 the	 Eastern	 Massasauga	
Rattlesnake	(Sistrurus catenatus—hereafter	EMR),	a	threatened	spe-
cies	that	has	demonstrated	rapid	range	contraction	and	vulnerabil-
ity	to	past	climate	change	(Pomara,	LeDee,	Martin,	&	Zuckerberg,	
2014).	 Using	 our	 range-	wide	 predictions	 of	 extinction	 risk	 under	
climate	 change,	 we	 explored	 the	 trade-	offs	 associated	with	 real-
istic	management	 scenarios,	while	accounting	 for	uncertainties	 in	
climate	 change	 projections.	 Our	 work	 addresses	 the	 heretofore	
overlooked	 issue	of	optimal	 timing	of	 conservation	actions	 in	 the	
context	 of	 climate	 change	 by	 better	 linking	 population-	specific	
outcomes	 to	 tangible,	 concrete	 adaptation	 strategies	 that	 inform	
threatened	species	conservation	and	management	into	the	future.

2  | MATERIAL S AND METHODS

2.1 | Study area and species

EMR	is	found	throughout	the	Great	Lakes	Region	and	is	federally	threat-
ened	in	Canada	(COSEWIC,	2002)	and	the	U.S.A.	(US	Fish	and	Wildlife	

Service,	2016).	Habitat	loss	is	a	primary	driver	of	recent	declines,	and	a	
dependency	on	semi-wetland	habitats	confers	sensitivity	to	long-	term	
changes	 in	 climate	 (Szymanski	 et	al.,	 2016).	 Specifically,	 drought	 and	
flooding	events	pose	a	risk	as	EMR	is	dependent	on	stable	water	levels,	
especially	during	winter	hibernation.	Alongside	habitat	restoration	and	
vegetation	management,	direct	water-	table	manipulation	is	a	candidate	
management	action	aimed	at	 improving	EMR	persistence	(Szymanski	
et	al.,	2016).	We	performed	a	CCVA	for	EMR	by	modelling	range-	wide	
population	dynamics	using	demographic	relationships	linked	to	climate	
conditions	and	land	use	to	assess	extinction	probability	under	differ-
ent	scenarios	of	future	climate	change	(Figure	1).	Our	approach	builds	
on	 the	demographic	models	of	Pomara	et	al.	 (2014),	who	 found	that	
historic	range-	wide	declines	in	EMR	were	associated	with	demographic	
sensitivities	to	both	winter	drought	and	summer	flooding.

2.2 | Environmental variables

Previous	 research	 highlights	 the	 importance	 of	 environmental	
drivers	of	EMR	adult	 active	 season	 survival	 rates	 including	winter	
minimum	temperature,	summer	cumulative	precipitation,	anthropo-
genic	 land	cover,	and	winter	drought	 (Pomara	et	al.,	2014).	Winter	
(November-	March)	minimum	temperature	(mean	temperature	of	the	
coldest	month)	 and	 summer	 (June-	August)	maximum	precipitation	
(cumulative	 precipitation	 of	 the	wettest	month)	were	 summarized	
annually	from	1950	to	2010	at	a	spatial	resolution	of	0.5°	from	the	
Climate	Research	Unit	(CRU)	Time-	Series	(TS)	v.3.22	dataset	(Harris,	
Jones,	Osborn,	&	Lister,	2014).	Our	measure	of	anthropogenic	land	
cover	 included	both	agricultural	and	urban	cover	classes	based	on	

F IGURE  1 Overview	of	the	climate	change	vulnerability	assessment	process	including	simulation-	based	approach	to	identify	trade-	offs	
with	conservation	action	decision	points	that	consider	temporal	dimensions:	(1)	when	to	start	an	action	and	(2)	duration	of	action,	or	spatial	
dimensions:	(3)	number	of	populations	managed	and	(4)	local	management	effectiveness
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the	North	American	Land	Change	Monitoring	System	classification	
(NALCMS).	Specifically,	we	used	the	proportion	of	agricultural	and	
urban	cover	within	a	5-	km	radius	to	capture	the	landscape-	scale	ef-
fects	of	human	impact	on	land	cover	(NALCMS,	2010).	We	assumed	
that	land	cover	remained	static	under	future	climate	change	scenar-
ios	due	to	unavailable	future	projections	of	land	cover	change.

We	used	the	Standardised	Precipitation-	Evapotranspiration	Index	
(SPEI)	 as	 a	 drought	 index	 instead	 of	 the	 Palmer-	Drought	 Severity	
Index.	SPEI	 incorporates	a	measure	of	potential	evapotranspiration	
(PET),	and	by	capturing	the	effect	of	changing	temperatures	on	water	
availability	it	improves	on	drought	indices	relying	only	on	precipita-
tion,	especially	in	the	context	of	climate	change	applications	(Vicente-	
Serrano,	Beguería,	&	López-	Moreno,	2010).	We	selected	a	12-	month	
long	period	for	derivation	of	SPEI	as	this	corresponds	to	a	temporal	
resolution	of	drought	characterization	of	relevance	to	EMR	popula-
tion	dynamics	that	are	modelled	on	an	annual	 time-	step.	SPEI	data	
were	accessed	from	the	SPEIbase	v2.3.1	(Beguería,	Vicente-	Serrano,	
Reig,	 &	 Latorre,	 2014),	 which	 uses	 climate	 data	 from	 the	 CRU	 TS	
v.3.22	dataset	(Harris,	Jones,	et	al.,	2014)	and	employs	the	Penman-	
Monteith	method	for	estimation	of	PET.	Monthly	SPEI	values	were	
averaged	over	the	five	winter	months	of	November	through	March,	
for	each	year	from	1950	to	2010,	at	a	spatial	resolution	of	0.5°.

2.3 | Climate change projections

Using	 the	delta	method,	we	produced	 finer-	resolution	and	bias	cor-
rected	annual	climate	projections	for	each	climate	variable,	including	
winter	 SPEI,	winter	minimum	 temperature,	 and	 summer	 cumulative	
precipitation.	This	ensured	a	continuous	dataset	from	the	observation-	
based	data	 (recent	historical	 climate	data)	 and	model-	based	 climate	
projections	(future	data).	Methodology	followed	(Harris,	Grose,	et	al.,	
2014)	and	details	are	included	in	the	Supporting	Information.	Gridded	
projections	of	winter	minimum	temperature	and	summer	cumulative	
precipitation	were	downloaded	at	a	resolution	of	12	km	(Reclamation,	
2013).	Gridded	projections	of	the	original	SPEI	data	varied	in	spatial	
resolution,	 but	 were	 downscaled	 to	 a	 common	 resolution	 of	 0.5°	
(Table	S1;	Cook,	Smerdon,	Seager,	and	Coats	(2014)).

Global	 climate	 projections	 were	 based	 on	 the	 World	 Climate	
Research	 Programme’s	 (WCRP’s)	 Coupled	 Model	 Intercomparison	
Project	 phase	 5	 (CMIP5)	 multimodel	 dataset,	 for	 the	 highest	
Representative	Concentration	Pathway	(RCP)	8.5.	RCP8.5	corresponds	
to	a	radiative	forcing	of	approximately	8.5	W/m2	and	represents	the	
largest	 increases	 in	greenhouse	gases	across	all	RCPs.	Current	emis-
sions	continue	to	track	this	high	end	emission	scenario	(Peters	et	al.,	
2013).	Given	the	need	to	develop	robust	adaptation	strategies	we	se-
lected	this	single	yet	currently	realistic	scenario	and	applied	a	 larger	
number	of	Global	Circulation	Models	(GCMs)	(n	=	11)	to	capture	higher	
inter-	model	climate	model	uncertainties	(Table	S1,	Lutz	et	al.,	2016).

2.4 | Survival modelling

We	modelled	the	relationship	between	adult	active	season	survival	
estimates	 and	 environmental	 variables	 using	 binomial	 generalized	

linear	models	with	a	 logit	 link	 function.	Survival	 rates	 from	across	
the	species	 range	 from	Jones	et	al.	 (2012)	were	expressed	as	pro-
portions,	and	each	observation	(n	=	17)	was	weighted	by	the	num-
ber	of	cases	(i.e.,	telemetered	snakes,	which	ranged	from	12	to	48).	
Specification	of	main	effects	was	constrained	to	a	maximum	of	three	
variables	 to	 facilitate	 interpretation,	 and	 all	 variable	 combinations	
were	considered	using	an	information-	theoretic	approach.	We	used	
Akaike’s	information	criterion	for	small	sample	sizes	(AICc)	to	identify	
highest	ranked	models,	given	the	data.	To	account	for	model-	based	
uncertainty	 with	 our	 models	 of	 EMR	 active	 season	 survival,	 and	
given	our	primary	goal	of	prediction,	we	model-	averaged	parameter	
estimates	of	the	top	95%	confidence	model	set	(i.e.,	cumulative	AICc 
weight	of	models	≤0.95)	(Symonds	&	Moussalli,	2011).	We	projected	
active	season	survival	rates	based	on	model-	averaged	parameter	es-
timates	annually	through	2100	using	the	adjusted	future	annual	time	
series	 based	 on	 climate	 anomalies	 (Banner	 &	 Higgs,	 2017).	 Thus,	
survival	rates	varied	over	space	and	time	and	incorporated	the	sim-
ulated	 future	 climate	 projections	 associated	with	winter	minimum	
temperature,	summer	cumulative	precipitation,	and	SPEI	on	an	an-
nual	time-	step.	Projections	were	performed	for	each	of	the	GCMs	
independently.	Model	 selection,	model-	averaging,	 and	 assessment	
of	variable	 importance	were	performed	using	 the	MuMIn package 
(Barton,	2013)	using	R	v.3.2.0	(R	Core	Team,	2015).

2.5 | Climate- driven PVA model

We	 parameterized	 a	 population-	level	 range-	wide	 demographic	
model	for	EMR	where	fecundity	and	survival	estimates	were	com-
bined	 to	 parameterize	 a	 females-	only,	 age-	based	 with	 11	 classes,	
stochastic	 population	 model	 across	 the	 geographical	 distribution	
of	EMR	(Table	S2,	Faust,	Szymanski,	&	Redmer,	2011;	Pomara	et	al.,	
2014).	Survival	rates	varied	by	population	(npop	=	226)	annually	from	
1965	to	2100.	Climate-	driven	population	dynamics	were	introduced	
to	adult	(ages	3–9)	and	senescent	(age	10)	age	class	survivals	using	
the	statistical	adult	survival	model	projections,	with	future	estimates	
(2011	 onward)	 based	 on	 downscaled	 climate	 projections	 for	 each	
of	 the	 11	GCMs	 independently.	 Using	 RAMAS	GIS	 software	 v6.0	
(Akçakaya	&	 Root,	 2013),	 temporal	 trends	 in	 adult	 and	 senescent	
adult	survival	rates	were	specified	as	time	series	of	relative	changes	
in	survival	estimates.	Further	details	 including	parameterization	of	
the	climate-	driven	PVA	model	and	model	validation	data	and	meth-
ods	are	in	the	Supplementary	Information.

Simulations	of	range-	wide	population	dynamics	were	initiated	in	
1965	 and	 run	 forward	 to	2100,	 for	 each	GCM	 (n	=	11)	 separately.	
Population	status	from	2010	were	used	to	initiate	future	model	runs	
and	were	based	on	expert-	derived	data	synthesized	in	Pomara	et	al.	
(2014;	 see	 Supplementary	 Information).	 Each	 simulation	 incorpo-
rated	 demographic	 and	 environmental	 stochasticity	 and	 was	 run	
10,000	times.	To	identify	populations	representing	demographic	re-
fugia	from	climate	change,	we	quantified	the	projected	population-	
level	probability	of	quasi-	extinction	under	 climate	change.	We	set	
the	 quasi-	extinction	 threshold	 at	 25	 individuals	 following	 Faust	
et	al.	 (2011),	 which	 reflected	 populations	 considered	 effectively	
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extirpated	and	was	based	on	the	best	available	expert	knowledge.	
We	 synthesized	 results	 over	 multiple	 future	 time	 points	 (current:	
2010,	 mid-	century:	 2050,	 late-	century:	 2100)	 by	 averaging	 out-
comes	10	years	prior	 to	minimize	variation	associated	with	annual	
variability	in	projections.

2.6 | Simulating management decision 
points and actions

Managers	often	require	making	decisions	around	number	of	popula-
tions	to	manage,	the	timing	of	management	actions,	and	which	type	
of	management	action	to	implement.	We	translated	these	decisions	
into	 population-	level	 consequences	 using	 a	 simulation	 approach	
where	 investments	 in	 conservation	actions	were	varied	 to	explore	
trade-	offs	in	the	decision	landscape	(Figure	1).	We	represented	these	
decision	points	by	simulating	 improvements	to	adult	survival	given	
the	evidence	for	demographic	sensitivities	in	relation	to	various	cli-
matic	factors	(Pomara	et	al.,	2014).	For	the	EMR,	restoring	wetland	
habitat	and	direct	water-	table	management	are	two	different	actions	
that	might	improve	survival	by	minimizing	local	drought	effects.

We	randomly	sampled	the	number	of	populations	to	target	for	
management	 actions	 in	 a	 given	 simulation.	We	 applied	 a	 random	
uniform	 distribution	 where	 the	 minimum	 number	 of	 populations	
was	set	to	5	with	a	maximum	representing	the	number	of	popula-
tions	with	a	corresponding	predicted	quasi-	extinction	probability	of	
≥0.1.	This	upper	limit	threshold	reflects	the	criteria	used	to	identify	
self-	sustaining	populations	based	on	 the	 recent	 status	assessment	
of	EMR	in	the	USA	whereby	populations	with	a	probability	of	per-
sistence	>0.9	were	qualitatively	considered	robust	(Szymanski	et	al.,	
2016).	 EMR	 consists	 of	 three	 genetically	 distinct	 subunits,	 where	
each	subunit	is	considered	to	represent	an	area	of	unique	adaptive	
diversity	(Western,	Central,	and	Eastern;	Ray	et	al.,	2013).	To	ensure	
representation	across	this	gradient	of	genetic	diversity,	we	randomly	
sampled	populations	by	genetic	subunit.

To	 address	 the	 importance	 of	 timing	 of	 conservation	 actions,	
we	 varied	 two	 parameters:	 the	 year	 that	 the	 conservation	 action	
began	and	the	duration	of	management.	We	applied	a	uniform	dis-
tribution	to	randomly	sample	the	start	year	of	management,	which	
ranged	from	2011	to	2090.	The	number	of	years	an	action	was	im-
plemented	varied	between	1	and	50	years	and	was	sampled	from	a	
uniform	distribution.	Our	conservation	actions	were	initiated	during	
the	 sampled	 start	 year	 and	 implemented	 in	 successive	 years	 until	
the	number	of	sampled	years	was	reached.	Our	timing	variables	re-
flected	when	to	start	and	how	long	to	manage,	but	did	not	consider	
when	to	switch	between	alternative	conservation	actions.

We	introduced	two	levels	of	conservation	effectiveness	to	cap-
ture	the	variable	effect	of	local	(i.e.,	population-	level)	management	
to	improve	survival.	Two	different	actions	that	may	improve	survival	
by	minimizing	 local	 drought	 effects	 are	 restoring	 wetland	 habitat	
and	direct	water-	table	management.	However,	one	might	be	more	
effective	than	the	other,	 they	might	be	 implemented	 in	tandem	or	
separately,	 and	 either	may	 be	 implemented	with	 varying	 intensity	
or	success.	We	distinguished	between	the	two	levels	by	modifying	

adult	survival	rates	to	increase	to	0.78	(mean	of	survival	estimates;	
moderate level)	or	to	0.90	(this	represents	the	top	10th	percentile	of	
predicted	estimates	based	on	modelled	outcomes;	high level),	when	
and	where	they	fell	below	these	rates;	higher	rates	were	not	altered.	
This	range	of	values	represents	a	realistic	range	of	survival	estimates	
for	EMR	across	its	range	(Jones	et	al.,	2012).	Once	the	duration	of	
the	management	action	ceased,	 the	 survival	 rates	 returned	 to	 the	
projected	 survival	 values	 based	 on	 the	 statistical	 demographic-	
environmental	variables	relationship.

The	simulation	experiments	were	implemented	using	a	modified	
version	of	an	R-	based	program	 that	enables	automated	sensitivity	
analyses	 of	 metapopulation	 dynamics	 models	 using	 RAMAS	 GIS	
software	 (Naujokaitis-	Lewis	&	Curtis,	2016).	Parameters	were	var-
ied	simultaneously	using	a	global	sensitivity	analysis	approach,	with	
a	total	of	2000	replications	performed	for	each	of	the	11	GCMs.	This	
resulted	in	a	total	of	22,000	replications	that	captured	variations	as-
sociated	with	simulations	in	management	scenarios	while	addressing	
uncertainty	associated	with	selection	of	GCM.

Population	 dynamics	models	were	 run	 to	2100	 at	which	 point	
population-	level	abundances	were	converted	 to	a	binary	measure,	
whereby	an	extant	population	was	defined	as	a	population	with	25	
or	more	individuals.	We	chose	to	apply	climate	projections	until	2100	
despite	the	increased	uncertainty	with	GCM	projections	made	fur-
ther	into	the	future	as	quantitative	analyses	of	probability	of	extinc-
tion	generally	require	longer	timeframes.	This	can	ensure	potential	
lagged	demographic	responses	are	captured,	which	can	be	an	issue	
for	 extremely	 long-	lived	 species,	 and	 this	 is	 also	 a	 standard	 time	
frame	(100	years)	required	when	using	PVAs	to	assess	IUCN	Red	List	
status	(Pe’er	et	al.,	2013).	We	selected	the	number	of	extant	popu-
lations	across	the	range	of	EMR	as	our	metric,	and	our	conservation	
goal	was	 to	maximize	 the	projected	number	of	extant	populations	
at	different	combinations	of	parameter	values.	We	used	a	boosted	
regression	tree	 (BRT)	 to	evaluate	the	relative	 influence	of	 the	var-
ied	parameters,	 including	choice	of	GCM	model,	on	the	number	of	
extant	populations.	We	specified	a	Poisson	 link	 function	and	used	
untransformed	data.	We	fit	the	BRT	with	up	to	two-	way	interactions	
by	applying	a	tree	complexity	value	of	2.	The	learning	rate	was	spec-
ified	at	a	value	of	0.01,	which	was	optimized	to	ensure	a	minimum	
of	1,000	trees	were	fit	(Elith,	Leathwick,	Hastie,	&	Leathwick,	2008).	
The	 relative	 influence	 of	 each	 predictor	 variable	was	 assessed	 by	
calculating	 its	contribution	to	reducing	the	overall	model	deviance	
of	 the	BRT	model.	We	 identified	 important	modelled	 interactions	
by	quantifying	 the	strength	of	pairwise	 interactions	while	keeping	
nonfocal	variables	at	their	mean	values.	Implementation	of	the	BRT	
model	was	 performed	 in	R	 v.3.3.0	 (R	Core	 Team,	 2015)	 using	 the	
gbM	package	(Greg	Ridgeway	with	contributions	from	others	,	2015).

3  | RESULTS

3.1 | Demographic climate change refugia

The	6	best	supported	models	of	active	season	survival	based	on	the	
top	95%	confidence	model	set	(i.e.,	cumulative	AIC	weight	of	models	
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≤0.95)	 included:	 winter	minimum	 temperature	 (winterTemp),	 sum-
mer	 maximum	 precipitation	 (summerPrecip),	 winter	 Standardized	
Potential-	Evapotranspiration	Index	(winterSPEI),	and	anthropogenic	
land	cover	(ALC)	(Table	1).	A	table	of	the	complete	model	selection	
outputs	is	included	in	Table	S3.	The	relative	variable	importance	val-
ues	in	the	final	model-	averaged	outcome	across	the	top	95%	confi-
dence	model	set	were	96%	for	winterSPEI,	88%	for	summerPrecip,	
41%	for	ALC,	and	22%	for	winterTemp	(Table	2).	Model	projections	
to	both	mid-		(2050)	and	late-	century	(2100)	depicted	a	strong	spa-
tial	gradient	in	quasi-	extinction	risk	across	the	EMR’s	range	with	in-
creasing	risk	over	time	(Figure	2).	Quasi-	extinction	risk	was	 lowest	
in	the	northeast	with	a	distinct	extinction	risk	gradient	increasing	to	
the	southwest,	highlighting	a	broad-	scale	pattern	of	range	contrac-
tion	towards	the	northern	periphery	of	the	range.	The	general	spa-
tiotemporal	 pattern	 of	 quasi-	extinction	 risk	was	 consistent	 across	
GCMs,	but	the	largest	sources	of	model	uncertainty	associated	with	
choice	of	GCM	occurred	among	populations	within	the	south-	central	
portion	of	the	range,	and	were	highest	across	 late-	century	projec-
tions	 (Figure	S1).	 Validation	 outcomes	 of	 our	 population	 dynamics	

model	included	an	AUC	of	0.78,	indicating	acceptable	discrimination	
(Hosmer	&	Lemeshow,	2000).	Classification	metrics	included	a	sen-
sitivity	value	of	0.93,	and	specificity	of	0.62.	These	outcomes	indi-
cate	that	the	model	was	better	at	classifying	true	presences	(extant)	
than	absences	(extirpation).

3.2 | Trade- offs between climate change adaptation 
decision points

Based	on	BRT	analyses,	the	choice	of	GCM	had	the	largest	relative	
influence	(50.4%)	on	the	predicted	number	of	occupied	populations	
followed	 by	 start	 year	 of	 management	 action	 (24.8%),	 number	 of	
populations	(19.2%),	number	of	years	(5%),	and	local	management	ef-
fectiveness	(1.6%).	Model	outputs	were	most	sensitive	to	the	choice	
of	 GCM,	with	 some	 GCMs	 leading	 to	more	 pessimistic	 outcomes	
relative	to	others.	Despite	this	disagreement	among	climate	models,	
earlier	implementation	of	management	actions	consistently	resulted	
in	maximising	the	number	of	predicted	extant	populations	across	the	
geographic	range	of	EMR	(Figure	3a,	Figure	S2).

We	 found	 an	 important	 interaction	 between	 start	 year	 and	
number	of	populations	(Table	S4,	Figure	3a,	Figure	S2).	Our	results	
suggest	 that	 delaying	 implementation	 of	management	 actions	will	
require	managing	up	to	double	the	number	of	populations	to	achieve	
a	similar	conservation	target	than	if	actions	were	implemented	ear-
lier.	For	example,	with	a	conservation	target	of	160	populations,	 if	
actions	were	implemented	in	the	year	2020	approximately	40	pop-
ulations	 would	 require	 some	 form	 of	 direct	 management,	 assum-
ing	 a	 trajectory	 reflected	 by	 the	 intermediate	 GCM,	 CSIRO-	MK3	
(Figure	4,	black-	filled	dot).	Should	actions	be	delayed	 to	2040,	ap-
proximately	 75	 populations	 would	 require	 management	 interven-
tions	to	achieve	the	same	conservation	target	(Figure	4,	grey-	filled	
dot).	Delaying	actions	by	about	20	years	would	 thus	 require	more	
than	double	 the	effort	 (i.e.,	number	of	populations)	 to	achieve	the	
same	 conservation	 target	 should	 actions	 have	 been	 implemented	
earlier.	Ultimately,	the	cost	of	delaying	actions	until	2040	is	the	loss	
of	approximately	six	populations	(i.e.,	a	conservation	target	of	154	
extant	populations)	for	the	same	amount	of	effort	(i.e.,	managing	ap-
proximately	40	populations)	(Figure	4,	black-	outlined	dot).	However,	
this	lost	opportunity	associated	with	delaying	actions	is	even	greater	
with	a	higher	amount	of	effort	as	demonstrated	by	the	steep	gradi-
ent	space	(Figure	4,	grey-	outlined	and	grey-	filled	dots).

We	also	 found	trade-	offs	between	start	year	and	the	duration	
of	 management	 whereby	 delaying	 conservation	 actions	 would	

TABLE  1 Model	selection	outcomes	of	the	logistic	regression	
model	of	EMR	active	season	survival	as	a	function	of	winter	
minimum	temperature	(winterTemp),	summer	maximum	
precipitation	(summerPrecip),	winter	Standardized	Potential-	
Evapotranspiration	Index	(winterSPEI),	and	anthropogenic	land	
cover	(ALC).	The	table	includes	log	likelihood	(logLik),	adjusted	AIC	
for	small	sample	sizes	(AICc),	difference	from	the	top	model	(∆AICc), 
and	Akaike	model	weights	(wi)	for	the	top	95%	confidence	model	
set	(i.e.,	cumulative	AIC	weight	of	models	≤0.95)	and	intercept-	only	
model

Model logLik AICc ∆AICc wi

winterSPEI	+	
summerPrecip

−37.59 83.03 0 0.424

winterSPEI	+	summer-
Precip	+	ALC

−36.29 83.92 0.89 0.27

winterSPEI	+	summer-
Precip	+	winterTemp

−37.01 85.36 2.33 0.13

ALC	+	winterTemp −39.91 87.66 4.63 0.042

winterSPEI	+	ALC −39.99 87.82 4.79 0.039

winterSPEI	+	ALC	+	
winterTemp

−38.33 87.99 4.96 0.035

ALC −42.17 89.20 6.17 0.019

Intercept-	only −52.04 106.35 23.32 3.7E- 06

Parameter Estimate SE 95% CI
Relative 
importance (%)

Intercept 1.246 0.138 (0.975,	1.517) –

winterSPEI 0.447 0.194 (0.130,	0.805) 96

summerPrecip −0.455 0.236 (−0.859,	−0.178) 88

winterTemp −0.041 0.109 (−0.508,	0.141) 22

ALC −0.122 0.191 (−0.671,	0.079) 41

TABLE  2 Parameter	estimates,	
standard	errors	(SE),	95%	confidence	
intervals	and	relative	importance	of	
model-	averaged	outcomes	across	the	95%	
confidence	model	set	(cumulative	
wi≤	0.95)	for	EMR	adult	active	season	
survival



     |  2849Journal of Applied EcologyNAUJOKAITIS- LEWIS ET AL.

necessitate	managing	for	a	longer	number	of	years	to	achieve	a	sim-
ilar	 number	 of	 predicted	 extant	 populations	 (Table	S4,	 Figure	3b,	
Figure	S3).	For	example,	if	management	were	to	start	around	2020,	
on	average	15	years	of	management	would	be	needed	to	reach	the	
target	of	160	extant	populations	(Figure	3b	CSIRO-	MK3).	However,	
delaying	management	by	just	10	years	to	2030	would	require	more	
than	double	the	number	of	years	of	active	management	(30–50	years)	
to	 reach	 the	 conservation	 target.	 The	 number	 of	 populations	 and	
duration	of	management	was	the	third	ranked	interaction,	but	this	
combination	of	variables	resulted	in	the	lowest	number	of	predicted	
extant	populations	(Table	S4,	Figure	3c,	Figure	S4).	To	achieve	a	tar-
get	of	approximately	160	extant	populations	would	 require	 imple-
menting	actions	over	70	to	90	populations	for	a	30	to	50	year	period.	
Although	the	choice	of	GCM	was	included	in	two	interactions	(with	
start	year	and	number	of	populations	respectively),	the	interaction	
size	was	negligible	(Table	S4).	Overall,	our	results	emphasize	dimin-
ishing	returns	and	loss	of	conservation	opportunities	as	actions	are	
delayed	into	the	future.

4  | DISCUSSION

There	 is	 a	 critical	 need	 to	 develop	 species-	specific	models	 of	 cli-
mate	 change	 vulnerability	 and	 translate	 those	model	 outputs	 into	
tractable	 information	 for	 conservation	 decision	 making.	 Here	 we	
demonstrate	that	testing	alternative	decision	points	around	climate	
change	adaptation	actions	through	simulations	can	provide	this	link-
age.	 Using	 a	 range-	wide	 PVA	model	 built	 on	 climate-	demography	
relationships,	we	identified	geographic	regions	of	EMR	vulnerability	
to	future	climate	change	and	potential	refugium	critical	for	species	
persistence	(Keppel	et	al.,	2015).	While	accounting	for	uncertainties	

in	future	climate	change	projections,	we	illustrate	the	relative	impor-
tance	of	timing	of	management	actions	in	comparison	to	other	more	
commonly	assessed	management	decision	points.	For	EMR,	delaying	
implementation	of	management	actions	meant	increased	effort	was	
needed	to	achieve	a	similar	conservation	target,	with	more	lost	op-
portunities	 and	 fewer	options	 as	delays	grew	 longer.	Our	 findings	
suggest	 that	 timing	of	conservation	 is	crucial	and	targeted	actions	
can	buffer	the	effects	of	future	climate	change	on	range-	wide	per-
sistence,	but	their	effectiveness	is	mediated	by	interactions	among	
different	decision	points	and	future	climate	uncertainty.

We	documented	a	range-	wide	extirpation	front	that	was	consis-
tent	across	GCMs;	however,	GCM	selection	introduced	substantial	
variation	in	extinction	risk	(Figure	S1).	This	variation	was	evident	to-
wards	the	contracting	range	edge	and	was	most	pronounced	in	late-	
century	 projections,	 an	 expected	 finding	 given	 divergence	 among	
GCM	projections	over	 time	 (Beaumont,	Hughes,	&	Pitman,	2008).	
The	resulting	continuum	of	outcomes	based	on	multiple	 individual	
GCMs	present	an	envelope	of	possible	climate	futures,	which	would	
not	 be	 evident	 using	 a	 GCM	 ensemble	 approach	 (Porfirio	 et	al.,	
2014).	While	variation	across	GCMs	is	thus	evident,	the	dispropor-
tionate	 sensitivity	of	 populations	 located	 at	 the	 contracting	 range	
edge	 is	 possibly	 amplified	 by	 variable	 population	 dynamics	 occur-
ring	 along	 the	 extinction	 front	 (Anderson	 et	al.,	 2009).	While	 we	
incorporated	potential	consequences	of	climate	change	and	model	
uncertainty	associated	with	GCMs,	our	models	did	not	account	for	
other	factors,	including	future	land-	use	change.	Given	that	land-	use	
change	is	a	recognized	historical	threat	to	EMR	(Pomara	et	al.,	2014),	
our	 predictions	 are	 likely	 conservative	 in	 this	 regard	 and	 under-	
estimate	 predicted	 extinction	 risk	 as	 climate	 is	 the	 only	 dynamic	
threat	considered.

Performing	a	CCVA	and	identifying	populations	(or	species)	that	
are	most	vulnerable	to	climate	change	does	not	automatically	trans-
late	into	action;	managers	are	faced	with	making	decisions	aimed	at	
reducing	 threats	 and	 improving	 species’	 recovery.	Decision	 points	
can	include	actions	that	are	spatial	(e.g.,	how	many	and	which	pop-
ulations	to	target)	and	temporal	(e.g.,	when	and	how	long	to	imple-
ment	an	action).	Moving	beyond	impact	assessment	to	the	selection	
of	climate	change	adaptation	strategies	 that	will	maximize	conser-
vation	outcomes	 is	a	complex	process,	but	one	that	would	benefit	
from	a	comparison	of	anticipated	actions	using	scenario-	/simulation-	
based	approaches.	In	the	context	of	CCVAs,	this	component	remains	
largely	 over-	looked	 (but	 see	 Fordham	 et	al.,	 2013;	 Regan	 et	al.,	
2012),	especially	with	respect	to	the	timing	of	conservation	actions.

Knowing	 the	 critical	 management	 decision	 points,	 such	 as	
when	 it	 is	 too	 late	 to	 start	 acting,	 is	 a	 pervasive	 question	 for	 de-
cision	makers	and	conservation	scientists.	Adequate	warning	times	
for	preventing	extinctions	will	depend	on	a	combination	of	factors,	
including	political	will,	 socio-	economic	considerations,	 species’	ex-
pected	responses	to	management	actions,	management	objectives	
set	for	a	species,	and	anticipated	magnitude	of	climate	change	in	a	
focal	area	(Akçakaya	et	al.,	2014).	We	presented	our	results	by	high-
lighting	the	trade-	offs	associated	with	the	multidimensional	decision	
space.	As	an	example,	we	used	a	conservation	target	of	160	extant	

F IGURE  2 Predicted	population-	level	extinction	probability	
of	the	Eastern	Massasauga	Rattlesnake	in	the	past	(1980),	current	
(2010),	mid-		(2050),	and	late-	(2100)	century.	Future	extinction	
predictions	represent	ensemble-	based	syntheses	averaged	across	
11	Global	Circulation	Models	used	to	project	future	climate	
change
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EMR	populations	and	highlighted	the	opportunity	cost	of	delaying	
actions	in	relation	to	the	number	of	populations	requiring	manage-
ment	 action	 (Figure	3a	 CSIRO-	MK3,	 Figure	4).	 The	 trade-	offs	 are	
more	apparent	further	into	the	future,	and	past	the	year	2045	a	crit-
ical	window	of	opportunity	 is	surpassed	as	this	target	 is	no	 longer	
possible.	Thus,	based	on	these	model	outcomes	for	EMR,	a	critical	
window	might	be	defined	as	the	first	20	years	(i.e.,	to	2040)	as	this	
is	when	 consequences	 of	 trade-	offs	 associated	with	 conservation	
efforts	are	minimized.	Because	different	managers	may	set	targets	
differently,	our	approach	makes	the	quantitative	trade-	offs	explicit	
whereby	informed	decisions	can	be	taken.	Overall,	our	results	sug-
gest	 the	 advantages	 of	 early	 action	 outweigh	 the	 possible	 costs	
of	 delaying	 implementation	during	periods	of	 rapid	 environmental	
change.

Managers	 have	 several	 different	 options	 to	 conserve	 species	
threatened	 by	 climate	 change	 including	 in	 situ	 approaches	 that	
have	 the	 potential	 to	 offset	 both	 current	 and	 impending	 threats	
(Greenwood,	 Mossman,	 Suggitt,	 Curtis,	 &	 Maclean,	 2016).	 In	 the	
case	of	EMR,	direct	water-	table	manipulation	and	vegetation	man-
agement	are	proposed	in	situ	strategies	aimed	at	minimizing	drought	

and	flooding	effects	on	existing	EMR	populations	(Faust	et	al.,	2011).	
These	types	of	habitat	modifications	could	provide	effective	changes	
to	 local	climatic	conditions	experienced	by	EMR	and	help	 to	mini-
mize	negative	outcomes	associated	with	climate	change.	Managing	
species	 or	 populations	 in	 situ	 can	 present	 challenges	 as	 actions	
may	 not	 translate	 immediately	 into	 improved	 recovery	 outcomes	
and	should	also	be	robust	to	future	climate	change	and	associated	
uncertainties.	Furthermore,	knowledge	associated	with	species’	re-
sponses	to	a	specific	action	is	typically	sparse,	and	different	actions	
could	result	in	being	more	or	less	effective	for	species	recovery	and	
adaptation	to	climate	change	(Bonebrake	et	al.,	2018).	While	we	sim-
ulated	two	levels	of	conservation	effectiveness,	this	did	not	strongly	
influence	our	model	outcomes.	This	low	ranking	suggests	that	other	
decision	points	 (i.e.,	 number	of	 populations)	 be	prioritized	 as	 they	
are	expected	to	have	a	larger	impact;	however,	there	is	potentially	
larger	 variability	 in	 conservation	 effectiveness	 than	 captured	 by	
our	simulation	parameters.	Efforts	aimed	at	gaining	more	empirical	
knowledge	of	species’	responses	to	actions	is	likely	to	improve	the	
effectiveness	of	management	actions	including	whether	there	is	evi-
dence	for	diminishing	returns	of	effectiveness	over	time.

F IGURE  3 Contour	plots	depicting	the	relationship	between	decision	points	around	management	actions	and	range-	wide	number	of	
populations	predicted	extant.	Each	row	represents	a	two-	way	interaction	based	on	the	boosted	regression	tree	analysis	with	highest	ranked	
interactions	between	(a)	number	of	populations	and	start	year,	followed	by	(b)	number	of	years	and	start	year,	and	(c)	number	of	years	and	
number	of	populations.	Simulations	were	performed	across	11	Global	Circulation	Models	(GCMs),	with	results	presented	for	three	GCMs	
ranging	from	the	worst-	case	scenario	GCM	(i.e.,	lowest	number	of	predicted	occupied	populations;	IPSL-	CM5A-	LR),	a	moderate	scenario	
GCM	(CSIRO-	MK3),	and	the	best-	case	scenario	GCM	(MRI-	CGCM3).	Isolines	represent	increments	of	five	populations
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Deciding	 how	 to	 incorporate	 climate	model	 uncertainties	 into	
decision-	making	will	depend	on	management	context	and	levels	of	
acceptable	 risk	 tolerance.	 Relative	 to	 decision	 points	 around	 con-
servation	actions,	 the	choice	of	GCM	had	the	 largest	 influence	on	
the	predicted	number	of	occupied	populations	under	future	climate	
change.	 While	 this	 resulted	 in	 different	 quantitative	 predictions	
across	GCMs	resulting	in	a	range	of	outcomes	from	worst-	case	sce-
narios	to	best	case	ones,	the	patterns	and	trade-	offs	between	dif-
ferent	 conservation	 strategies	 remained	 consistent	 across	 GCMs.	
Despite	this	consistency,	our	projections	of	extinction	risk	are	likely	
more	optimistic	owing	to	a	higher	false	positive	rate,	based	on	our	
model	validation,	where	future	extirpations	may	have	been	misclas-
sified	as	persistence.	While	our	projections	further	 into	the	future	
remained	more	uncertain,	 further	 research	and	subsequent	model	
refinement	as	new	information	becomes	available	have	an	important	
role	to	play	 in	reducing	uncertainties	and	informing	robust	actions	
(Shoo	et	al.,	2013).	More	risk-	averse	management	may	be	appropri-
ate	for	populations	showing	higher	disagreement	among	GCMs,	as	
management	outcomes	are	less	certain.

Identifying	 trade-	offs	 associated	 with	 alternative	 conservation	
actions	requires	several	simplifying	assumptions	in	our	simulations.	
We	 simulated	 actions	 that	 improved	 active	 season	 survival	 rates,	
assuming	 that	 implementation	 translated	 to	an	 immediate	 increase	
in	 survival	 rates.	 Additionally,	 once	 the	 duration	 of	 an	 action	was	
complete,	 survival	 rates	 returned	 to	 the	original	projections	 rather	
than	 staying	elevated.	Depending	on	 the	 specific	management	 ac-
tion,	population-	level	 responses	 could	 lag	behind	 initial	 implemen-
tation.	 For	 example,	 direct	water-	table	manipulation	may	 result	 in	
immediate	 effects	 on	 survival	while	 attempting	 to	 improve	water-	
table	levels	indirectly	through	restoration	of	vegetation	is	more	likely	
to	produce	 a	more	 lagged	 (i.e.,	 slower)	 response	 at	 the	population	
level.	This	assumption	may	have	resulted	in	overly	optimistic	results,	
but	reinforces	the	need	to	act	quickly.	While	our	approach	assists	in	
prioritizing	and	evaluating	temporal	relative	to	spatial	dimensions	of	
conservation	actions,	we	did	not	explicitly	consider	costs	and	subse-
quent	trade-	offs	in	a	cost-	efficiency	framework	(Sebastián-	González	
et	al.,	2011),	nor	when	to	shift	between	management	actions,	which	
are	important	next	steps.	Despite	these	limitations,	our	approach	to	
simulating	both	climate-	driven	threats	and	the	effectiveness	of	ad-
aptation	 actions	 in	 a	 single	 framework	 can	be	 readily	 extended	 to	
other	species	and	systems,	which	include	species	currently	known	to	
be	climate-	sensitive	and	those	anticipated	to	be	most	vulnerable	to	
future	climate	change.

Real-	world	 situations	where	 decisions	 have	 been	delayed	 have	
clearly	contributed	to	species	extinctions	(Martin	et	al.,	2012).	These	
delays	in	conservation	action	have	even	greater	implications	during	
a	time	of	rapid	climate	change	that	is	unprecedented	over	decades	
and	millennia	(IPCC,	2014).	Conservation	prioritizations	for	climate-	
threatened	species	have	 largely	not	addressed	timing	of	conserva-
tion,	yet	we	show	here	that	timing	is	critical	for	improving	persistence	
of	 a	 climate-	threatened	 species,	 even	while	 accounting	 for	 uncer-
tainties	of	future	climate	change.	Delays	in	decisions	and	actions	on-	
the-	ground	 are	 likely	 to	have	 significant	 negative	 impacts	on	both	
currently	declining	climate-	sensitive	species	and	those	vulnerable	to	
unprecedented	changes	in	climate	and	land-	use	practices.	There	is	an	
urgent	need	to	make	decisions	related	to	the	management	of	climate-	
sensitive	species	while	there	is	still	an	opportunity	to	act.
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