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Abstract: Rainfall runoff erosivity (R) is one key climate factor that controls water erosion. 
Quantifying the effects of climate change–induced erosivity change is important for iden-
tifying critical regions prone to soil erosion under a changing environment. In this study 
we first evaluate the changes of R from 1970 to 2090 across the United States under nine 
climate conditions predicted by three general circulation models for three emissions scenarios 
(A2, A1B, and B1) from the Fourth Assessment Report of the Intergovernmental Panel on 
Climate Change. Then, we identify watersheds that are most vulnerable to future climate 
change in terms of soil erosion potential. We develop a novel approach to evaluate future 
trends of R magnitude and variance by incorporating both the rate of change with time as 
well as the level of agreement between climatic projections. Our results show that mean dec-
adal R values would increase with time according to all nine climatic projections considered 
between 1970 and 2090. However, these trends vary widely spatially. In general, catchments 
in the northeastern and northwestern United States are characterized by strong increasing 
trends in R, while the trends in the midwestern and southwestern United States are either 
weak or inconsistent among the nine climatic projections considered. The northeastern and 
northwestern United States will likely experience a significant increase in annual variability 
of R (i.e., increase in extreme events). Conversely the variability of R is unlikely to change in 
large areas of the Midwest. At the watershed scale (8-digit Hydrologic Unit Code), the mean 
vulnerability to erosion scores vary between –0.12 and 0.35 with a mean of 0.04. The five 
hydrologic regions with the highest mean vulnerability to erosion are 5, 6, 2, 1, and 17, with 
values varying between 0.06 and 0.09. These regions occupy large areas of Ohio, Maryland, 
Indiana, Vermont, and Illinois, with mean erosion vulnerability score statewide above 0.08. 
Future watershed management aiming at reducing soil erosion should focus on areas with the 
highest soil erosion vulnerability identified by this study.

Keywords: climate change—erosivity factor—extreme events—precipitation—Revised 
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Erosion is the physical process by which 
soil particles are detached and removed 
from the ground surface by water or wind. 
Soil erosion threatens soil fertility due to 
nutrient and organic matter loss, while also 
decreasing water quality through increased 
turbidity (Brown and Froemke 2012). These 
impacts can reduce food production (Bridges 
and Oldeman 1999), aquatic life (Waters 1995; 
Wood and Armitage 1997; Kemp et al. 2011), 
and the physical stability of fluvial systems. 
Recent studies suggested that soil erosion and 
sediment movement have important influ-
ences on carbon (C) sequestration potential 

in soils and ecosystems (Smith et al. 2001; Lal 
2005). Therefore, quantifying the impacts of 
climate change on soil erosion has important 
implications to the understanding of their 
environmental impacts as well as the feed-
backs of soil C dynamics to global warming. 
The rate of erosion depends on many factors 
including precipitation intensity, soil charac-
teristics, topography of the terrain, and land 
cover type. The complex relationships among 
these factors and soil erosion are integrated 
within the Universal Soil Loss Equation 
(USLE). This empirical model was introduced 
over 50 years ago (Wischmeier and Smith 

1978) and the Revised Universal Soil Loss 
Equation (RUSLE) was created in the early 
1990s (Renard et al. 1991). The RUSLE has 
been the most widely used model to predict 
soil erosion (Van Rompaey et al. 2001; Pruski 
and Nearing 2002; Yang et al. 2003; Angima 
et al. 2003; Fernandez et al. 2003; Jiang et al. 
2012). The USLE/RUSLE equation depends 
on five factors related to climate (i.e., rainfall 
runoff erosivity [R]), soil type (i.e., erodibility 
factor [K]), topography (i.e., slope steepness 
and length factor, [LS]), land cover type 
(cover management factor [C]), and cultiva-
tion management (i.e., conservation practice 
factor [CP]). The first factor is a sole function 
of rainfall frequency and intensity; both are 
influenced by climate change.

To our best knowledge, only one conter-
minous United States (CONUS) scale study 
analyzed the impact of climate change on 
soil erosion (Nearing 2001). In that study, 
an analysis of the spatial changes of R based 
on monthly and annual precipitation pre-
dictions by two coupled atmosphere ocean 
global climate models (GCMs) was con-
ducted. Nearing (2001) found evidence for 
significant changes in R in several regions 
of the CONUS. Specifically, he found that 
for the CONUS, the mean percent R could 
increase between 16% and 58% from current 
(i.e., annual mean between 2000 and 2019) 
to future (i.e., annual mean between 2080 
and 2099) conditions.

The two GCMs used by Nearing (2001) 
included the Hadley Center Coupled Model, 
version 3 (HadCM3.1) (Wood et al. 1999; 
Gordon et al. 2000; Pope et al. 2000) resolved 
at 2.5° latitude and 3.75° longitude. The pre-
dicted precipitation data used by Nearing 
(2001) corresponded to HadCM3.1 simula-
tions, assuming a 1% increase in greenhouse 
gases for the study period. The other GCM 
used by Nearing (2001) was the first gen-
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eration of the Canadian Center for Climate 
Modeling and Analysis (CCCma) Coupled 
Global Climate Model (CGCM1) (Flato 
et al. 2000). The model resolution is 3.7° × 
3.7°. In that study, Nearing (2001) used the 
precipitation data at the original mentioned 
spatial resolutions of each GCM. 

Yang et al. (2003) attempted to fore-
cast the impacts of climate change on soil 
erosion on a global scale at a 0.5° spa-
tial resolution. In their study, erosion rates 
were computed using the RUSLE equation 
(Renard et al. 1991) for historic, current, 
and future conditions predicted by GCMs 
from the Second Assessment Report (AR2) 
of the Intergovernmental Panel on Climate 
Change (IPCC). More recently an assess-
ment of future impacts on R was conducted 
for northeast China (Zhang et al. 2010) based 
on the IPCC Fourth Assessment Report 
(AR4) monthly precipitation predictions 
temporally downscaled to daily time series. 
They forecasted a general increase in erosiv-
ity over the region by the mid-21st century 
with higher changes in R for the northern 
portion of the study area.

Two regional studies have attempted to 
quantify the impacts of climate change on 
soil erosion, runoff, and crop productivity 
in the Changwu region of China (Zhang 
and Liu 2005; Li et al. 2011). Both studies 
used downscaled climate data from monthly 
to daily time steps. The first study consid-
ered climatic projections from the HadCM3 
model (Wood et al. 1999; Gordon et al. 2000; 
Pope et al. 2000) between 2070 and 2090 
under three emission scenarios, whereas the 
second considered projections between 2010 
and 2039 for four GCMs and three emis-
sion scenarios from the Third Assessment 
Report (AR3) of IPCC (IPCC 2001). The 
first lacked spatial downscaling providing 
a regional sensitivity assessment of natural 
resources to climate change, whereas the sec-
ond that incorporated spatial downscaling 
provided a better description of the actual 
physical processes. Both studies documented 
changes in precipitation between –2.6% and 
37%, changes in soil loss between –5% and 
195%, and general tendency for crop pro-
duction to increase. They also documented 
that the adoption of the conservation tillage 
would have great potential to reduce the 
adverse effects of future climate change. 
Recent studies have also highlighted that 
future erosion rates are related to increase 
frequency of large precipitation events. A 

study that evaluated the effects of cropping 
and tillage systems on soil erosion and sur-
face runoff in central Oklahoma (Zhang 
2012) established that even though future 
precipitation (2010 to 2039) is expected 
to decreases by 6% according four GCMs 
under three emission scenarios from the 
AR3 of IPCC (IPCC 2001) the expected 
average runoff and soil loss will increase by 
20% and 44%, respectively. They believe that 
the increases result from a 12% increase in 
precipitation variance. The importance of 
precipitation variance on soil erosion is not 
limited to croplands. A study conducted in 
western United States rangelands of Arizona 
indicated that climate change is expected to 
impact runoff and soil erosion in this ecosys-
tem as well (Zhang et al. 2012). Their results 
based on projected climate data for 2050 to 
2090 considered seven GCMs under three 
emission scenarios suggested no significant 
changes in annual precipitation compared to 
the historic period 1970 to 1999 across the 
region, while projected mean annual runoff 
and soil loss increased significantly, ranging 
from 79% to 92% and from 127% to 157%, 
respectively. The dramatic increases in runoff 
and soil loss were attributed to the increase 
in the frequency and intensity of extreme 
events in the study area.

In this study, we conduct an assessment of 
the vulnerable areas to erosion under future 
climatic projections. The objectives of this 
study are to (1) evaluate the temporal and 
spatial changes of R from 1970 to 2090 
across the CONUS under multiple climate 
change projections and (2) identify the spa-
tial distribution of areas most vulnerable to 
soil erosion. The ultimate goal of this study 
is to provide guidance to land managers who 
direct resources in soil erosion control and 
watershed restoration efforts in response to 
climate change.

Approach
The study area corresponds to the CONUS 
and the time frame of 1970 to 2090. The 
spatial resolution of each dataset used in this 
investigation varies between 30 × 30 m (98 
× 98 ft) grid to eight-digit hydrologic units 
(HUC-8 watersheds) defined by the US 
Geological Survey (USGS). Soil and digital 
elevation model (DEM) data are available at 
90 × 90 m (295 × 295 ft) grid resolution 
(Wolock 1997; Jarvis et al. 2006). Although 
higher resolution (30 × 30 m [98 × 98 ft]) 
data are available for a DEM (Abrams 2000), 

studies suggested that there are no signifi-
cant differences in terms of calculated slopes 
between the two datasets (R. Bhattarai, per-
sonal communication, September 2012). 
The land cover data are available at a grid 
resolution of 30 × 30 m (98 × 98 ft) (Fry et 
al. 2011), and the precipitation data between 
1966 and 2095 (Maurer et al. 2007; Meehl et 
al. 2007) are rescaled to the HUC-8 water-
shed scale (Caldwell et al. 2012).

Climate Data. In this study, we con-
sider monthly precipitation data predicted 
by three GCMs under three emission pro-
jections of greenhouse gases: low (B1), 
intermediate (A1B), and high (A2), from the 
AR4 of the IPCC (Trenberth et al. 2007). 
The three GCMs under three emission 
scenarios provide a total of nine possible 
future precipitation projections. Monthly 
and annual precipitation estimates archived 
under these different climatic projections 
were downscaled and biased corrected by 
others from their original grid resolutions to 
a resolution of 12 × 12 km (7.5 × 7.5 mi). 
This dataset is known as the bias corrected 
and downscaled World Climate Research 
Programme's (WCRP) Coupled Model 
Intercomparison Project phase 3 (CMIP3) 
Climate Projections (Maurer et al. 2007; 
Meehl et al. 2007). This data set includes 
both the 20th century observational surface 
climate conditions (Maurer et al. 2007) and 
each GCM's 21st century climate simulation. 
Our analysis considers computed weighted 
mean precipitation data to 2,099 HUC-8 
across the CONUS (Caldwell et al. 2012) 
with varying drainage areas between 184 
km2 (114 mi2) and 23,000 km2 (14,292 mi2), 
with an average of 3,751 km2 (2,331 mi2). We 
preferred using climatic data at the HUC-8 
watershed resolution rather than the 12 km 
(7.5 mi) grid because these hydrologic units 
are commonly used in the context of water 
resources management. HUC-8 watersheds 
are the common resolution used at the 
CONUS scale in other studies that examine 
future urbanization, hydrologic and ecosys-
tems modeling, air and water quality linkage, 
and water supply stress (Liang et al. 2002; Sun 
et al. 2008; Theobald et al. 2009; Schwede et 
al. 2009; Sun et al. 2011; Caldwell et al. 2012).

The updated precipitation predictions by 
these GCMs (table 1) should result in a more 
realistic assessment of the potential effects 
of climate change on erosivity. We con-
sider the predictions of the 3rd generation 
CGCM3.1 model at a spatial resolution of 
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3.7°. This GCM uses the same ocean com-
ponent as that used in the second generation 
model, which incorporated an isopycnal/
eddy stirring parameterization (Gent and 
McWilliams 1990) as well as sea-ice dynam-
ics (Flato and Hibler 1992). This version 3.1 
makes use of updated atmospheric ocean 
components (Flato and Boer 2001; Kim et 
al. 2002; Kim et al. 2003). The second GCM 
used is the Geophysical Fluid Dynamics 
Laboratory Coupled Model (CM), version 
2.0 (Delworth et al. 2006; Gnanadesikan 
et al. 2006; Stouffer et al. 2006; Wittenberg 
et al. 2006). This is a coupled GCM with a 
spatial resolution of 2.0º latitude × 2.5° lon-
gitude (corresponding approximately 222 
× 213 km [138 × 132 mi] at 40° latitude). 
The atmospheric components include rep-
resentations of radioactive fluxes, mixing in 
the atmospheric boundary layer, impacts of 
clouds, drag on upper level winds, changes 
in the spatial distribution of ozone, and the 
impact of multiple greenhouse gases. The last 
GCM considered corresponds to the same 
HadCM3.1 used by Nearing (2001), which 
has been used in both AR3 and AR4 of the 
IPCC, and allows for direct comparison 
between the two studies.

Soil Erodibility. Soil erodibility (K), is one 
of the variables in USLE (Wischmeier and 
Smith 1978) and its revised version, RUSLE 
(Renard et al. 1991). Soil erodibility rep-
resents the inherent erodibility of a given soil. 
Soil erodibility values for the CONUS vary 
between 0.04 and 0.64 with a mean value 
of 0.26 ± 0.09 (Wolock 1997). Soils rich in 
sand and clay are characterized by low K val-
ues whereas high values of K are common in 
soils with high silt content (Wischmeier and 
Smith 1978; Renard et al. 1991). Values of K 
are reported at 1 × 1 km (0.62 × 0.62 mi) 
grid resolution by the USGS (Wolock 1997). 
According to this information, large areas in 
the Midwest (i.e., Illinois, Indiana, Wisconsin, 
Iowa, Missouri, Kansas, Tennessee, and 
Nebraska) are characterized by high values 
of K (above 0.35). Conversely, high-elevated 

Table 1
Global climate model (GCM) used in this study.

  Model resolution
GCM Organization (latitude × longitude) References

HadCM3 Hadley Climate Research Center,  2.5° × 3.75° 
    United Kingdom  Wood et al. 1999; Gordon et al. 2000;  
      Pope et al. 2000
CGCM3 Canadian Center for Climate Modeling 3.7° × 3.7° Flato and Hibler 1992; Flato and Boer 2001;
    and Analysis, Canada     Kim et al. 2002; Kim et al. 2003
CM2 Geophysical Fluid Dynamics Laboratory,  2.0° × 2.5° Delworth et al. 2006; Gnanadesikan et al. 
    United States     2006; Stouffer et al. 2006; Wittenberg et al. 2006

areas in the west where rock outcrops are 
common are cauterized by very low K val-
ues (<0.16).

Topography. Topographic slope in per-
centage is derived for the CONUS based on 
a 90 × 90 m (295 × 295 ft) DEM (Jarvis 
et al. 2006) within ArcGIS 10. Mountainous 
regions in the west and the Appalachians 
in the east have the highest values of slope 
across the country.

Land Use and Land Cover. Land cover data 
at 30 × 30 m (98.4 × 98.4 ft) grid resolu-
tion from 2006 are used in this investigation 
(Fry et al. 2011). This raster dataset includes 
16 land cover categories dominated by forest 
(25%), shrub and scrub (21%), and cultivated 
crops (16%). The spatial distribution of these 
categories is assumed to remain constant over 
time even though we recognize that land 
cover is likely to change in the future. While 
general patterns of land use change may be 
understood, the specific locations of that 
change are very difficult to predict. We res-
ample this raster to a 90 × 90 m (295 × 295 
ft) resolution to enable geo-processing across 
slope and erodibility factors.

Estimation of Rainfall-Runoff Erosivity. 
The R factor can be directly calculated 
with a simple mathematical expression as 
a function of maximum 30-minute rain-
fall intensity (I30) and total storm kinetic 
energy (E) for multiple years (Wischmeier 
and Smith 1978). However, hourly data for 
calculating R are not available for many loca-
tions in the CONUS and they are not yet 
available for any future climate predictions. 
The alternative to hourly data to compute R 
is using empirical relations based on monthly 
or annual estimates of future precipitation. 
These empirical methods are crude because 
they fail to fully reflect possible R changes 
due to the increases in large extreme rainfall 
events, which is one of the most significant 
aspects of future climate change. Several 
empirical relations have been developed for 
different geographic regions. Early efforts 
established strong relations between R and 

annual precipitation in West Africa (from 
Cameroon to Senegal), Zimbabwe, and 
Hawaii (Stocking and Elwell 1976; Roose 
1977; Lo et al. 1985). For the CONUS sim-
ilar relations were developed based on data 
from 132 locations (Renard and Freimund 
1994). Likewise other relations have been 
established for Australia, Europe, Central 
and South America, and Asia (Bolinne et al. 
1980; Mikhailova et al. 1997; Millward and 
Mersey 1999; Sepaskhah and Sarkhosh 2005; 
Bonilla and Vidal 2011). Empirical relations 
to estimate R based on monthly precipita-
tion data have also been established since the 
mid-1970s by Arnoldus (1977) for stations in 
Morocco and the CONUS. That work was 
followed by others (Renard and Freimund 
1994; Ferro and Porto 1999; Loureiro and 
Coutinho 2001; Nearing 2001; Irvem et 
al. 2007; Andrade et al. 2010; Ozsoy et al. 
2012) working in the CONUS, Portugal, 
Australia, Turkey, Italy, and Venezuela. We 
estimate R using equations derived for the 
CONUS by Renard and Freimund (1994) 
based on monthly precipitation. We prefer 
the estimates based on the monthly rather 
than annual data because the former captures 
intraannual variability:

12
2

1
i

i
P

F P
==

∑
 , (1)

R = 0.7397F 1.847, and (2)

R = 95.77 – 6.081F + 0.0477F 2, (3)

where F is a Fournier coefficient (Arnoldus 
1977; Arnoldus 1980), Pi (mm) is the total 
monthly precipitation, and P (mm) is the 
total annual precipitation. The units of R 
are expressed as MJ mm ha–1 y–1. Equation 
2 is recommended for F <55 mm (2 in) and 
equation 3 is recommended for F >55 mm 
(2 in) (Renard and Freimund 1994). These 
equations were also chosen in other large 
scale assessment of R (Nearing 2001; Yang et 
al. 2003; Oliveira et al. 2012).
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Annual estimates of R between 1966 and 
2095 are calculated for every HUC-8 water-
shed using equations 1 through 3. Then 13 
decadal averages between 1970 and 2090 are 
computed for 9 climate projections indepen-
dently (i.e., 13 decadal averages per climate 
projection per HUC-8 watershed). Renard 
and Freimund (1994) found limitations with 
their empirical model as equations 2 and 3 
are not appropriate for areas with high win-
ter precipitation located in mountainous 
areas and in western Washington, Oregon, 
and northwestern California. They found 
that all these sites also have high mean annual 
precipitation (>800 mm [31 in]) and F > 
100 mm (4 in) (equation 1).

Temporal Trends in Rainfall Runoff 
Erosivity Factor. The decadal R values com-
puted per HUC-8 watershed are analyzed 
in order to identify the areas in which R is 
likely to change under future climate. The 
linear relation between mean decadal values 
of R and time are evaluated for each climate 
projection on each HUC-8 watershed. The 
likelihood of change in R (expressed as CR) 
as assessed by combining the nine individual 
slopes of the aforementioned regressions:

m

m
CR

σ
=  , (4)

where, m  and mσ  are the mean and stan-
dard deviation (std) of the slopes of the nine 
linear relations. This value can theoretically 
vary between –∞ and ∞. Table 2 provides the 
range of CR considered and the correspond-
ing scores along with their interpretation. A 
value of CR >5 indicates that m   is positive 
and more than five times the mean standard 
deviation of the slope. Thus there is a strong 
statistical indication that most models agree 
and predict an increase in the R. Likewise a 
value of CR <5 provides a strong indication 
that R will decrease in the future. CR values 
between –5 and –3 and between 3 and 5 are 
assumed to indicate a decrease or increase, 
respectively, with less statistical strength and 
values of CR between –3 and 3 indicate no 
clear trend of change of R. 

An additional analysis is performed to 
determine if the interannual variability of 
R (i.e., std, σr, around decadal mean values 
of R) will change in the future. We compute 
the slope s of the relation between time and 
std σr for each climatic projection in each 
HUC-8 watershed. Similarly to the relation 

Table 2
Statistical criterion to establish temporal change in erosivity magnitude (CR) and variance con-
sidering nine climatic scenarios (CS). CR and CS are described by equations 4 and 5.

CR or CS Score (CR and CS) Interpretation

<–5 –1 R or variance of R is very likely to decrease
–5 to –3 –0.5 R or variance of R is likely to decrease
–3 to 3 0 No clear trend in R or variance of R
3 to 5 0.5 R or variance of R is likely to increase
>5 1 R or variance of R is very likely to increase

between R and time (equation 4), we com-
pute a metric, CS, to qualify the likelihood of 
change in the temporal variability of σr:

s

s
CS

σ
=  , (5)

where s  and sσ  are the average and std of 
the slopes of the nine linear relations between 
σr and time. The range of CR considered and 
the corresponding scores are presented in 
table 2. The spatial distributions of the scores 
for CR and CS are mapped, converted into a 
90 m (295 ft) grid, and use directly to com-
pute vulnerability to erosion with the other 
three factors considered to identify vulnera-
ble areas to erosion.

Identification of Areas Vulnerable to 
Erosion. In this study, four out of the five 
influential factors that control soil erosion 
according to the RUSLE equation (Renard 
et al. 1991) are taken into account directly 
(R, K) or indirectly (LS, C). In the case of R 
we scale the scores CR and CS (equations 4 
and 5) to vary between –1 and 1 (see table 
2). The other three factors (erodibility, slope, 
and land cover) are scaled to vary between 
0.25 and 1 (table 3). The scores given to 
erodibility divide the range into four cate-
gories with similar spatial expend (23% to 
28% of the CONUS is classified into each 
of the four categories, table 3). In the case 
of LS, only slope (S) was considered because 
the length factor (L) is basically constant and 
equal to the DEM resolution (90 m [295 
ft]). The S categories are identified ensuring 
that the scheme is efficient at highlighting 
the mountainous areas of the country. These 
categories give a minimum value of 0.25 to 
areas with slope less than 1% (36% of the 
CONUS), a score of 0.5 to areas with a slope 
between 1% and 5% (28% of the CONUS), a 
score of 0.75 to areas with slope between 5% 
and 10% (17% of the CONUS), and a score 
of one for areas with slopes above 10% (19% 
of the CONUS). In the case of land cover 
(LC), only two categories are considered to 

highlight the high vulnerability to erosion 
of croplands compare to all other land cover 
type (table 3). We incorporate the effect of 
each factor (e.g., R, K, S, and LC) by clas-
sifying each 90 m (295 ft) grid cell into the 
mention categories. The CP factor of the 
RUSLE equation is not considered here, as it 
is largely for agricultural erosion assessments 
which are beyond the scope of this work.

The scores given to R (CR and CS) rep-
resent climate as the driving force of the 
erosion process. We give the same weight to 
each of these in the scheme because both 
changes in the magnitude and variance of R 
are likely to cause changes in the vulnera-
bility to erosion (equation 6). The remaining 
three factors, K, S, and LC are all given the 
same weight (i.e., multiply together). Our 
objective is not to compute actual values of 
erosion but to conduct a qualitative assess-
ment of the most vulnerable areas to this 
process. All the geo-processing was con-
ducted under ArcGIS 10.0 to produce a map 
of areas vulnerable to erosion (E):

2
(CR+CS) 

E × S × K × LC =  , (6)

where E can vary between –1 and 1. When 
land cover and soil erodibility are not consid-
ered, an intermediate map produced in this 
scheme as the product of R (average CR and 
CS) and S provides an approximate assess-
ment of the vulnerable areas to mass wasting 
processes mainly driven by rainfall (R) and 
gravity (S). The values for mass wasting haz-
ard can also vary between –1 and 1.

Outcomes
Spatial and Temporal Trends of Rainfall 
Runoff Erosivity (R). The CONUS mean 
decadal erosivity values, R, vary between 
5,227 and 8,639 MJ mm ha–1 y–1 between 
1970 and 2090. These average values increase 
with time according to all nine models con-
sidered (figure 1). However, these trends 
vary widely spatially when compared among 
individual watersheds (figure 2). In general, 
catchments in the northeastern and north-
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western United States are characterized by 
strong increasing trends in R (i.e., areas in red 
in the map, figure 2a) while the trends in the 
midwestern and southwestern United States 
are either weak or contradictory among 
models (i.e., areas in white in the map, fig-
ure 2a). There are only 71 watersheds (3.4%), 
located mainly in Colorado and Kansas, in 
which most climatic scenarios indicate that 
R will decrease in the future (i.e., areas in 
blue, figure 2a). Considering the limita-
tions highlighted by Renard and Freimund 
(1994) about the applicability of equations 
2 and 3, we identified 124 HUCs in which 
these equations are inappropriate in at least 
one year for at least one climactic projection 
between 1961 and 2099. These watersheds 
are located mainly in western Washington, 
Oregon, and California (figure 2).

The mean value of R considering all nine 
climatic projections between the historic 
period of 1970 and 2010 differ significantly 
from those between the future period of 
2050 and 2090 (probability <0.05) in 1,630 
basins mainly located in the northeastern and 
northwestern United States (figure 2b). The 
change is positive (i.e., increase in R) in most 
cases (91%). The mean percentage change in 
R in these basins is 20.2% ± 33% and var-
ies between –66.7% and 398% (figure 2b). 
The analysis of interannual variability of R 
indicates that the northeastern United States, 
along with large areas in both the northwest-
ern and southeastern United State regions 
will likely experience a significant increase 
in the std of the mean decadal R values 
(figure 2c). Conversely, the variability of R 
is unlikely to change in large areas of the 
Midwest. This finding indicates that water 
and soil resources management strategies for 
the northern regions would require a higher 
degree of adaptability than that for other 
regions in the country.

Our assessment of future R values provides 
an improved effort presented by Nearing 
(2001). Similarly to Nearing (2001) findings, 
our study shows that R is likely to increase 
in the future in large areas to the country. 
Nearing (2001) found a clear increase in R 
for New England and the Mid-Atlantic states 
north from Georgia. Conversely, Nearing 
(2001) results were very divergent for the 
southwestern region and to a lesser extent 
for the southeastern states. Our methodology 
incorporates simultaneously the precipitation 
predictions by more recent climatic projec-
tions and therefore offers new and robust 

Figure 1
Mean nationwide decadal values of rainfall runoff erosivity (R) between 1970 and 2090 accord-
ing to nine climatic scenarios. 
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Table 3
Scores between 0 and 1 assigned to erodibility, slope, and land cover categories for spatial 
analysis of vulnerable areas to mass wasting and erosion.

Erodibility Slope (%) Land cover Score

>0.33 >10 Cultivated crops 1
0.28 to 0.33 5 to 10 * 0.75
0.20 to 0.28 1 to 5 * 0.5
<0.20 <1 Everything else 0.25
*Cultivated crops are considered more vulnerable than any other land cover types. Thus only two 
scores (1 and 0.25) are considered.

information to water and soil managers. Our 
results are presented at different scales rang-
ing from 90 × 90 m (295 × 295 ft) pixels, to 
HUC-8 watersheds, to hydrologic regions to 
facilitate their use and dissemination.

Spatial Distribution in Erodibility, Slope, 
and Land Cover. The spatial distribution of 
the scores given to erodibility, slope, and land 
cover are shown in figure 3. Red areas in 
the three maps of this figure highlight the 
most vulnerable areas according to each of 
the three factors. Areas in the Midwest occu-
pying large portions of Kansas, Oklahoma, 
North Dakota, South Dakota, Iowa, Illinois, 
Indiana, and Missouri appear to be vulnera-
ble to erosion according to both land cover 

(i.e., cultivated crops) and erodibility (i.e., soils 
rich in silt). The percentage of the area in the 
CONUS covered with crops is 16% whereas 
the percentage of the area in the CONUS 
with K values above 0.33 is 25.4%. The spa-
tial correlation between land cover and K is 
expected given that fertile soils (e.g., mollisols) 
are often characterized by silty textures and 
therefore high values of K. The mean K value 
across the CONUS of 0.26 is lower than the 
mean value of 0.32 for cultivate crops.

Steep terrain (slope >10%) is common 
in mountainous regions of Washington, 
Oregon, Idaho, California, Nevada, Montana, 
Wyoming, Utah, Colorado, New Mexico, 
Arizona, Virginia, West Virginia, and North 
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Figure 2
Spatial trends in (a) the likelihood of erosivity to change in the future (table 2), (b) the percent-
age increase in mean erosivity between 1970 to 2010 and 2050 to 2090, and (c) the likelihood 
of change in the interannual variability of erosivity. 
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Carolina and occupies 19% of the CONUS. 
These steep areas are characterized by low 
values of K (figure 3) with a mean K of 0.20. 
As can be expected, cultivated crops occu-
pied a very small portion of these steep areas 
(i.e., 0.06 %).

Areas Vulnerable to Mass Wasting. The 
vulnerability to erosion is calculated by 

considering erosivity (CR and CS), slope, 
erodibility, and land cover. An intermediate 
step in this process corresponding to the spa-
tial distribution of the product of the first 
two factors provides an approximate assess-
ment of the CONUS vulnerability to mass 
wasting processes. The mean vulnerability to 
mass wasting at the pixel scale is 0.21 includ-

ing all pixels and 0.27 excluding areas with 
score zero (figure 4). Most of the CONUS 
reveal scores between 0.12 and 0.37 (50%), 
whereas 23% of the CONUS have a score 
of zero (i.e., white areas in figure 4). These 
areas have a score of zero for (CR + CS) ÷ 
2. This assumes that less moisture availability 
in the soil (i.e., decreased of precipitation) 
or decreased variability of it results in a 
decrease of mass movement hazards. This is 
true most of time regardless of texture. The 
areas that would experience the highest 
increase in mass wasting processes (i.e., scores 
> 1) occupy 0.8% of the CONUS; they are 
mainly located in mountainous regions of 
Washington, Oregon, Montana, Wyoming, 
Maine, and New York. The mean values 
per HUC-8 watershed vary between –0.3 
and 0.96, with a mean among them of 0.22 
(figure 5). The watersheds with the highest 
scores are located along the Appalachian 
Mountains in the east side of the coun-
try and in the Northwest over part of the 
Cascades Range (figure 5a). Among the 18 
hydrologic regions of the CONUS, regions 
6, 17, 1, 2, and 5 have the highest mean mass 
wasting vulnerability scores between 0.36 
and 0.5 (figure 5b). These regions include 
large areas over Vermont, New Hampshire, 
Washington, Pennsylvania, New York, and 
Maine with statewide mean values between 
0.45 and 0.58 (figure 4). The mean score 
for Region 11 is negative (–0.001) and 
highlights the fact that the precipitation pro-
jections for most of the HUC-8 watersheds 
in this region predict a decrease in magni-
tude and variance in the future and therefore 
a decrease in R. According to our scheme, 
a consistent decrease in R (both magnitude 
and variance) receives a negative score (blue 
areas in figures 2a and 5a).

Vulnerable Areas to Erosion. At the 90 m 
(295 ft) pixel scale, vulnerability to erosion 
varies between –0.56 and 1 with a mean of 
0.04 including all pixels, and of 0.05 exclud-
ing areas with zero score (covering 23% of 
the total area). The most frequent erosion 
scores across the CONUS vary between 0.03 
and 0.25 (49% of the pixels). There are very 
few CONUS pixels with the maximum pos-
sible score of 1 (i.e., < 0.002% of total area) 
and these areas are limited to steep cultivated 
areas in Washington, Oregon, Idaho, and 
New York. High erosion scores (i.e., above 
0.5) occupy 0.13% of the CONUS (figure 
4) mainly over Washington, Oregon, Idaho, 
Montana, Ohio, Pennsylvania, New York, 
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Figure 3
Spatial distributions of the scores given to (a) erodibility (K), (b) slope (S), and (c) land cover 
(see table 3 for scoring details). 
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Maryland, and Vermont. At the HUC-8 
watershed scale, the mean vulnerability 
scores vary between –0.12 and 0.35 with a 
mean of 0.04 (figure 6). The five hydrologic 
regions with the highest mean vulnerability 
are 5, 6, 2, 1, and 17 with values between 
0.06 and 0.09. These regions expand across 
Ohio, Vermont, Indiana, Maryland, and 

Illinois with statewide mean values between 
0.08 and 0.12 (figure 6). As in the case of the 
vulnerable areas to mass wasting, Region 11 
has a negative score for vulnerability to erosion 
(–0.007) due to negative trends in precipitation 
magnitude and variance over time predicted by 
most climatic projections considered.

Limitation of Assessment Methods. Our 
assessment of erosion is qualitative and even 
though we attempt a more realistic assessment 
by incorporating recent GCMs, no climatic 
predictions are available at a high temporal 
resolution (e.g., hourly precipitation) that 
would enable better assessment of erosivity. 
Our approach offers a qualitative assessment 
of vulnerability to erosion rather than a 
quantitative calculation of erosion rates. This 
is an important distinction with respect to 
the previous CONUS scale assessment of 
R (Nearing 2001). We employ a scheme 
to incorporate precipitation predictions by 
different GCMs and emission scenarios in 
which both the level of agreement between 
predictions, their magnitudes, and variance 
are considered. In addition, we consider the 
effects of other factors such as topography, 
soil erodibility, and land cover. Our assess-
ment assumes constant land cover over time. 
This is obviously an unrealistic assumption 
that adds some level of uncertainty to our 
results. However, generally speaking the 
land cover type associated to high erosion 
is cultivated crops and is not expected to 
change dramatically over time. Comparisons 
between spatial land cover data from 2000 
and 2006 indicate a percentage change in 
cultivated crops across the CONUS of less 
than 0.5%. Higher rates of land cover con-
version to crops have been reported at some 
locations. A recent study indicated land cover 
change from grasslands to crops of 1% to 5.4 
% per year in North Dakota, South Dakota, 
Nebraska, Minnesota, and Iowa between 
2006 to 2011 (Wright and Wimberly 2013). 
The mean cultivated crop cover in these 
states varies between 26% and 67% (Fry et 
al. 2011). According to our results, South 
Dakota, North Dakota, and Minnesota are 
more vulnerable than Nebraska and Iowa 
because CR and CS are often zero in the lat-
ter two. Our static assumption of land cover 
type also neglects possible plant growth rates 
changes due to changes in precipitation, 
temperature, and carbon dioxide patterns in 
the future. This study provides crucial spa-
tially resolved information that can provide 
the scientific basis to the development of 
effective management strategies to mitigate 
the impacts of climate change.

Summary and Conclusions
There is good agreement among the scientific 
community that extreme climate in terms 
of both temperature and rainfall intensity is 
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Figure 4
Spatial distributions of (a) vulnerability to mass wasting hazard (i.e., [CR+CS] ÷ 2 × S), and  
(b) vulnerability to erosion (i.e., [CR+CS] ÷ 2 × K × S × LC).
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occurring due to global climate warming. 
While there is little doubt that temperature 
will continue to rise in the future, there is 
less agreement in terms of changes in pre-
cipitation patterns. Thus, the profound effects 
of future climate change on ecosystems and 
human societies are difficult to predict. The 
results presented here provide an updated 
analysis of the effects of climate change on 
soil erosion over the CONUS. Our analyses 
are based on nine climate projections from 
three GCMs under three emissions scenarios. 
Our results show that mean decadal erosivity 
values for the CONUS between 1970 and 

2090 will increase with time according to 
all nine climatic projections considered. We 
also found a strong statistical indication that 
the expected changes in R, both in terms of 
magnitude and variance, vary widely spatially. 
Most of the northeastern and northwestern 
US states are characterized by strong increas-
ing trends in R. Conversely the trends in the 
Midwest and Southwest are either weak or 
contradictory among predictions under the 
nine climate projections.

The accuracy on our assessment of R is 
limited to both the accuracy of the pre-
cipitation projections and the effectiveness 

of the method employed to compute it. 
Precipitation projections by different mod-
els and emission scenarios provide, in many 
cases, divergent projections of future climate. 
However, we believe that our scheme cap-
tures efficiently both the rate of change in 
R with time and the degree of agreement 
between climatic projections. Our approach 
is not limited to study of individual climatic 
projections but of their level of agreement 
measured with a robust statistical quantity. 
In terms of the methodology employed to 
compute R, we recognize that it is a lim-
itation because R is computed based on an 
empirical equation using monthly precipita-
tion data. However, available GCMs do not 
offer precipitation data resolved at a higher 
temporal scale. An evaluation of the accu-
racy and efficiency of the equation used here 
to compute R would require a comparison 
between R estimates based on precipitation 
data at different temporal resolutions.

Location and extent of areas vulnerable to 
soil erosion are computed considering rain-
fall runoff erosivity (both future change in 
magnitude and variance), soil erodibility, land 
cover, and slope. Areas with the maximum vul-
nerability to erosion are limited to very small 
portions of Washington, Oregon, Idaho, and 
New York. These areas are covered by agricul-
ture crops with soils susceptible to erosion (e.g., 
silty loams) and landscapes with steep terrain 
(i.e., slope > 10%) and have a clear statistical 
indication that R magnitude and variance will 
likely increase in the future. The most fre-
quent erosion scores across the CONUS are 
below 0.1. Conversely high erosion scores > 
0.5 occupy only 0.13% of the CONUS and 
are located mainly in Oregon, Idaho, Montana, 
Ohio, Pennsylvania, New York, Maryland, and 
Vermont. The mean vulnerability scores per 
HUC-8 watershed indicate that the hydro-
logic regions 5, 6, 2, 1, and 17 over large areas of 
Ohio, Vermont, Indiana, Maryland, and Illinois 
will experience the highest mean vulnerability 
to erosion.

Nonpoint source pollution from soil ero-
sion of agricultural lands is the top cause of 
water quality problems in the United States. 
However, soil erosion control is costly, and 
the associated nonpoint source pollution to 
rural watersheds is difficult to manage. This 
study shows that some areas with historic prob-
lems of soil erosion will likely continue to have 
as much or worse soil erosion in the future. 
Resources of soil conservation must give pri-
oritie to those regions identified by this study.
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Figure 5
Mean vulnerability to mass wasting by (a) eight-digit hydrologic unit code watershed scale and 
(b) hydrologic region.
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Figure 6
Mean vulnerability to erosion by (a) eight-digit hydrologic unit code watershed (HUC-8) and  
(b) hydrologic region
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