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a b s t r a c t

WaSSI-C is an ecohydrological model which couples water and carbon cycles with water use efficiency
(WUE) derived from global eddy flux observations. However, a significant limitation of the WaSSI-C
model is that it only runs serially. High resolution simulations at a large scale are therefore computa-
tionally expensive and cause a run-time memory burden. Using distributed (MPI) and shared (OpenMP)
memory parallelism techniques, we revised the original model as dWaSSI-C. We showed that using MPI
was effective in reducing the computational run-time and memory use. Two experiments were carried
out to simulate water and carbon fluxes over the Australian continent to test the sensitivity of the
parallelized model to input data-sets of different spatial resolutions, as well as to WUE parameters for
different vegetation types. These simulations were completed within minutes using dWaSSI-C, whereas
they would not have been possible with the serial version. The dWaSSI-C model was able to simulate the
seasonal dynamics of gross ecosystem productivity (GEP) reasonably well when compared to observa-
tions at four eddy flux sites. Sensitivity analysis showed that simulated GEP was more sensitive to WUE
during the summer compared to winter in Australia, and woody savannas and grasslands showed higher
sensitivity than evergreen broadleaf forests and shrublands. Although our results are model-specific, the
parallelization approach can be adopted in other similar ecosystem models for large scale applications.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Ecohydrological models describe the interactions between wa-
ter, vegetation and climate by coupling multiple hydrological and
Life Sciences, Murdoch Uni-
ecological processes. They are very useful tools in assisting land-
managers and policy-makers to simulate ‘what-if’ scenarios, such
as the effects of projected climate change on water resources and
the terrestrial carbon cycle. Process-based distributed ecohydro-
logical models are commonly used by ecohydrologists, as they not
only achieve higher accuracy than empirical models (Chen et al.,
2015), but also couple the terrestrial water, energy and biogeo-
chemical cycles. Additionally, process-based models allow for in-
vestigations over much larger spatial and temporal resolutions as
compared to traditional field studies (Fatichi et al., 2016).

Remote sensing data are increasingly used as inputs to ecohy-
drological models to achieve more accurate simulations in com-
parison with models based solely on mathematical theory (Liu
et al., 1997; Cao and Woodward, 1998; Sun et al., 2011b). Howev-
er, without careful evaluation and quality control, high resolution
remote sensing data could induce systematic biases in ecohydro-
logical simulations (Zhao et al., 2005). Eddy covariance flux towers,
which provide continuous measurements of ecosystem level fluxes
of water and carbon (Baldocchi et al., 2001), have been used for
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evaluating remote sensing data and ecohydrology models (Stoy
et al., 2006; Sjostrom et al., 2013; Raczka et al., 2013; Zhou et al.,
2014). As the eddy covariance technique simultaneously mea-
sures water and carbon fluxes, it reflects interactions between
water and vegetation at the ecosystem scale, and is therefore
widely used to analyze changes in ecosystem carbon fluxes (Xiao
et al., 2012) and water use efficiency (WUE) (Xiao et al., 2013).

The Water Supply Stress Index and Carbon model (WaSSI-C),
developed by Sun et al. (2011b), is an example of ecohydrological
models which uses both remote sensing and eddy flux observations
to simulate the coupling of water and carbon fluxes. The accuracy of
the WaSSI-C model has been evaluated at a monthly time-scale at
72 United States Geological Survey (USGS) gauging stations (Sun
et al., 2015) and in the upper Zagunao watershed, a sub-
catchment of the MinJiang watershed, in China (Liu et al., 2013a,
b). Comparisons of the simulated streamflow against observations
at the 72 USGS stations showed good overall model performance,
with correlation coefficients ranging from 0.71 to 1.0 (Sun et al.,
2015). With state-of-the-art remote sensing technologies, ecohy-
drological models, such as WaSSI-C driven with remote sensing
data, can simulate water and carbon processes at a very high res-
olution globally. Such high temporal and spatial resolution simu-
lations are needed to investigate the interactions between the
water and carbon cycles and for ecosystem management, both at
small and large scales (Wood et al., 2011).

State-of-the-art remote sensing sensors have spatial resolutions
ranging from centimeters on unmanned aerial vehicle platforms, to
meters on satellite platforms, which provide a great opportunity for
understanding vegetation dynamics. Application of such data
would have immediate benefits. For example, hyper-resolution
modeling at 100 m or finer resolutions would allow for much
better representation of the effects of spatial heterogeneity of
topography, soils and vegetation cover on hydrological dynamics
(Wood et al., 2011). This in turn will allow for a better represen-
tation of processes that are poorly represented in the current
generation of models, such as slope and aspect effects on surface
incoming and reflected solar radiation, and consequent effects on
snowmelt, soil moisture redistribution and evapotranspiration.
However, processing hyper-resolution modeling implies large data
input into the resident memory of a Central Processing Unit (CPU)
followed by computation and consequent writing of the results to
disk. Thus, data movement is an obvious bottleneck in this process.
Additionally, advanced computational algorithms are needed to
process satellite and other datasets via computationally demanding
data assimilation procedures. Making use of multiple cores on a
processor and distributing the computational domain to map onto
multiple processors can be a prospective scalable solution to these
issues.

The models of Kollet et al. (2010) and Le et al. (2015) perform
each simulation unit independently, and hence the model
computational domain can easily be broken down into smaller
individual segments as there is no dynamic interaction. However,
for models including dynamic interaction with inter-connected
simulation units, a dynamic parallelization method is required. In
order to parallelize a distributed model with inter-connected
simulation units, Li et al. (2011) developed a dynamic paralleliza-
tion method to balance computation load, resulting in higher
speedup and efficiency of parallel computing. Zhang et al. (2016)
further revised this dynamic parallelization method for hydrolog-
ical model calibration using high-performance computing (HPC)
systems. Nonetheless, at present, massively parallel computational
methods are not often implemented within ecohydrological
models. With the increasing availability of high resolution remote
sensing products as well as high performance computers, there is
an opportunity to improve the accuracy of ecohydrological models
and reduce their computing time.
The WasSSI-C model is a useful ecohydrological model, but a

major limitation is that the model does not operate in parallel.
Continental-scale simulations carried out at a pixel scale require
large computational resources to generate output and post-
processing. Therefore, the aim of this study was to develop a
distributed version of the model (dWaSSI-C), capable of using high
spatial and temporal resolution remote sensing input data. Conti-
nental scale simulations were carried out over Australia to test the
sensitivity of water and carbon estimates to key model parameters.
Specifically, the sensitivity of gross ecosystem production (GEP) to
WUE was investigated for each vegetation type, using the new
parallelized model.

2. Materials and methods

2.1. WaSSI-C model

The WaSSI-C model is an ecohydrological model developed by
Sun et al. (2011b) and typically used to simulate monthly fluxes.
The main purpose of WaSSI-C is to couple the water and carbon
cycles with WUE (a ratio of GEP to Evapotranspiration (ET)) which
is derived from global eddy flux observations. WaSSI-C consists of
two empirical sub-models - a water supply stress index model and
an empirical carbon model. The input data include vegetation type,
soil parameters, monthly mean meteorological forcing and remote
sensed leaf area index (LAI); and the main outputs are runoff, ET,
ecosystem respiration (ER) and GEP.

Potential evapotranspiration (PET) is derived from LAI, precipi-
tation (P) and reference evapotranspiration (ET0) (Sun et al., 2011a).
In order to consider the effect of actual soil water storage on water
fluxes, ET is calculated using the Sacramento soil moisture ac-
counting (SAC-SMA) model (Anderson et al., 2006) with PET. The
Carbon sub-model is an eddy-flux derived WUE empirical carbon
model, which calculates carbon fluxes from ET and WUE. A sche-
matic of the WaSSI-C model is illustrated in Fig. 1 and a more
detailed description of the WaSSI-C model can be found on the
model's website (http://www.forestthreats.org/research/tools/
WaSSI).

2.1.1. Monthly mean meteorological forcing
To simulate carbon and water fluxes over the Australian conti-

nent, monthly gridded rainfall and temperature datawere obtained
from the Ecosystem Modeling and Scaling Infrastructure (eMAST)
ANUClimate v1.0 dataset at 0.01� spatial resolution from 1970 to
2013 (Hutchinson, 2014). The daily rainfall data (in situ) used to
generate the gridded product are from the Australian Bureau of
Meteorology (BoM) network of weather stations. ANUClimate in-
tegrates a new approach to interpolate the station data to a regular
grid using an improved background anomaly interpolation method
and a new “proximity to the coast” modifier (Hutchinson, 2014).

2.1.2. Monthly mean leaf area index (LAI)
The 0.01� gridded monthly LAI for this study were generated by

the Land-atmosphere interaction group at Beijing Normal Univer-
sity (http://globalchange.bnu.edu.cn/research/lai/) (Yuan et al.,
2011). These data were originally obtained from Moderate resolu-
tion imaging spectroradiometer (MODIS) LAI products, and then
were improved by a two-step integrated method. In the first step,
missing and poor quality data were optimized with a modified
temporal spatial filter and MODIS LAI's quality control information.
This database was then fitted by TIMESAT (a software package for
analysing time-series of satellite sensor data) using the Savitzky-
Golay smoothing model to further reduce the potential noise
(Jonsson and Eklundh, 2004). The maximum rather than the mean
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Fig. 1. Schematic diagram of the WaSSI-C model. T, P, LAI, ET, ET0, GEP and ER are
temperature, precipitation, leaf area index, evapotranspiration, reference evapotrans-
piration, gross ecosystem productivity and ecosystem respiration, respectively. The
core of the WaSSI-C model runs continuously for each time step (month).
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of 8-day's LAI in each month was used as the monthly LAI value to
omit the effect of potential noise and clouds (Zhao et al., 2005).
2.1.3. Static soil and vegetation data
Gridded soil properties at 0.01� resolution were derived from

the soil hydrological properties for the Australia dataset (McKenzie
et al., 2000). This dataset provides Australia's soil hydrological
properties for A and B horizons, which are derived from soil
mapping based on the Atlas of Australia Soils. The key soil hydro-
logical properties used byWaSSI-C include the soil depth, soil plant
available water holding capacity, soil thickness, saturated hydraulic
conductivity, field capacity, wilting point and plant available water
holding capacity. Using these soil properties, 11 soil parameters for
both A and B horizons were developed using Anderson's method
(Anderson et al., 2006). These 11 parameters are required by the
SAC-SMA model to calculate the ET in WaSSI-C.

Vegetation types were derived from the MODIS land-cover
product (MCD12Q1) which has a resolution of 500 m (https://
lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/
mcd12q1). This dataset uses the International Geosphere-
Biosphere Programme (IGBP) classification scheme which consists
of 17 general land-cover types, including 11 natural vegetation
classes and 6 other land classes (Friedl et al., 2010; Taylor et al.,
2012). In this study, the original 500 m MODIS land cover data
were interpolated to 50, 20, 10, 5 and 1 km using the “Majority”
resample algorithm (dominant vegetation type) (http://pro.arcgis.
com/en/pro-app/tool-reference/data-management/resample.htm)
for running simulations at different resolutions in order to test the
performance of parallelization method to different resolutions
(described in more detail in Section 2.3).
2.2. Framework of dWaSSI-C

The basic computing unit of the original WaSSI-C model is a
discrete watershed (Sun et al., 2011b). By using averaged climatic
variables, remote sensing and other land surface properties for each
watershed, the original WaSSI-C model provides watershed scale
water and carbon estimates. However, each watershed generally
consists of various vegetation types and soil properties, therefore a
study at the watershed scale cannot provide enough spatial infor-
mation on water and carbon processes. To resolve this issue, the
parallelized and distributed version of WaSSI-C, referred to as
dWaSSI-C from here onwards, was developed to simulate processes
at the pixel scale.

The choice of pixel resolution is one of the key considerations
when running the model. This is illustrated in Fig. 2 showing the
distribution of vegetation types across Australia at 0.5*0.5 km
resolution versus 50*50 km resolution. At coarser resolutions, areas
close to the coastlines are more likely to be missclassified as
compared to higher resolutions, which illustrates the need for
hyper-resolution modeling. However, a key limitation is that the
input data size for the WaSSI-C model increases exponentially with
the increase in resolution of gridded input data as shown in Fig. 3.
For example, the input dataset size increased from 50MB to 850 GB
when the pixel size was reduced from 50*50 km to 0.5*0.5 km,
while the number of grid points increased from 5644 to 53,971,840.
The increasing input data size makes this a memory-bound prob-
lem, which can be handled by splitting the input data into smaller
chunks to fit into the available main memory of a computing node.

2.2.1. Computing infrastructure
Simulations were executed on the Pawsey Supercomputing

Centre's computers called Magnus and Zeus. Magnus is a Cray XC40
series supercomputer using Intel Xeon E5-2690 v3 “Haswell” pro-
cessors (2.6 GHz), with a total of 1488 nodes with 24 CPUs per node
providing a total of 35,712 processor cores. Each compute node has
access to 64 GB of memory. Zeus is an SGI cluster with compute
nodes having Intel Xeon E5-E5-2670 v2 “Ivybridge” processor
(2.5 GHz), with 20 cores, and RAM ranging from 128 to 512 GB per
node. Magnus is designed for parallel applications whereas Zeus is
designed for high memory serial applications. To identify the bot-
tlenecks in the code, serial simulations at different resolutions were
carried out on Zeus so as to make use of the larger amount of
memory (described in more detail in the next sub-section). Based
on these results, parallel simulations were then carried out using
Magnus, to take advantage of the higher number of compute nodes
(described in more detail in section 2.3).

2.2.2. Identifying the bottlenecks
Before parallelizing a model, it is important to first identify the

bottlenecks or hotspots where most of the compute time is spent in
sequential execution of the code. This is illustrated in Table 1
showing the breakdown of time spent in different activities by
the compute resource while running a dWaSSI-C simulation at
5 km resolution on a single core on Zeus. Table 1 shows that most of
the time spent by dWaSSI-C was executing CPU instructions. Most
of the time in CPU was spent fetching data from main memory
upon encountering cache misses. Improving data structures could
improve this metric but the code is clearly memory bandwidth
limited.

Table 2 shows the variation in runtime memory usage with
increasing resolution, and illustrates an inherent limitation of the
model with respect to how large the input datasets can be
ingested when running the model on a single core. The memory
requirement for coarser to finer scales (50e0.5 km) grows expo-
nentially. Scaling up the memory by adding more RAM on the
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Fig. 2. Distribution of vegetation types (MCD12Q1) across the Australian continent at (a) 0.5*0.5 km and (b) 50*50 km resolution. The dots on Panel (a) shows the locations of the
eddy flux sites used for model evaluation.

Fig. 3. Number of grid points and input data size as a function of simulation resolution.

Table 1
Runtime profiling of single threaded simulations at 10 km and 5 km resolution with dWaSSI-C model operated on the Zeus cluster.

Profiling processes Resolution

10 km 5 km

Total time to solution 633.4 s 783.7 s
CPU Instructions 96% 95%

Compute 14.5% 16.5%
Memory access 77.2% 75%
Branch prediction fails 8.3% 8.5%

File I/O 4% 5%
Runtime memory usage 29.4 GB 41.6 GB
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same node may not be a viable option since the code is memory
bandwidth limited. Additionally, such large shared memory ma-
chines are expensive and thus rare. Scaling out, using distributed
memory architecture, is a plausible solution as it provides two
benefits, a) runtime memory can be extended to many nodes, and
b) the bandwidth limitation can be hidden by optimizing the
chunk of the grid running on each node.
Table 3 breaks down the time spent in executing the CPU in-

structions in Table 1 which is 95% for the 5 km resolution simula-
tion. Almost all of the time spent by the CPU is in the subroutine
waterbal, which spends 45% of the time computing instructions in
the local scope of the subroutine and the 38% in calling other



Table 2
Runtimememory usage of single-threaded dWaSSI-C simulations at
20, 10, 5 and 1 km resolution on the Zeus cluster. The 1 km resolu-
tion simulation failed due to insufficient memory and hence the last
reported metric is presented.

Resolution Runtime Memory Usage

20 km 8.74 GB
10 km 29.40 GB
5 km 41.60 GB
1 km >431.26 GB
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subroutines. Most of the instructions are simple arithmetic opera-
tions but the amount of memory access calls by the CPU from
Table 1 suggests that the data locality could be improved. Data
locality/cache reuse (or lack of it) is a systemic problem in the code
and it would therefore be advantageous to investigate the use of
more CPUs. We decomposed the grid into subgrids/subdomains
and allow either threads or independent processes to processes
these subgrids/subdomains.
2.2.3. Model parallelization
The basic computing unit of dWaSSI-C is the pixel and there is

no interaction between pixels. This implies that each pixel can be
computed/processed independently. For each pixel on the 2D
modeling domain, the input and output data can be seen as an n-
dimensional array. The first two dimensions of this n-dimensional
array are the timestamps which include the year and the month. As
the simulation for each pixel is temporally successive, domain
decomposition is conducted to reduce computational time. Thus
the domain containing all the pixels can be split into N subdomains.
Two means of parallelism, a shared memory and a distributed
memory model, were investigated to explore their respective ad-
vantages and limitations.

To exploit the multi-core architecture of modern day chips, a
shared memory model was implemented using OpenMP, which is
an application programming interface for implementing multi-
platform shared memory programming models. The model splits
the domain into N subdomains and distributes thework to OpenMP
threads. The advantage of using this model is that it is able to utilize
all the cores on a multi-core chip. All the threads can access the
global memory address space in a thread-safe manner. The inter-
mediate results are buffered and written by the master thread at
the end. It is important to highlight the inherent limitation of the
shared memory model that the maximum number threads are
limited by the physical core count of the processor and how many
logical CPUs each core can present. The shared memory approach
can have scalability issues when it comes to codes with frequent
memory access, as is the case here.

To address the inherent limitations of OpenMP, i.e. the shared
memory approach, a distributed memory model was implemented
Table 3
Breakdown of CPU time spent executing various instructions. Only the most expensi

Subroutine Self % Child %

wassicbzb 0 100
waterbal 44.6 37.8

8.9 0
8.5 0
7.5 0
2.7 0
2.2 0
2.1 0
1.8 0
as an “embarrassingly parallel” model using Message Passing
Interface (MPI), leveraging the independent computing for each
pixel in this study. In parallel computing, an embarrassingly parallel
workload is one where the problem domain can be decomposed
into subdomains which can then run independently on compute
units with minimal need of synchronization by communicating
between them. The gridded domain was segmented in N sub-
domains and distributed to p MPI-processes. All MPI-processes get
a subdomain of equal size if the total girds N are exactly divisible by
the total number of MPI-processes p. If not, then the last MPI-
process gets the remainder subdomain additionally. Unlike
OpenMP, each MPI process has its local memory address space and
can only communicate to another MPI process via an MPI library
call. When these subdomains are distributed to an MPI-process,
each MPI-process may use OpenMP threads and employ the
shared memory model, as discussed above, as a second level of
parallelism. Thus, the shared memory model using OpenMP can
either be used as standalone parallel model if running on a single
multicore node or as a hybrid model with MPI, as illustrated in
Fig. 4 showing the framework parallelizing dWaSSI.

2.2.4. I/O optimization
Reading and writing large datasets to the disk must keep up to

avoid I/O becoming a bottleneck. In the case of shared memory
parallelism where the dWaSSI-C runs on a single shared memory
node with multiple OpenMP threads, file I/O is handled by a single
thread. This is because disk I/O is not a thread safe operation. Failing
to scale I/O performance with the improving compute performance
would make the code I/O bound (this is discussed in more detail in
Section 3.1).

In the case of the distributed memory model, one MPI-process
does all the I/O, which means scattering and gathering input and
output respectively using MPI. This adds a communication cost and
also creates a limitation that the data should fit into the memory of
MPI-process doing the file I/O. The other possibility could be that
each MPI-process does its own file I/O. This is a good strategy at
small scales but high performance filesystems e.g. Luster, favor
either shared parallel files or the case where a subset of MPI-
processes are responsible to do the file I/O. The later case is more
scalable but requires some communication to scatter and gather
data onto the designatedMPI-processes. In our distributedmemory
implementation of dWaSSI-C, each MPI process reads and writes to
a shared parallel file using the MPI-IO application programming
interface. Additionally, to reduce the archiving requirements, the
output was stored in binary format as opposed to ASCII.

2.3. Model simulations in parallel

To show-case the usefulness of the parallelized dWaSSI-Cmodel,
sensitivity tests were carried out to test the sensitivity of GEP to the
WUE parameter values used by the model. This parameter was
ve subroutines are listed.

Instruction/Subroutine

PROGRAM WaSSICBZB
CALL WATERBAL(ICELL, …, MNDAY) …
RUNLAND(I,J,M,DAY) ¼ SURFRO þ PBF þ SBF þ INF
GEPLAND(I,J,M,DAY) ¼ GEP(J,M)
ETLAND(I,J,M,DAY) ¼ ET(J,M)
(UZTWM(I)þLZTWM(I)))
ELSEIF (LADUSE(I).EQ.8 …. )THEN
ETUZTW(J,M) ¼ ET(J,M)*(UZTWC/UZTWM(I))
220 IF(UZTWC …) GO TO 225
113 others called by waterbal



Fig. 4. Schematic diagram of the parallelization methods for the dWaSSI model (the core of WaSSI-C is shown in Fig. 1). The domain can be divided into n sub-domains and evenly
passed to p Message Passing Interface (MPI) tasks. With the hybrid approach, there can be m (m � 1) OpenMP threads for each MPI task.
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chosen as it couples water and carbon processes and is a key
parameter for estimating GEP. Sensitivity tests were carried out by
running simulations withWUE by ± 1 * SD for each vegetation type
as shown in Table 4. In order to evaluate themodel, 4 eddy flux sites
from the OzFlux network (Beringer et al., 2016; Trudinger et al.,
2016) were used (http://data.ozflux.org.au/). The vegetation types
for these 4 sites (AU-ASM (Cleverly, 2011), AU-Tum (van Gorsel,
2013), AU-Ade (Beringer, 2013a) and AU-DaP (Beringer, 2013b))
are evergreen needleleaf forest (ENF), evergreen broadleaf forest
(EBF), woody savannas (WSA) and grassland (GRA), respectively,
and the locations for these sites are shown in Fig. 2a.
3. Results

3.1. Shared memory model using OpenMP

Fig. 5 demonstrates the speed up achieved by introducing
shared memory parallelism using OpenMP. The profiling was run
on single large memory node on Pawsey's Zeus cluster, with one
thread per core, and up to 16 cores, for simulations at 10 and 5 km
resolution, respectively. OpenMP was implemented to parallelize
the loops processing the input data and in both cases the OpenMP
parallelization did not yield promising results, with a reduction
factor of approximately 1.2 when using 16 OpenMP threads versus a
Table 4
The water use efficiency (WUE) parameter and its standard deviation (SD) for
vegetation types used by the WaSSI-C model (Sun et al., 2011b).

Vegetation type WUE Parameter SD R2

Cropland (CRO) 3.13 1.69 0.78
Evergreen broadleaf forest (EBF) 2.59 0.54 0.92
Grassland (GRA) 2.12 1.66 0.84
Open shrubland (OSH) 1.33 0.47 0.85
Woody Savannas (WSA) 1.26 0.77 0.80
single thread. This slight improvement in the overall compute time
was largely due to the fraction of the compute time spent in
executing the nested DO loops parallelized by OpenMP.

In order to better understand the relatively poor performance of
implementing OpenMP, the total compute time was sub-divided
into the amount of time spent carrying out OpenMP operations,
referred to as the omp region, the amount of time in carrying out File
I/O (i.e. time spend in reading and writing to files), and finally, the
amount of time spent in executing the subroutine output, which
formats the outputs and actually writes output files to disk. This is
illustrated in Fig. 6, which shows that the amount of time spent in
omp region quickly plateaued after 8 threads for both the 10 km and
5 km resolution simulations. The majority of the time was spent in
executing the subroutine output, which runs sequentially as File I/O
Fig. 5. Compute time (s) as a function of the number of OpenMP threads for dWaSSI-C
simulations at (a) 10 km resolution and (b) 5 km resolution.

http://data.ozflux.org.au/


Fig. 6. Percentage of total compute time shown in Fig. 5 for (a-c) 10 km and (d-f) 5 km
resolution dWaSSI-C simulations. omp region refers to the time spent in OpenMP calls.
output func is the time spent in executing the output subroutine which includes pre-
paring the data for writing i.e. formatting and the write statements in the code. The
time spent in File I/O including the write statements in the output subroutine is shown
in (b) and (e). The output subroutine in OpenMP version of dWaSSI-C code is executed
outside the OpenMP region as file I/O is not thread safe.

Fig. 7. Variation in compute time with increasing MPI processes, shown in (a), with 1
and 4 OpenMP threads for dWaSSI-C simulations at 0.5 km resolution. (b) shows the
time spent in executing user subroutines and also isolates the time spent in executing
the subroutine output in particular.
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is thread unsafe and therefore sits outside the scope of OpenMP.
This subroutine takes approximately 65% of the overall compute
time at 10 km resolution and approximately 82% at 5 km resolution
with a single OpenMP thread, and this increases rapidly with
increasing numbers of threads. Thus, introducing OpenMP made
the code I/O bound. However, File I/O of Fig. 6 suggests that a mere
8-20% of total time in either case of input datasets is spent in actual
file I/O. Upon closer inspection, it was found that most of the time
was being spent in Fortran's format calls within the output sub-
routine. Thus, this operation became extremely expensive as the
compute time in loops was reduced by introducing OpenMP.
Fig. 8. (a): Variation in total compute time for a dWaSSI-C simulation at 0.5 km res-
olution using 282 MPI processes, with increasing number of OpenMP threads, (b):
Compute time spent in executing user subroutines which is total - operating system
time, (c): Time spent in the waterbal and output subroutines and (d): the time spent in
the OpenMP region of the code (omp_region) versus the corresponding overhead
imposed by the operating system to manage threads respectively (omp_ovhd).
3.2. Distributed memory model using MPI and hybrid MPI/OpenMP
implementations

As has been described earlier, the distributed memory model
uses MPI to decompose and distribute the subdomains to worker
MPI processes. If only a single OpenMP thread is used, then the
implementation is MPI-only, and if more than 1 OpenMP threads
are used, then the implementation is a hybrid MPI/OpenMP model
as the worker MPI process can then spawn additional OpenMP
threads and thus introduce shared memory parallelism. Fig. 7 (a)
shows the reduction in compute time by using an increasing
number of MPI processes with 1 OpenMP thread (i.e. a pure MPI
implementation), and 4 OpenMP threads (i.e. a hybrid imple-
mentation) for a 0.5 km resolution dWaSSI-C simulation. The
compute time is reduced by approximately a factor of 2 by using
more MPI processes when using a single OpenMP thread. The
effectiveness of using 4 rather than 1 OpenMP threads decreases as
the number of MPI processes increases, which suggests that using
an increasing number of OpenMP threads may not be efficient for
very high resolution simulations. To better understand where
compute time is spent, Fig. 7 (b) shows a break down of the time
spent by the output subroutine and what we refer to as user calls,
which includes all other calls, including the main compute inten-
sive subroutine waterbal (Table 3). The use of more MPI processes
clearly results in a notable reduction in the amount of time spent in
user calls, but notably, the compute time taken by the output sub-
routine also decreases, albeit not as efficiently as user subroutines.
Hence, the introduction of MPI-IO to read and write files in parallel
has removed I/O bottleneck identified in the previous section.
Since the use of 4 versus 1 OpenMP thread leads to a marked

reduction in compute time when using 282 MPI processes (Fig. 7
(a)), we further investigated the impact of using more OpenMP
threads as shown in Fig. 8. Using 8 OpenMP threads only results in a
slight improvement compared to 4, and using 16 actually results in
a slight increase in compute time compared to 8 threads. Most of
the improvement occurs when calling the user subroutines,
waterbal in particular, whereas the output subroutine remains
relatively unaffected as there is no OpenMP region in it. The total
compute time does not improve beyond 4 OpenMP threads, as the
OpenMP overhead (denoted as omp_ovhd in Fig. 8(d)), i.e. the time
cost imposed by the operating system in managing threads be-
comes larger than the time spent in the OpenMP region of the code
(denoted as omp_region in Fig. 8(d)). In summary, for high resolu-
tion simulations using dWaSSI-C, the MPI approach should be
adopted, i.e. scaling to more MPI nodes, while minimizing the
number of OpenMP threads if a hybrid approach is used.

To further improve on the file writing performance, the Lustre
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filesystem file striping feature was explored. File striping is a
feature of Lustre filesystem which is at the core of it being a high
performance parallel filesystem. A file can be written on more than
one disk or Object Storage Targets (OSTs). On a shared filesystem,
repeated access to data residing on a single disk can pose a
bottleneck. This is because data from other users may also be
located on the same disk thus serializing the I/O operation. Striping
the file on multiple storage object reduces the footprint of the data
on a single OST and the I/O requests are fulfilled quickly. Multiple
clients can read or write on different OSTs at the same time. Fig. 9
shows the effect of using an increasing number of stripe counts on
compute time for a 0.5 km resolution dWaSSI-C simulation. Using
16 stripe counts significantly reduced the compute time, but im-
provements beyond 64 stripe counts were minimal. The results
shown in Figs. 7 and 8, corresponded to the input datasets being
read from 16 OSTs and the output files written on 112 OSTs.

In summary, the key factor in improving the performance of
dWaSSI-C is to scale to more MPI processes. In the following sec-
tion, we implement this approach to test the sensitivity of the
model to one of its key parameters.
3.3. Sensitivity of GEP to WUE of dWaSSI-C

Using the distributed version of dWaSSI-C, 5 km resolution
simulations from 2000 to 2013 were conducted to investigate the
sensitivity of the model to the WUE parameter (Table 4), and the
simulated GEP was compared to fluxnet observations at 4 OzFlux
sites (Fig. 2). This is illustrated in Fig. 10 showing monthly time
series of the simulated and observed GEP at the 4 OzFlux sites. The
dWaSSI-C model is able to capture the seasonal variations in GEP as
compared to the observed GEP well. Simulated time series of GEP
were strongly correlated to observed GEP (p < 0.05). For the
sensitivity analysis, the monthly mean simulated GEP by the
dWaSSI-C model was compared to observations at each of the 4
OzFlux sites as illustrated in Fig. 11 showing the monthly climato-
logical comparisons of GEP between the dWaSSI-C model with
WUE ± 1 * SD and observations at the 4 OzFlux sites. Fig. 12 shows
the spatial sensitivity of GEP to WUE during winter and summer.
For those four vegetation types, EBF showed the lowest sensitivity
(< 2.5 g Cm-2 d-1) to variations in theWUE parameter, while GEP of
WSA at the AU-Ade site and GRA at the AU-DaP site demonstrated
very high sensitivity to WUE, especially during the growing season
(about 10 g Cm-2 d-1) (Figs. 11 and 12). In addition, Fig. 11 illustrates
that there is a higher variation of GEP in summer than in winter at
Fig. 9. Effect of Lustre stripe count on the compute time for dWaSSI-C simulations at
5 km resolution.
all of the 4 sites.
Spatially, Fig. 12 demonstrates that GEP in coastal areas was

more sensitive to WUE than inland areas. Moreover, GEP of grass-
land in north Australia had the highest seasonal variation and was
strongly sensitive to WUE, especially in summer, which is the
monsoon season. The absolute difference in GEP between control
and control þ1 * SD for WSA was less than 1 g C m-2 d-1 in winter
but more than 8 g C m-2 d-1 in summer. The GEP of OSH in inland
areas was not sensitive to WUE irrespective of the season. GEP of
EBF and CRO along the south coast areas demonstrated moderate
sensitivity to WUE, with absolute differences between the control
and control þ1 * SD of approximately 2.5 g C m-2 d-1.

The root mean square errors of the regressions between simu-
lated and observed GEP time series at the AU-ASM, AU-Tum, AU-
Ade and AU-DaP were 0.8, 1.5, 1.9 and 2.1 g C m-2 d-1, respec-
tively. With the default WUE for each vegetation type, GEP at AU-
DaP showed the best agreement between dWaSSI-C and OzFlux
observations. The dWaSSI-C model showed a tendency to under-
estimate GEP at the AU-Tum site in summer, but overestimated GEP
in summer at the AU-Ade and AU-ASM sites (Fig. 11).
3.4. Water and carbon estimates over the Australian continent from
2000 to 2013

Water and carbon fluxes over the Australian continent were
simulated using the parallelized dWaSSI-C model at a 5*5 km using
the default parameters from 2000 to 2013. The mean annual ET and
GEP were 0.54 mm d-1 and 1.0 g C m-2 d-1, respectively, and the
annual mean ET generally showed a similar spatial pattern to GEP
as shown in Fig. 13. There were explicit gradients of water and
carbon fluxes from inland arid zones to coastal temperate and
tropical zones. Specifically, ET ranged from approximately 0.4 to
1.95mm d-1 from themiddle eastern and western inland arid zones
to the eastern and southwestern temperate and northern tropical
coastal zones, while GEP ranged from approximately 0.7 to 4.4 g C
m-2 d-1.

As for vegetation types, EBF, which was mainly distributed along
the southwest and southeast temperate zones, showed the highest
carbon productivity with mean annual ET and GEP of 1.9 mm d-1

and 4.9 g C m-2 d-1, respectively. Although EBF makes up only
approximately 1% of total vegetation cover, this vegetation type still
plays an important role in carbon sequestration, as it is photosyn-
thetically active throughout the year. The dominant vegetation in
Australia is OSH, which accounts for 67% mainly in the inland arid
zone, and showed the lowest carbon productivity, with ET and GEP
around 0.7 mm year-1 and 1.6 g C m-2 d-1, respectively. This was
mainly the result of the shortage of water. CRO and WSA, which
were located in the transitional areas between forest and shrub-
lands and account for approximately 10% of vegetation cover,
showed a similar capacity for carbon sequestration (3.1 g C m-2 d-1),
but the ET of WSA (1.7 mm d-1) was much higher than that of CRO
(1.2 mm year-1). SA, in the northern tropical zone, had modest
carbon sequestration capacity, with ET and GEP of approximately
2.1 mm d-1 and 4.6 g C m-2 d-1, respectively.

Overall, the dWaSSI-C model can capture the seasonal cycles of
both water and carbon fluxes reasonably well. However, biases
between observations and simulated GEP can still be large (Fig. 10)
and therefore, the model needs further calibration and evaluation
before answering more specific scientific questions, such as the
impacts of future climate change on the water and carbon cycles
over the Australian continent. Since the main aim of this paper is to
show-case the usefulness of parallelizing the model, further model
calibration and evaluation is outside the scope of this paper, but
will be the subject of future work.



Fig. 10. Time series of simulated by dWaSSI-C (lines) and observed by OzFlux (points) gross ecosystem productivity (GEP, g C m-2 d-1) at (a) AU-ASM, (b) AU-Tum, (c) AU-Ade and (d)
AU-DaP. The shaded region represents GEP simulated by the dWaSSI-C model with WUE ± 1 * SD. ENF, EBF, WSA and GRA represent evergreen needleleaf forest, evergreen broadleaf
forest, woody savannas and grassland, respectively.
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4. Discussion and conclusions

4.1. Parallel model

The dWaSSI-C model is memory-bound and using shared-
memory parallelism (OpenMP) alone, has significant limitations
(Fig. 5). The use of distributed memory parallelism (MPI) allows for
the model domain to be decomposed into smaller chunks, which
are processed independently and this allows the code to run much
more efficiently (Fig. 7, single thread use). Using the hybrid
approach with up to 16 OpenMP threads only did not increase
performance markedly (Fig. 8), and hence, running the model as
MPI-only is also a viable option. Ideally, the computation time
should decrease linearly with the increase in MPI processors. In the
real world however, adding more resources does not necessarily
make the code run faster. This is because the time taken by the
parallelized computational part of the code reduces as the problem
domain is decomposed and distributed more finely. Thus, at one
point, the overhead of communication and/or disk I/O surpasses the
expense of computation. The scaling graphs in Fig. 7 demonstrate
that there is an optimum number of MPI processes to maximize the
usage of the computation resource of a computation node. This
optimum number or sweet spot is dependent on the size/resolution
of the problem domain, and hence, scaling tests should be carried
out for different resolutions prior to running ensembles. Another
advantage of the using the distributed memory model is the scal-
ability in terms of memory. A problem size posed by, for example,
the 0.5 km resolution simulation, is impractically large to simulate
on any high-end desktop or even a sharedmemorymachine.With a
distributed model, the more computation nodes available, the
larger the problem that can be mapped.
4.2. Effects of resolution of input data

Vegetation cover datasets with different resolutions were used
to test the performance of parallelizationmethod. In addition to the
spatial scale, the temporal scale can also vary, depending on the
application of a model. For the dWaSSI-C model, the basic temporal
scale has been fixed as a monthly time period. However, this is still
a controversial and complex issue for ecological studies, because
water and carbon processes at a specific scale are influenced by
structure and function of other scales (Turnbull et al., 2008). In
addition, these effects may even be non-linear, which changes the
basic mathematical relationships for water and carbon processes
during scaling (Yu et al., 2008). Thus, a mechanistic interpretation
of the behaviour of a system can only be derived by an assessment
of the extent to which ecosystem structure and function are con-
nected through time and space (Turnbull et al., 2008).



Fig. 11. Monthly mean of gross ecosystem productivity (GEP, g C m-2 d-1) simulated by dWaSSI-C (red lines) and observed by OzFlux (blue lines) at (a) AU-ASM, (b) AU-Tum, (c) AU-
Ade and (d) AU-DaP. The shaded region represents long-term (from 2000 to 2013) monthly mean GEP simulated by the dWaSSI-C model with WUE ± 1 * SD. Error bars on the lines
represent one standard deviation for the monthly GEP during the period with observation data at each OzFlux site. ENF, EBF, WSA and GRA represent evergreen needleleaf forest,
evergreen broadleaf forest, woody savannas and grassland, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 12. Absolute differences in Gross Ecosystem Productivity (GEP, g C m-2 d-1) in (a) winter (JJA) and (b) summer (DJF) between the control and control þ 1 * SD of the WUE
parameter.
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Fig. 13. Mean annual (a) evapotranspiration (ET, mm d-1) and (b) gross ecosystem productivity (GEP, g C m-2 d-1) estimates over the Australian continent from 5 * 5 km resolution
dWaSSI-C simulations, averaged from 2000 to 2013.
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In this study, we found that resolution of the input vegetation
data-sets had little effect on water and carbon estimates by the
dWaSSI-C model when the estimates were compared over the
whole Australian continent. However, for each pixel, vegetation
type is one of the most important factors influencing model esti-
mates of water and carbon fluxes. Ecologically, vegetation spatial
organization and constitution affect both water availability and
carbon sequestration. Currently, the most commonly used remote
sensing data used for terrestrial ecosystem detection are Landsat
andMODIS, which have resolutions of 30m and 500m respectively.
Even at the highest (30 m) resolution, each pixel may still represent
combinations of several types of vegetation, hydrology, and soil
characteristics, all of which can contribute to higher variability of
fluxes within one pixel. Ma et al. (2015) found that a forest
ecosystem carbon budget model for China at a 0.5 * 0.5� resolution,
overestimated the forest gross carbon dioxide uptake by approxi-
mately 8.7% because the vegetation fraction per grid cell was not
taken into consideration. Similarly, the dWaSSI-C model only con-
siders one vegetation type per grid cell and hence, to accurately
simulate water and carbon processes, the vegetation fraction per
grid cell should be taken into consideration, and this is likely to add
to the computational time.

Vegetation is a key factor which determines hydrological par-
titioning in a watershed and the consequences for watershed-scale
hydrology. However, the role of vegetation in controlling the spatial
and temporal dependence of water balance partitioning remains
challenging to elucidate. Wood et al. (1988) suggests that there is a
specific spatial resolution for each model at which point the model
is insensitive to higher resolutions. Wolock (1995) found that the
simulation accuracy of a topographical based hydrological model,
TOPMODEL, increased with increasing resolution from 5*5 to
0.05*0.05 km in the Sleepers River Watershed, Vermont, USA. To
resolve the difficulty of finding the most appropriate spatial reso-
lution for hydrologymodels, Dehotin and Braud (2008) developed a
nested discretization method, which allows a controlled and
objective trade-off between available data, the resolution of the
dominant water cycle components and the modeling objectives.
Currently, dWaSSI-C has been only used for the watershed scale
and its ideal simulation spatial resolution is still not clear.
Therefore, using the parallelized version of dWaSSI-C, the ideal
spatial resolution of dWaSSI-C and the effects of resolution of input
data on the simulation can be more efficiently studied in the future.
4.3. Uncertainty of dWaSSI-C and future work

Although the dWaSSI-C model, when operated using default
WUE parameters, can clearly capture the seasonal cycle of water
and carbon fluxes in comparison with observations, a large area of
Australia, such as the WSA and GRA areas, showed very high
sensitivity of GEP to WUE, especially during the growing season
(Figs.10 and 11). These sensitivity results suggest thatWUE is a very
important and highly sensitive parameter for carbon flux estima-
tions. Even when using the default WUE parameters, differences
between the simulated and observed fluxes can be large, for
example, during the first half of 2007 for WSA (Fig. 10). Given that
there are observations available from around 30 sites from the
OzFlux network (http://www.ozflux.org.au), and only two sites
have been used for building the default model by Sun et al. (2011b),
there is clearly scope for further work in better constraining the
model using the latest available observational fluxes from the
OzFlux network.

Another source of uncertainty in eco-hydrological models is the
meteorological driving data (Slevin et al., 2017). The gridded
climate data used in this study is originally interpolated from point
observations of weather stations across the Australian continent.
Therefore, the number of observations and the accuracy of the
interpolation determine the quality of the climate data (Jones et al.,
2009). A large portion of the inland arid Australian continent is
poorly covered by meteorological stations, and hence, there is
greater uncertainty in these regions (Jones et al., 2009). With the
parallelized dWaSSI-C model, it is much easier and faster to
conduct a model sensitivity analysis for the driving meteorological
data.

Currently, all input and output data of dWaSSI-C model are
stored in binary format, which has several disadvantages, such as
the need for more processing to further analyze and visualize the
data, and the need for additional documentation about the output
binary format. Hierarchical Data Format (HDF) and Network

http://www.ozflux.org.au
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Common Data Format (NetCDF) provide a solution to these issues
by enabling easier visualization and processing of model outputs,
and have the added advantage that the meta-data are easily
accessible from the output file, which avoids the need for additional
documentation. Additionally, with NetCDF/HDF5 formats, the input
and output datasets can be read and written in parallel, which
would further reduce the compute time of the model. The perfor-
mance of NetCDF/HDF5 formats will be analyzed as part of future
research.
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Abbreviations
The following abbreviations are used in this manuscript
WaSSI-C Water Supply Stress Index and Carbon model
dWaSSI-C distributed WaSSI-C
OpenMP Open Multi-Processing
MPI Message Passing Interface
I/O input and output
SAC-SMASoil accounting content - Soil moisture availibity
WUE Water use efficiency
ET Evapotranspiration
PET Potential evapotranspiration
GEP Gross ecosystem productivity
ET0 Reference evapotranspiration
ER Ecosystem respiration
LAI Leaf area index
MODIS Moderate-resolution imaging spectroradiometer
MCD12Q1 The Land Cover Type Climate Modeling Grid (CMG)

product of MODIS
IGBP International Geosphere-Biosphere Programme
EBF Evergreen broadleaf forest
ENF Evergreen needleleaf forest
OSH Open shrubland
WSA Woody savannas
SA Savannas
GRA Grassland
CRO Cropland
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