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Pest Risk Maps for Invasive  
Alien Species: A Roadmap for  
Improvement
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Pest risk maps are powerful visual communication tools to describe where invasive alien species might arrive, establish, spread, or cause harmful 
impacts. These maps inform strategic and tactical pest management decisions, such as potential restrictions on international trade or the design of 
pest surveys and domestic quarantines. Diverse methods are available to create pest risk maps, and can potentially yield different depictions of risk 
for the same species. Inherent uncertainties about the biology of the invader, future climate conditions, and species interactions further complicate 
map interpretation. If multiple maps are available, risk managers must choose how to incorporate the various representations of risk into their 
decisionmaking process, and may make significant errors if they misunderstand what each map portrays. This article describes the need for pest 
risk maps, compares pest risk mapping methods, and recommends future research to improve such important decision-support tools. 
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these estimates (FAO 2007), but these maps are simply 
visual representations of underlying models that help to 
characterize pest risk.

Producing models that contribute to the estimation of 
pest risk poses daunting challenges to risk analysts and 
researchers. How does one reliably estimate the potential 
distribution and harmful impacts of a species that has 
never before been present in an area of concern? What 
environmental, ecological, and evolutionary factors must 
be considered? What are the consequences of ignoring or 
oversimplifying certain factors or processes? Given that little 
or no empirical data about the species in the threatened area 
may be available, what other sources of information might 
be suitable surrogates? How do information needs and 
sources change as the spatial scale of the assessment changes 
(e.g., from entire continents to small parcels of land)? These 
questions define broad avenues for future research because 
answers thus far remain largely subjective, often debated, 
and typically untested.

The idealized process for developing a pest risk map 
(figure 1) begins with an action, such as a new pest incur-
sion, a proposed change in international trade, or the recog-
nition of a species as a biosecurity threat. This event leads 
to a detailed formulation of the problem, which includes an 
extensive search for information regarding the species and 

Strategic and tactical decisions for the management   
of invasive alien species depend on accurate spatial 

and temporal characterizations of pest risk. Options 
for managing biological invasions include prevention, 
eradication, containment, and suppression (reviewed in 
Venette and Koch 2009). For decisionmakers to determine 
whether management is needed, and, if so, which option 
is most appropriate, they must know the potential for a 
species to bring harmful ecological, economic, or social 
impacts to places outside its native range. Those species 
with some potential to cause harm in an area of concern 
are considered to be “pests,” and analysts can estimate 
this potential through pest risk assessment (FAO 2007). 
Pest risk describes (a) the likelihood that a species will 
successfully invade an area, and (b) the magnitude of 
resulting harm. Thus, a complete risk assessment relies 
on underlying models and their projections of species 
entry, establishment, spread, and impact within an area 
of interest. For invasive alien species that are not yet pres-
ent in an area of concern, or that are present but have a 
limited distribution, the models should provide timely 
insights about the potential geographic range and im-
pact the species might have—without waiting for those 
effects to be realized. Maps of endangered areas provide 
a powerful means of communicating spatial patterns in 
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endangered area. Choices are made about whether the goal 
of the model should be to assess the probability of invasion, 
the consequences of invasion, or both, given the available 
information. The problem-formulation step also involves 
careful discussions with decisionmakers and stakeholders 
and should be informed by relevant theories and informa-
tion from the broader research community (e.g., climatol-
ogy, ecology, economics, social science, etc.).

In the analysis phase, one or more models are selected, cal-
ibrated, verified to satisfy underlying assumptions, and vali-
dated against independent data. Previous research provides 
insights on factors that should be included in the model, 
potential model performance, and methods of validation. 
Additional models may be considered if initial selections 
do not perform well. Finally, results are depicted on one or 
more maps and interpreted relative to the uncertainty in the 
models. Throughout the process, the analyst maintains com-
munication with stakeholders and decisionmakers. The final 
products are given to a decisionmaker to assist in selecting 
risk-mitigation measures that will reduce the probability of 
pest entry and establishment and maximize prospects for an 
effective response should these events occur. Risk-mitigation 
measures could include, for example, the passage of appro-
priate phytosanitary regulations, allocation of resources 
to respond to the event, establishment of pest-surveillance 
networks, or the development of effective diagnostic capa-
bilities. In some cases, especially when a number of possible 
projections have been produced, the mitigation decision 
itself may prompt a new round of analysis.

Ideally, a pest risk model and map would address the 
probability and consequences of invasion, both of which are 
required for a pest risk assessment (FAO 2007). In practice, 
models have been used primarily to identify areas where a 
species is most likely to enter, establish, or spread, evaluat-
ing one or more these outcomes in isolation or in aggregate. 
These models and maps inform components of a pest risk 

assessment but are not complete assessments per se. How-
ever, models and maps that describe the potential suitability 
of environments for pest establishment are especially impor-
tant because if a pest arrives in an area that is unsuitable for 
establishment, it poses little risk. Climatic suitability also sets 
bounds on future spread (e.g., Pitt et al. 2009). 

Models of the potential distribution of an invasive alien 
species in an area of concern are now relatively easy to pro-
duce. Computers with sufficient computational power to 
perform extensive analyses are inexpensive and accessible. 
Geographic information systems now have the capacity 
to process complex spatial data sets. Numerous ecological 
niche models are now available to relate biotic and abiotic 
conditions to the probability of a species being present at a 
site (Kriticos and Randall 2001, Peterson and Vieglais 2001, 
Hirzel and Le Lay 2008). Global environmental databases, 
many in digital format, are now more readily available 
than they were in the past, and information about spe-
cies’ geographic distributions is more accurate and more 
extensive. Collectively, these advancements have facilitated 
the development of pest risk models and maps, but ques-
tions surround how models and maps should be made and 
interpreted. Different objectives, assumptions, modeling 
approaches, and underlying data lead to different pest risk 
maps (figure 2). Indiscriminate model selection may cause 
incorrect estimates of invasive alien species’ potential ranges 
and inaccurate assessments of pest risk. Consequently, deci-
sionmakers may select the wrong mitigation measure and 
over- or underinvest in that strategy.

Figure 2 shows three pest risk maps for Phytophthora 
ramorum, an invasive alien pathogen responsible for several 
plant diseases in Europe and the United States. The maps 
were prompted at different times, either when P. ramorum 
was identified as the cause of tanoak (Lithocarpus densi-
florus) and oak (Quercus spp.) mortality in California and 
Oregon, or when the pathogen moved across the United 

Figure 1. Conceptual diagram of events that lead to the development of a pest risk map for invasive alien 
species. Risk analysts maintain communication with decisionmakers and stakeholders throughout the process. 
As the process completes, models and maps are provided to decisionmakers who are responsible for risk-
mitigation decisions. Numbers correspond to recommendations for improvements provided in the text.
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States in infected nursery stock. All three maps relate to 
the probability of the pathogen’s invasion into the conter-
minous United States and provide guidance on where to 
survey, but they offer no estimate of the pathogen’s potential 
consequences. The models underlying the maps incorporate 

different factors because the analysts making them had dif-
ferent perspectives on the importance of each factor relative 
to the quality of available data about it. Figure 2a illustrates 
the relative suitability of the climate for P. ramorum estab-
lishment based on output from the model CLIMEX (Venette 
and Cohen 2006). Figure 2b provides a relative index that 
integrates potential host density with output data from the 
NAPPFAST model of winter survival and climate suitability 
for P. ramorum infection (Magarey et al. 2007). Figure 2c 
gives a general index of the potential arrival of the pathogen 
on Rhododendron species nursery stock, suitability of climate 
for establishment, and presence of a subset of hosts based 
on an expert-driven, rule-based model (USDA 2004). These 
maps have several similarities, particularly with respect to 
no- or low-risk estimates for much of the western United 
States, but differ in the estimated extent and pattern of 
“some” risk, particularly for the eastern half of the country. 
These differences affect practical decisions about the neces-
sary extent of early-detection surveys, especially in most 
Gulf Coast states. 

This article is the result of the first meeting of the Inter-
national Pest Risk Mapping Workgroup, convened by the 
US Department of Agriculture (USDA) Animal and Plant 
Health Inspection Service in June 2007. Twenty-two profes-
sionals from Australia, New Zealand, Canada, the United 
States, England, and Norway, with close connections to 
research and regulatory communities for invasive alien spe-
cies, met to review recent advances in pest risk mapping 
approaches, provide general recommendations for such 
mapping, and chart a course to improve future risk maps. 
In this article, we place pest risk maps in a historical context 
and review common approaches behind their development. 
We explain the relationship between these approaches and 
similar methods applied to native species. Finally, we report 
our key recommendations to improve pest risk mapping 
procedures and products. We hope that these recommenda-
tions will help pest risk managers produce better estimates 
of the spatial dynamics and impacts of invasive alien species, 
broaden our understanding of the processes that underlie 
biological invasions, and improve communications about 
pest risk models and maps. 

Historical context for modern pest risk maps
Pest risk maps have their foundation in fundamental ecolog-
ical concepts that address factors governing species’ distribu-
tion and abundance. For example, the Sprengel-Liebig law of 
the minimum explains that the environmental resource in 
shortest supply limits population growth (reviewed in van 
der Ploeg et al. 1999). Shelford’s law of tolerance expands 
this tenet for each environmental resource by incorporat-
ing a lower and upper bound at which population growth 
starts and stops, respectively; a narrower optimal range in 
which population growth is maximized occurs between the 
two bounds (reviewed in Shelford 1963). If a resource falls 
outside the optimal range but within the lower and upper 
bounds, it limits population growth and is subject to the 

Figure 2. Pest risk maps for Phytophthora ramorum, the 
pathogen responsible for sudden oak death, reflecting 
the results of (a) a CLIMEX model describing climatic 
suitability for infection and growth (Venette and Cohen 
2006), (b) a NAPPFAST model and expert rule to measure 
the relative likelihood of the pathogen encountering suitable 
hosts and climate for infection (Magarey et al. 2007), and 
(c) an expert-driven rule set characterizing the relative risk 
of pathogen arrival and establishment (USDA 2004).
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constraints of the Sprengel-Liebig law. These laws typically 
apply to abiotic resources, such as heat, light, or nutrients, 
and do not explicitly consider the interactions a species may 
have with resident taxa.

The relative importance of density-dependent  
(e.g., interspecific and intraspecific interactions) and 
density-independent (e.g., climatic) factors on population 
dynamics has been a long-standing source of academic 
debate. In the late 1850s, for example, Darwin empha-
sized the role of competition in determining the fitness 
of individuals, while Wallace advocated that less-fit indi-
viduals are eliminated because of environmental adversity 
(reviewed in Bulmer 2005). In the 1950s, Nicholson con-
tended that variations in population size and distribution 
were determined predominantly by density-dependent 
feedback mechanisms such as competition, predation, or 
parasitism (e.g., Nicholson 1954). Nicholson’s contem-
poraries, Andrewartha and Birch (1954), believed that 
environmental stochasticity was the main factor affect-
ing population size and distribution. At the 22nd Cold 
Spring Harbor Symposium in 1957, the groups came 
face to face, but no consensus was reached (MacArthur 
1960). Elements of the debate resurfaced when Davis and 
colleagues (1998) experimentally demonstrated that two 
fruit fly species would expand their temperature range 
(sensu Shelford) if competitors were removed. However, 
while recognizing that species interactions are important 
in the field, Hodkinson (1999) and Baker and colleagues 
(2000) argued that experiments in confined spaces are 
likely to overestimate species interactions because they do 
not provide the heterogeneous habitats that allow fauna, 
such as these two Drosophila species, to coexist. 

Today, most ecologists acknowledge the significance of both 
density-dependent and -independent factors for population 
dynamics. Hutchinson’s (1957) concept of niche provides a 
framework to integrate these factors. Central to this concept 
are the realized niche and fundamental niche, which describe 
the n-dimensional environmental conditions under which a 
species can persist in the presence of other species (including 
natural enemies) and their absence, respectively. In geographic 
space, the fundamental niche, representing the ecophysiologi-
cal limits to the persistence of a species, will be more extensive 
than the realized niche, and the realized niche will always 
occur within the fundamental niche (Brown et al. 1996). 

Most pest risk models attempt to characterize dimen-
sions of a species’ fundamental niche (e.g., McKenney 
et al. 2007). On average, these models tend to perform 
well over multiple locations, but are less reliable for 
a specific location. Models that explicitly incorporate 
density-dependent factors and characterize dimensions of 
the realized niche may provide better forecasts for a spe-
cific location if intra- and interspecific interactions restrict 
species ranges. Pest risk models that incorporate these 
interactions are less common because they require substan-
tially more information about the diversity and dynamics 
of resident taxa and their interactions with an invasive alien 

species. This information is not often available over large 
geographic scales. In addition, the high site specificity of 
many realized-niche models often precludes application to 
other geographic areas.

Creation of pest risk maps
The creation of pest risk maps involves many steps. We out-
line and describe them below. 

Requisite information. Knowledge of a species’ current distri-
bution is a fundamental building block of most ecological 
niche models. The primary sources of pest distribution data 
for modeling purposes are field surveys, museum collections, 
phytosanitary inspections, literature reports, dedicated pest-
distribution databases, and expert opinions. For example, 
the Pest Information Platform compiles observations from 
field personnel to provide near real-time distributions for a 
targeted set of species within the United States (Isard et al. 
2006). Similarly, the Global Biodiversity Information Facility 
(www.gbif.org) allows users to download data from a large 
number of museums and sources worldwide.

Access to numerous databases unfortunately does not 
ensure acquisition of adequate data for model construction. 
Primary sources typically provide presence information, 
but in most cases specimens and their locality information 
were collected without the intention of generating a model 
or map. Records are vulnerable to epistemic uncertainty 
caused by incomplete or inadequate information or linguis-
tic uncertainty caused by misinterpretation of the available 
information (Regan et al. 2002). For example, a record may 
not indicate whether a specimen came from a self-sustaining 
population or from a few individuals recently brought by 
cargo or wind. Distribution records do not always specify 
the local abundance of the species, or whether specimens 
were alive or dead at the time of collection—both indicators 
of the suitability of an environment for a species. Likewise, 
a specimen’s reported location may be misleadingly vague if 
the place name is common to a city, county, and state. Often, 
specimen records are not linked to voucher specimens, so 
their identity cannot be subsequently verified. Related to this 
is the ongoing process of taxonomic revision leading to spe-
cies’ name changes. Such potential geographic, taxonomic, 
and epistemic uncertainties could have critical negative 
impacts on models derived from such records.

Secondary sources of information, such as pest infor-
mation sheets, literature reviews, literature databases, and 
compilation maps, summarize information from primary 
sources. These data may create new challenges if primary 
sources are misinterpreted or if only coarse geographic 
information is reported. In some cases, important details 
that are necessary to evaluate the veracity of the records are 
lost during collation. Coarse descriptors of geographic dis-
tribution—for example, at a national or regional level—are 
often useless for many modeling techniques that associate 
environmental variables with the probability that a species 
is present in an area. 
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Recently, some species surveys have started to report 
absence information—areas where a deliberate search was 
conducted but the species was not found (e.g., Kriticos 
et al. 2007). Details of the intensity of the search in space 
and time and the sensitivity of sampling methods become 
critically important (Venette et al. 2002). “Absence” as a 
mere consequence of never having looked for a species, or 
of a species never having had an opportunity to arrive in 
an area, indicates little about the potential for establishment 
within that area.

In addition to empirical observations of a species in space 
and time, ecological niche models may be driven by a more 
basic understanding of the direct effects of environmental 
gradients on population processes for a species of interest. 
For example, developmental and reproductive rates of poiki-
lotherms depend on exposures to temperatures over time 
(often measured in units of degree days) above a minimum 
threshold (Jarvis and Baker 2001). To estimate areas where 
establishment of an organism may be precluded, managers 
have used knowledge of the number of degree days an organ-
ism might accumulate in an area and how many it needs to 
complete its life cycle. Knowledge of population responses 
to environmental stressors (e.g., cold, heat, etc.) is needed to 
estimate establishment if the number of degree days in an 
area is adequate for a species to complete its life cycle.

Time series data that describe fluctuations in population 
densities are infrequently used to evaluate the impacts of 
climate on the presence or abundance of invasive alien spe-
cies. Time series data collected at multiple locations might 
provide unique insights that mere presence and absence data 
cannot, especially with respect to the relative importance of 
density-dependent or density-independent effects, although 
we know of few instances where this approach has been 
applied.

Pest risk models also require spatially explicit data (i.e., 
covariates) that describe environmental conditions within 
the area of interest. Global data (measured and processed 
in a consistent way) are needed so that analyses within and 
outside the species’ current distribution are possible. Global 
measurements of temperature, precipitation, and elevation, 
for example, satisfy these criteria and are often used.

A common problem is that critical biological and envi-
ronmental data for invasive alien species are not available in 
areas where they are most needed. For example, the global 
distribution and abundance of potential host plants for inva-
sive alien herbivores are not available. More important, data 
describing the distribution and abundance of invasive alien 
species in their native ranges are often poorly cataloged and 
exist in a form not readily available to the broader research 
community. Furthermore, in regions where investment in 
instrumentation infrastructure has been lacking, facilities 
such as weather stations may be limited. In both cases, it is 
difficult to develop reliable models that relate species occur-
rence to environmental covariates. The lack of instrumenta-
tion infrastructure is also problematic when analysts begin 
to apply pest risk models.

Model selection. Numerous approaches are available to 
model the potential distribution of species with respect to 
climate or other variables. Many researchers have described 
and compared these approaches (Guisan and Zimmermann 
2000, Kriticos and Randall 2001, Baker 2002, Worner 2002, 
Elith et al. 2006). Table 1 provides a brief description of some 
common approaches but excludes many process-oriented 
models developed for specific insects or plant pathogens 
(e.g., GMPHEN for gypsy moth, Lymantria dispar; Sheehan 
1992).

The approaches in table 1 are designed to describe the 
relationship between environmental covariates and the 
potential occurrence of a species, but they differ consid-
erably in their underlying philosophy, particularly with 
respect to whether an inductive, deductive, or combined 
process is used to determine the relationship (Sutherst  
et al. 1995). Deductive approaches use detailed knowledge 
of climatic preferences determined from laboratory studies 
to infer where a species can occur. Inductive approaches use 
statistical analyses of the known distribution of a species and 
climatic data to estimate its climatic preferences. Some mod-
eling approaches, such as CLIMEX, NAPPFAST, or expert-
driven rule sets, are flexible enough to use deductive or 
inductive methods to determine relationships between the 
presence of a species and environmental covariates. Pitt and 
colleagues (2009) used an expert-driven rule set to classify 
the suitability of different land-cover classifications for the 
Argentine ant, Linepithema humile, in New Zealand (induc-
tive rules; figure 3a), distinguish categories based on average 
annual degree days accumulated above 15.9 degrees Celsius 
(deductive rules; figure 3b), and combine these factors into 
an index of habitat suitability (figure 3c). Regardless of how 
the relationships between environmental covariates and 
species presence were determined, their application to a 
landscape follows deductive reasoning.

Inductive approaches to determine the relationship 
between environmental covariates and the occurrence of 
an invasive alien species require less knowledge of a species’ 
biology; they can rapidly provide pest risk maps for coordi-
nated surveillance, control, and communication in response 
to a pest incursion. The results of inductive approaches may 
also suggest complex interactions between a species and 
its environment (Worner 2002). However, variables and 
parameters should be supported biologically rather than 
purely statistically (Harvey et al. 1983); otherwise, induc-
tive methods run the risk of becoming mere modeling 
exercises without deepening our understanding of the fac-
tors that affect population processes. In particular, without 
rigorous validation, inductive methods run the danger of 
“overfitting” the underlying relationships between environ-
mental variables and species occurrence, and predicting that 
the species will be found only in areas proximal to where it 
currently occurs. Inductive approaches also run the danger 
of unintentionally ascribing other variation in a landscape 
to climate. For example, Beale and colleagues (2008) found 
a poor association between climate and European bird 
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Figure 3. Contributions of expert rules for (a) land cover classifications and (b) annual accumulation of 
degree days above 15.9 degrees Celsius to estimate (c) habitat suitability for Linepithema humile, Argentine 
ant, in New Zealand. Maps reprinted from Pitt and colleagues (2009) with permission of the Ecological 
Society of America.

Table 1. Common approaches used to predict species distributions based on an inductive or deductive understanding of 
the influence of environmental conditions on populations.

Approach Description Inductive or deductive

artificial neural networks (ann) general modeling technique based on machine learning i 

bioCliM/anuCliM Climate pattern-matching with minimum bounding rectangle (MbR) i 

bioMoD applies the four most widely used modeling techniques in species predictions, namely 
generalized linear Models (glM), generalized additive Models (gaM), Classification 
and Regression tree analysis (CaRt), and ann

i 

CaRt (Classification and  
Regression trees)

general statistical procedure for defining set membership based upon  
environmental correlates i 

CliMate Climate pattern-matching with choice of several match techniques, including MbR  
and point-to-point similarity indices i 

CliMate enVeloPe Climate pattern-matching using MbR i

CliMex: Compare locations  
function

Process-oriented model describing species response to climatic variables and  
predicting climatic suitability i/D 

CliMex: Match climates function Climate pattern-matching procedure generates an index of climatic similarity i

DoMain Climate pattern-matching using a point-to-point similarity index i 

enFa (ecological niche Factor 
analysis) 

Computes suitability functions by comparing the species distributions in 
ecogeographical variables space with that of the whole set of cells using a  
multivariate approach

i 

expert-driven rule set Personal opinion about the factors and conditions that determine species  
presence; often expressed as a series of “if...then” statements i/D

FloraMap Principal components analysis of monthly climate data using multivariate and Fourier 
transformation techniques i 

gaRP generates environment-description rules using machine-learning techniques i 

glM/gaM generalized linear model/generalized additive model; general statistical  
procedures for fitting species response functions to survey data i 

gRasP generalized regression analysis and spatial prediction i 

Habitat Creates a convex polytope in n-dimensional space i 

Maxent Probabilistic machine learning technique based on the distribution of maximum 
entropy i 

naPPFast online templates for phenology, infection, and empirical models and a climate-matching tool i/D

stasH Process-oriented model describing species response to climatic variables, and  
predicting climatic suitability D 
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variability in biotic responses to environmental conditions 
and spatial and temporal variation in those conditions com-
plicate model calibration (also known as parameter fitting). 
Models are said to be “verified” when results conform to 
underlying model assumptions.

Once a meaningful model has been developed, it may be 
validated by comparing its projections with independent 
data not used for calibration (Jeffers 1988). Often, data 
sets are stratified to generate a set of independent data for 
analysis of model behavior, but the method of stratification 
is significant. Validation is most rigorous when it is based 
on a biased subset of data that are spatially and climatically 
distinct from the data that were used to calibrate the model. 
Such validation provides a more meaningful measure of the 
transferability of the model to new places or time periods 
(Phillips 2008). For pest risk models, validation in an area of 
interest is problematic, particularly in cases where a model 
projects presence but the species has not been observed. The 
model may be wrong (a statistical type II error) or the spe-
cies may simply have not yet arrived.

Pest risk maps must be interpreted with a full understand-
ing of what the map seeks to portray and the assumptions 
embodied in the underlying model. Maps of the potential 
distribution of an invasive alien species do not necessarily 
correspond with the areas where such species will have the 
greatest impact, or with the areas most likely to be invaded 
first. Thus, maps often reflect components that contribute to 
overall pest risk, but not the risk in its entirety.

Error and uncertainty in pest risk maps are inevitable. 
While imperfect knowledge of complex ecological sys-
tems is well recognized, recent studies that compared 
species-distribution models illustrate model uncertainty 
well, showing clearly that different models can give divergent 
results (Elith et al. 2006, Pearson et al. 2006, Araújo and New 
2007). Likewise, the same modeling approach, calibrated 
with different data, can yield different model parameters and 
characterizations of risk (Kriticos and Randall 2001). For 
example, CLIMEX gave different results for Cereus jamac-
aru, a cactus native to Brazil, when climatic tolerances and 
requirements were inferred from its native distribution alone 
(figure 4a) or from its native and adventive range in South 
Africa (figure 4b). Models built on information from the 
adventive range can provide a clearer indication of the con-
straints of climate alone on distribution, and may provide 
more accurate range estimates in other areas where density-
dependent constraints are unlikely. Estimation errors could 
be measured statistically, but no consensus yet exists on a 
suitable metric to compare projected and observed occur-
rences for a species that is in the process of invading.

Top recommendations for improved risk maps
The following recommendations are intended to clarify 
communication about the strengths and limitations of 
pest risk models and maps, improve the accuracy of these 
tools, and expand knowledge about the ecology of bio-
logical invasions. Numbers reflect the relative priority of the 

distributions, even though traditional ecological niche mod-
els suggested these relationships existed. Bird distributions 
might be better explained by regional differences in habitat 
loss, predator removals, agricultural production, or other 
historical factors (Beale et al. 2008).

Purely deductive approaches have appeal because the 
information used to develop the forecast is completely inde-
pendent of observed occurrences of the invasive alien spe-
cies. Thus, all distribution records can be used to rigorously 
validate the model. However, deductive approaches may 
predict a much broader geographic range than will actually 
be observed if other limiting factors (sensu Sprengel-Liebig) 
are ignored or unknown, or if density-dependent factors are 
significant. Deductive approaches are unlikely to estimate a 
smaller geographic range than will be observed.

The methods in table 1 vary considerably in the degree 
to which their model structures are specified. In some cases 
(e.g., BIOCLIM [Nix 1986], CLIMEX [Sutherst and May-
wald 1985]), the model is sufficiently structured so that 
environmental tolerances (sensu Shelford) can be clearly 
inferred, and previous experience with the model helps 
with the interpretation of model results. In other cases (e.g., 
NAPPFAST; Magarey et al. 2007), the modeling platform 
gives the user flexibility to specify both model structure and 
parameters. Other approaches, such as general linear models 
or general additive models (e.g., Austin and Meyers 1996), 
classification and regression trees (e.g., Usio et al. 2006), or 
artificial neural networks (e.g., Gevrey and Worner 2006), 
are analytical methods with almost no imposed structure, 
especially with respect to potential covariates under con-
sideration. As the degree of the model’s structural freedom 
increases, it becomes impossible to make generalizations 
about the applicability or performance of a model for a 
new species based on previous experiences without a deeper 
understanding of the specific problem formulation.

Several of these approaches have been used for invasive 
alien species and noninvasive native species. However, the 
need to make projections for geographic areas outside the 
area used to develop the model is a key difference between 
ecological niche models for invasive alien species and spe-
cies within their native range. Conceptually, ecological niche 
models for native species deal with interpolation issues, 
largely estimating presence and absence among known 
occurrences. In contrast, ecological niche models for inva-
sive alien species often deal with extrapolation issues, pro-
jecting presence and absence for novel environments well 
beyond locations used for model development. Thus, the 
relative performance of ecological niche models to estimate 
distributions of resident taxa (e.g., Elith et al. 2006) has 
modest relevance when selecting a modeling approach for 
invasive alien species.

Calibration, validation, and interpretation. Fitting model pa-
rameters, verifying model behavior, and testing hypotheses 
about model performance with the data used to generate the 
model are integral phases of model development. Inherent 
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recommendations among the workgroup participants and 
are used to illustrate where the recommendations may affect 
the pest-risk-mapping process (figure 1).

1. Provide greater documentation of model development and 
assessment. It is critical that risk analysts document the 
rationale and procedures for model selection, calibra-
tion, verification, and validation. Such documentation 
will help stakeholders, decisionmakers, and researchers 
evaluate the veracity of the model, and help the model 
stimulate testable hypotheses. Analysts should also pro-
vide a clear statement of the intent of the risk map and 
the justification for the modeling approach, explicitly 
documenting all assumptions and expert judgments, and 

ideally assigning degrees of belief (i.e., subjective prob-
abilities) to those judgments (FAO 2007). Analysts should 
also clearly explain calibration procedures. Currently, de-
tails of presence data are often well described, but absence 
data may not be. Many inductive approaches (table 1) 
generate pseudo-absence data (or background data, sensu 
Phillips 2008) by randomly selecting points that are not 
known to contain the species of interest and treating 
them as absent in the analysis. Pseudo-absence data are 
as influential as presence data in modeling. Any use of 
pseudo-absence data should be clearly documented, and 
the analyst should indicate the methods by which these 
data were generated (e.g., selected at random within po-
litical or ecological boundaries).

Figure 4. Projected global climate suitability for Cereus jamacaru, a thorny Brazilian cactus, in Australia, 
based on CLIMEX models calibrated with distribution information from (a) Brazil, the native range, and  
(b) the native and adventive range in South Africa (Kriticos and Randall 2001).
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2006). Model uncertainty arises from the way in which the 
model is constructed; that is, its underlying assumptions as 
well as its algorithmic components (Barry and Elith 2006). 
Uncertainty also arises from the selection of variables and 
processes considered critical to risk, which are thus included 
in the model (Regan et al. 2002). In terms of presentation of 
outputs, pest risk maps are subject to uncertainties also seen 
in other types of spatially explicit analyses (e.g., uncertainty 
due to rescaling, aggregation, generalization, or extrapola-
tion of inputs). Uncertainty often goes unrepresented in pest 
risk maps, so the maps may be perceived to convey more 
certainty than actually exists (Woodbury 2003).

Pest risk analysts may take several steps to address uncer-
tainty. Sensitivity analyses or Monte Carlo simulations 
(Regan et al. 2003, Johnson and Gillingham 2004) measure 
how robust the projections are in the face of variability and 
uncertainty in model inputs and structure. Verification and 
validation provide estimates of model error. Comparisons 
between models, ensemble modeling, or multimodel infer-
ence (e.g., Hartley et al. 2006) may also facilitate assessments 
of model uncertainty. Bates and Granger (1969) originated 
the concept of an ensemble forecast and showed that a struc-
tured combination of predictions can yield a lower mean 
error than any individual prediction. Models that contrib-
ute to the ensemble forecast result from different initial or 
boundary conditions, different model parameters or param-
eter estimates, different model structures or formulations, 
or combinations of the foregoing (Buizza et al. 2005, Araújo 
and New 2007). All approaches are designed to represent the 
uncertainty surrounding model projections and might ulti-
mately generate a probability distribution function, or at the 
very least a frequency distribution from which confidence 
limits of some future state of the system potentially could 
be derived. 

Ongoing research is attempting to find new ways to mea-
sure uncertainty, represent spatial variation in uncertainty 
in a map, and evaluate the consequences of uncertainty for 
decisionmaking. For example, Yemshanov and colleagues 
(2009) developed a stochastic simulation model to charac-
terize the joint probability (p) of entry, spread, and estab-
lishment of an invasive alien woodwasp, Sirex noctilio, in 
each 1-square-kilometer grid cell on a map of eastern North 
America (figure 5a). The researchers measured uncertainty 
with the binary entropy value, H(p), which can be used to 
define upper and lower limits on p (figure 5b). 

3. Expand availability and accessibility of primary data. The 
accessibility of data is of primary importance to model-
ers. When data are unavailable, pest risk analysts are 
often forced to rely on expert opinion. However, there is a 
growing recognition that expert opinion can be extremely 
biased and misleading. Useful data include pest and host 
distribution, weather and climate, ecological habitat types, 
and trade data. Other commonly available data layers such 
as elevation and land use can also be valuable. Thanks to 
advances in remote sensing and spatial modeling using 

The analyst should consider as many sources of verifica-
tion (sensu Jeffers 1988) and “reasonability checks” as pos-
sible. For example, phenological observations for a set of 
locations might be used. Where there are inconsistencies 
between different data sources, the likely possible explana-
tions for the inconsistencies need to be discussed for the 
target audience.

The analyst should describe the model validation meth-
odology with care, including the steps used to maintain 
independence of the calibration and validation data sets. In 
the case of widely dispersed pests, this could involve model 
calibration and verification with one range of continents, 
and validation with data from another range (Kriticos and 
Randall 2001). Generally, statistical tests of model perfor-
mance are preferred to qualitative comparisons of model 
output and known occurrences, but there are limitations to 
many goodness-of-fit measures (Lobo et al. 2008, Peterson 
et al. 2008). Thus, several measures of performance are 
desirable.

As a final assessment step, pest risk maps should be com-
pared, at least qualitatively, to other pest risk maps devel-
oped for the same species (e.g., Sutherst and Bourne 2009). 
In fact, many pest risk maps have barely acknowledged pre-
vious analyses. Formal statistical comparisons of maps from 
different authors are extremely rare. Intensive comparisons 
of different models using the same data inputs to address the 
same question provide a means for analysts to gain a better 
appreciation of the relative merits and characteristics of dif-
ferent modeling approaches, and they help decisionmakers 
select a single model. 

2. Improve representation of uncertainty. Uncertainty is inher-
ent in pest risk models. However, for many pests, the im-
mediacy of the threat to natural or agricultural resources 
requires agencies or scientists to develop a model despite 
substantial uncertainty about the ecosystems in the pest’s 
native range or those it might occupy in the future (Regan et 
al. 2002). While many pest risk analysts implicitly acknowl-
edge uncertainty in their analyses (e.g., adopting a simple 
ordinal-scale risk-rating system rather than a specific proba-
bilistic one), there is no standard method for communicat-
ing uncertainty to other scientists, policymakers, regulators, 
or the public. With respect to pest risk models and mapping 
for invasive alien species, few have attempted to statistically 
identify the sources of uncertainty that can make such mod-
els unreliable. Lack of validation and absence of uncertainty 
assessment are serious issues for such models and indeed for 
all ecological modeling (Fielding and Bell 1997, Elith et al. 
2002).

Uncertainty in risk maps may derive from the input 
parameters, the model used to represent the system of 
interest, or the presentation of model outputs. Parametric 
uncertainty may develop from measurement and systematic 
errors, incomplete or sparse data, natural variability in the 
system, or subjective judgment in the estimation of parame-
ter values (Elith et al. 2002, Regan et al. 2002, Barry and Elith 
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5. Expand communications with decisionmakers on the interpreta-
tion and use of risk maps. Risk communication is possibly 
the most overlooked part of risk mapping. One issue is the 
actual presentation of maps, where poor choices in the map’s 
layout, scale, colors, categories, and depicted results can 
create confusion or lead to misinterpretation (Monmonier 
1996). A second issue is the manner in which the analyst 
conveys technical aspects of the pest risk model to decision-
makers. On one hand, as we have recommended above, it 
is important for analysts to discuss all their assumptions, 
explain the algorithms they used, and describe the quality 
of the data on which their models are based. On the other 
hand, decisionmakers frequently prefer succinct answers 
that facilitate the making of timely, often urgent, decisions. 
Effectively communicating the true meaning of risk maps 
and the desired level of methodological detail is likely to be 
an ongoing issue for both parties.

Communication will be especially challenging if decision-
makers prefer to use only one map to represent risk. Both 
parties benefit from the awareness that pest risk maps are 
just one factor in the decisionmaking process (Pielke and 
Conant 2003). Better decisions are made when risk managers 
consider all factors affecting the decision (e.g., stakeholders, 
institutions, perspectives, values, and resources), rather than 

geographic information systems, there has been an explo-
sion of available data in recent years, and this trend will 
probably continue. However, even when data are available, 
quality should not be taken for granted. Analysts should 
explicitly note concerns and implications regarding mea-
surement or interpolation errors, georeferencing accuracy, 
identification, and nomenclature when describing their 
procedures and products. 

4. Develop a best-practice guide and tool kit for modeling. A 
best-practice guide would be helpful in building risk models 
and creating risk maps. Such a guide could identify com-
mon pitfalls and recommend steps to overcome problems, 
especially with respect to data sources and availability, model 
and parameter selection, metadata, and documentation; 
map output; and treatment of uncertainty. The guide would 
not endorse any particular modeling approach or software 
package. Although a recent book on species distribution 
modeling (Stockwell 2006) covers many best-practice topics, 
including data collection, spatial analysis, and error mea-
surements, it cannot be used as a practical guide for invasive 
alien species because of the unique challenges invasive alien 
species present (e.g., range expansion in the absence of natu-
ral enemies). 

Figure 5. Results of a stochastic simulation model for Sirex noctilio, a Eurasian woodwasp, in eastern North 
America describing (a) the joint probability of successful entry, spread, and establishment, p, assuming 
imports increase at 3% per year, and (b) the uncertainty in p, based on the binary entropy value, H(p). 
Uncertainty is greater as p gets closer to 0.5. Pink dots indicate ports of entry, and the size of the dot indicates 
the relative amount of host material that enters a port. Additional model details can be found in Yemshanov 
and colleagues (2009).
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pest risk maps alone. Risk map users should also assess other 
criteria for evaluating the quality of projections including 
modeling purpose, model accuracy, model sophistication, 
and even the experience of the modeling group (Pielke 
and Conant 2003). Engaging risk analysts and communica-
tors who understand decisionmaking under uncertainty 
and who use maps in other fields (e.g., human and animal 
health) may help to define effective ways of communicating 
risk through maps. 

6. Work toward pest risk maps that include impacts. Most pest 
risk maps report risk as the relative likelihood of a species’ en-
try or establishment, without addressing potential impacts in 
those areas, such as yield loss or environmental damage over 
a forecast horizon. Some models have reported the number 
of generations or infection cycles that a pest may complete 
in a certain climate, and these measures have been used as an 
indicator of potential damage. The development of pest risk 
maps that include impacts will require a multidisciplinary 
approach and will especially involve greater cooperation with 
economists, ecologists, social scientists, and decisionmakers.

7. Increase international collaboration. International collabora-
tion is key for the future development of pest risk modeling 
tools. International involvement will ensure that the widest 
possible talent pool is brought to bear in solving emerg-
ing problems, and will help to ensure modeling tools enjoy 
widespread acceptance. Such cooperation might be encour-
aged through regular workshops and the sharing of infor-
mation resources. However, collaborators should be aware 
of the potential political and economic implications of some 
information, especially distribution records for certain pests. 
The presence of certain pests may provide adequate justifi-
cation for other countries to deny commodities or convey-
ances from an infested country. The economic consequences 
of these restrictions could be significant.

8. Incorporate climate change. Climate change poses a set of 
challenges for the development and interpretation of pest 
risk maps. As the climate changes, so do species’ distributions 
(Parmesan et al. 1999). The geographic ranges of relatively 
sessile species may be lagging behind their optimal climatic 
envelope, creating a technical problem for modeling their 
potential ranges. For temperate species, as temperatures rise, 
individuals and populations at the warmer edge of the present 
range are likely to become restricted to favorable microhabitats 
before they go locally extinct. On the cooler edge of the range, 
competition with resident species is likely to intensify and in-
duce lags as species attempt to move to occupy new territories 
that are becoming more climatically suitable. Most ecological 
niche models assume that species ranges are in equilibrium 
with their environments. Because many climate-based habitat 
models use the so-called reference climate (1961–1990 aver-
age monthly normals), as climates warm and species distri-
butions change, the relationship between the species’ known 
range and the reference climate is likely to diverge. One partial 

solution is to update the climate databases used for model 
calibration (Baker et al. 2000), though this approach may be 
confounded by lags in species range shifts.

A remaining challenge is to match the species’ known 
range with the relevant climate. Myriad general circulation 
models exist and new models are being developed to project 
future climate conditions. Output data from these models 
can be downscaled and entered into pest risk models. For 
example, Baker and colleagues (2000) used CLIMEX to infer 
parameters describing climatic requirements and tolerances 
for the Colorado potato beetle, Leptinotarsa decemlineata. 
They then applied this model to downscaled output from 
the general circulation model HadCM2 (Hadley Centre, 
Exeter, United Kingdom) and were able to project increases 
in the Ecoclimatic Index, a measure of year-round climate 
suitability, in much of Europe by 2050 (figure 6). Pest risk 
analysts should proceed cautiously and attempt to explicitly 
account for the additional uncertainty that comes with long-
term climate projections in descriptions of uncertainty with 
a pest risk model and associated map. 

Pest risk models with a climate-change component pro-
vide an opportunity to test hypotheses and reexamine 
some macroecological assumptions that may have become 
entrenched in invasion ecology and species-distribution 
modeling literature. For example, such studies should help 
define over what time or spatial scale a species’ range could 
be considered stable enough to fulfill assumptions about 
equilibrium in population or evolutionary models (Holt  
et al. 2005), and the relative importance of variation in envi-
ronmental conditions, plastic responses, species interactions, 
range edges, and anthropogenic impacts on species’ range 
changes (e.g., Sagarin et al. 2006). 

9. Study how human and biological dimensions interact. Most 
of the risk maps that have been developed to date focus on 
biological dimensions of the risk problem; for example, the 
influence of climate on pest or host development. Human 
elements of the risk equation have received relatively little at-
tention, with the exception of the human role in pest arrival. 
Human modifications to ecosystems through crop irrigation, 
crop protection, or urban development may increase or di-
minish the probability of establishment, depending on the 
species. Forest fragmentation, for example, may create edges 
that can be readily colonized by many invasive plants. Human 
activities such as domestic trade and transportation introduce 
stochasticity into patterns and rates of spread. Better theo-
retical models are needed to describe human-mediated move-
ments of species through human-modified landscapes.

10. Provide training in pest risk modeling practice. The num-
ber of pest risk map users continues to increase. There are 
currently no regular formal training programs that explore 
the application and development of pest risk models and 
maps. Distributors of some model packages (e.g., CLIMEX) 
already provide ad hoc training classes, whereas other pack-
ages (e.g., NAPPFAST) are used only by a relatively small 
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of pest risk maps. Greater 
demands for more strate-
gic responses to invasive 
alien species are driv-
ing many organizations 
to develop and use their 
own pest risk maps. For 
an effective transfer of 
knowledge, pest risk 
analysts should provide 
greater detail about how 
their models were devel-
oped and evaluated than 
they currently do. How to 
communicate this infor-
mation most effectively is 
still being debated.

Pest risk models and 
maps can play pivotal roles 
in the study of invasive 
alien species. Initial pest 
risk models can inform 
specific hypotheses for 
controlled experiments or 
observational studies, the 
results of which should 
stimulate reevaluation of 
the original risk models 
and risk maps. To achieve 
this dynamic feedback and 
abate confusion about 
future revisions to a map, 
communication about 
the extent and causes of 

uncertainty associated with any risk map is critical. Fear of pos-
sible confusion or miscommunication should not be used as 
rationale for strict adherence to an initial risk map, especially if 
future versions are demonstrably better. In addition, researchers 
should be encouraged to perform meta-analyses of previous 
assessments to reveal consistent strengths or weaknesses of 
particular pest risk models. Only by better understanding the 
strengths and weaknesses of our current approaches can we 
hope to make significant improvements in pest risk maps and 
resulting risk-management decisions.

Future pest risk maps must address more elements of 
invasion risk than simply where an invasive alien species 
might establish. More rigorous analyses of historical and 
projected trade patterns, for example, are needed to better 
estimate where invasive alien pests might originate or first 
arrive (Richardson and Thuiller 2007). Analyses of synoptic 
weather events, for instance, might refine projected pat-
terns of spread. Myriad tools are needed to better project 
the impacts of invasive alien species. Although ecological 
niche models are useful instruments to describe patterns in 
pest establishment, they do not reflect all of the factors that 
affect pest risk.

group of users who know the technology well and need little 
training. Training is critically important to ensure analysts 
understand the strengths and weaknesses of the approaches 
they are using to create pest risk models.

Conclusions
Pest risk maps graphically illustrate where an alien species 
might invade and have undesirable impacts. The quality of 
the map is subject to the constraints of available knowledge 
about the biology of the species and the environmental 
conditions within an area of interest, and the map’s qual-
ity should be considered when making decisions. Certainly, 
one approach to improving pest risk maps is to gather more 
biological or geographic information (e.g., Kriticos et al. 
2007). This approach is laudable, but decisionmakers are 
often politically and legislatively required to make deci-
sions using available information and cannot wait for new 
research results. 

A complete pest risk assessment blends the results of a 
pest risk map with expert judgments to provide informa-
tion for decisionmakers. To date, national plant and animal 
health protection organizations have been the primary users 

Figure 6. Projected increases in climatic suitability for Leptinotarsa decemlineata, the Colorado 
potato beetle, in Europe by 2050 based on a projected future climate scenario from the general 
circulation model, HadCM2. Climatic suitability was measured by the Ecoclimatic Index 
from CLIMEX, and the increases represent deviations from model results based on 1961–1990 
climate normals. Map reprinted from Baker and colleagues (2000) with permission of Elsevier.
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The group of scientists who developed the recommenda-
tions above will endeavour to tackle some of these challenges. 
We recognize the interdisciplinary nature of the problems 
that we face. Without assistance from trade analysts, meteo-
rologists, economists, and social scientists, among others, 
many of these issues are likely to go unresolved. We welcome 
their contributions to help resolve these issues.
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