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Abstract
Studies conducted at sites across ecological research networks usually strive to scale their results to larger areas, trying to
reach conclusions that are valid throughout larger enclosing regions. Network representativeness and constituency can show
how well conditions at sampling locations represent conditions also found elsewhere and can be used to help scale-up results
over larger regions. Multivariate statistical methods have been used to design networks and select sites that optimize regional
representation, thereby maximizing the value of datasets and research. However, in networks created from already
established sites, an immediate challenge is to understand how well existing sites represent the range of environments in the
whole area of interest. We performed an analysis to show how well sites in the USDA Long-Term Agroecosystem Research
(LTAR) Network represent all agricultural working lands within the conterminous United States (CONUS). Our analysis of
18 LTAR sites, based on 15 climatic and edaphic characteristics, produced maps of representativeness and constituency.
Representativeness of the LTAR sites was quantified through an exhaustive pairwise Euclidean distance calculation in
multivariate space, between the locations of experiments within each LTAR site and every 1 km cell across the CONUS.
Network representativeness is from the perspective of all CONUS locations, but we also considered the perspective from
each LTAR site. For every LTAR site, we identified the region that is best represented by that particular site—its
constituency—as the set of 1 km grid locations best represented by the environmental drivers at that particular LTAR site.
Representativeness shows how well the combination of characteristics at each CONUS location was represented by the
LTAR sites’ environments, while constituency shows which LTAR site was the closest match for each location. LTAR
representativeness was good across most of the CONUS. Representativeness for croplands was higher than for grazinglands,
probably because croplands have more specific environmental criteria. Constituencies resemble ecoregions but have their
environmental conditions “centered” on those at particular existing LTAR sites. Constituency of LTAR sites can be used to
prioritize the locations of experimental research at or even within particular sites, or to identify the extents that can likely be
included when generalizing knowledge across larger regions of the CONUS. Sites with a large constituency have generalist
environments, while those with smaller constituency areas have more specialized environmental combinations. These
“specialist” sites are the best representatives for smaller, more unusual areas. The potential of sharing complementary sites
from the Long-Term Ecological Research (LTER) Network and the National Ecological Observatory Network (NEON) to
boost representativeness was also explored. LTAR network representativeness would benefit from borrowing several NEON
sites and the Sevilleta LTER site. Later network additions must include such specialist sites that are targeted to represent
unique missing environments. While this analysis exhaustively considered principal environmental characteristics related to
production on working lands, we did not consider the focal agronomic systems under study, or their socio-economic context.
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Introduction

National and continental-scale ecological research networks
are large, distributed, permanent investments, yet they
provide a central organizational structure that permits
coordinated observations over much larger extents than
could otherwise be made by one or a few scientists. Net-
work locations can be as elaborate as expensive infra-
structure facilities, or as simple as locations where samples
were grabbed. Regular, comparable, synoptic observations
and measurements made over a large area can take advan-
tage of natural experiments (Hargrove and Pickering 1992)
and serendipity (Michener et al. 2009). However, thoughtful
network design is necessary to ensure representation of
diverse eco-climatological zones and broad application of
network findings. The United States (US) National Science
Foundation’s National Ecological Observatory Network
(NEON) was one of the first networks to undergo a design
phase before its construction, to optimize placement of
observatory locations (Keller et al. 2008; Schimel et al.
2007). This planned approach provided a statistically valid
methodology for intentional comparisons of ecological
systems across regional domains, and for the exploration of
variability within them (Keller et al. 2008).

Studies conducted across observational networks usually
strive to scale up their results to even larger areas, trying to
reach conclusions that are valid throughout regional, con-
tinental, and even global scales (Hargrove and Hoffman
2004a; Kitzes et al. 2021; Windsor et al. 2023). During
initial network organization, however, factors like existing
infrastructure, location of research institutions, and partici-
pation interest may take precedence over how well a loca-
tion represents some, or all, of the larger area to be
represented. The growth and addition of sites to such net-
works is often organic, resulting more from opportunity
than from design. Initially, researchers rely on subjective
expertise to judge how geographically far results obtained at
one site might be validly extended. This process of network
creation also poses an immediate problem for managers of
the nascent network to determine how well the existing
network of sites truly represents the entire area of interest
which it claims. Network representativeness and con-
stituency can show how well conditions at those locations
represent conditions elsewhere within a larger area con-
taining the network and can be used to help scale-up results
over larger regions.

The availability of gridded geospatial data for environ-
mental conditions, along with increased computing capa-
city, has allowed the use of quantitative multivariate
statistical clustering methods to delineate geographic
regions having similar conditions (Hargrove and Hoffman
2004b; Kumar et al. 2011; McMahon et al. 2004; White
et al. 2005). Such clustering methods allow for the

quantification of similarity, which can form the basis for an
analysis of how well the environmental conditions at net-
work sites represent the larger area which contains it
(Hargrove and Hoffman 2004b; Hargrove et al. 2003). With
these statistically based regionalizations, it is possible to
know which site within a given network best represents any
location in the area of interest, and how well it does so.
With this knowledge, experimental results may thus be
extrapolated to areas having quantitatively similar envir-
onmental conditions beyond the sites where they were
obtained. Poorly represented areas in turn show the best
candidates for new sites to be added to the existing network
to maximize the representativeness of conditions within the
greater area, thus providing directed network growth.

Agricultural land represented 44.4% of land cover in the
US in 2020 (The World Bank 2023), with immense diver-
sity in ecoregion characteristics and production activities
across the country. There is a need to systematically study
agroecological systems across the US to provide coordi-
nated measurements and studies that represent the diversity
of agricultural regions. To address this need, the Long-Term
Agroecosystem Research (LTAR) Network was established
by the US Department of Agriculture (USDA) in 2012
(Kleinman et al. 2018; Spiegal et al. 2018). Its objective is
to carry out agricultural research that is long-term, trans-
disciplinary, and reaches across multiple sites and scales
using a networked approach. The LTAR mission is to
develop agricultural paradigms that are innovative and
sustainable, based on evidence from regionally focused
experiments. Research in the LTAR Network is coordinated
among 18+ sites across the conterminous US (CONUS)
(Fig. 1) that were selected, in part, to represent a diversity of
agroecological systems in working lands. At a basic level,
agroecological research in LTAR is grounded in the
assessment of indicators of productivity, environment and
well-being, a trio of domains rooted in early sustainability
concepts described by the Brundtland Commission (World
Commission on Environment and Development 1987).
Using this general framework, LTAR plans to evaluate the
effectiveness of solutions that compare the results of alter-
native production scenarios, modeled, and extrapolated
across broad agricultural regions.

Research and data collection in LTAR is mostly orga-
nized around two main concepts: a common experimental
framework, and long-term observatory sites on working
lands. The common experiment seeks to compare Business-
As-Usual (BAU) agricultural practices against those that are
Aspirational (ASP). The practices explored in the common
experiments are place-oriented, to reflect the agricultural
economies and environments in their home region; how-
ever, these experiments are coordinated at the network
level. In addition to the common experiment, LTAR also
supports continued collection of data at long-term sites at
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USDA benchmark watersheds and experimental ranges.
These include, for example, the Little River Experimental
Watershed, Walnut Gulch Experimental Watershed, and the
Jornada Experimental Range (Bosch et al. 2021; Goodrich
et al. 2015; Havstad and Schlesinger 1996; Renard et al.
2008). A full description of each site’s research legacy is
described in their initial proposals, available in the docu-
ment archive on the LTAR website (https://ltar.ars.usda.
gov/).

Although LTAR encompasses a variety of agricultural
land-uses (i.e., rangeland, pastureland, and cropland),
common measurements are collected at all sites to provide
assessment of productivity (e.g., crop yields, forage yields,
variables that quantify animal products), environment (e.g.,
variables that describe soil health, water quantity, water
quality, air quality, and biodiversity), and well-being (e.g.,
farm income, costs of production, labor, profits). One key
strength of the LTAR Network is the long-term collection
of plot- and field-level management data that can be tied to
these metrics. By identifying, measuring, and understanding
these metrics and management data at LTAR sites, the
LTAR Network is monitoring key indicators of sustainable
production across working lands of the US (for example,
Browning et al. 2021).

A central issue for LTAR is the challenge of extra-
polating experimental results to broader regions. Accurately
predicting broader landscape- to continental-level results of
ASP treatments is key to effectively evaluating the tradeoffs
among BAU and ASP scenarios and to understanding the
potential effects of climate and other contextual changes. To
accomplish this, it is necessary for researchers to understand
the geographic representativeness of their respective LTAR
site. Indeed, a regional representation of each LTAR site
was included as one of the primary descriptors when each
site entered the Network. The delineation of these repre-
sentative regions was expert-based and derived by LTAR
location scientists using non-standard processes. In 2018,
these regional boundaries were codified and mapped, and in
some cases adjusted, through an intensive, facilitated
mapping exercise (Bean et al. 2021; Coffin et al. 2020).
However, the regional boundaries defined in this exercise
(Fig. 1, blue shaded areas) were still lacking in a standar-
dized, quantifiable approach that could facilitate a scientific
basis for extrapolating experimental results to broader areas.
In addition, the regions fail to consider areas of the CONUS
that fall outside of designated regions, with no information
about how well these areas are (or are not) represented by
existing LTAR sites. While the existing regional boundaries

Fig. 1 Locations of 18 Long-Term Agroecosystem Research (LTAR)
Network sites across the conterminous US (CONUS). Black dots
represent main site locations, red squares represent centroids of

experimental plots or fields, and blue shaded areas represent locally
estimated representative areas. (See Table 2 for LTAR site abbrevia-
tions; Armendariz et al. 2021; Bean et al. 2021; Coffin et al. 2020)
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constitute a subjective expert-defined area that LTAR sci-
entists can use to evaluate scenarios related to common
LTAR experiments within their own regions, they are not
effective in supporting wall-to-wall continental-scale mod-
els of agricultural outcomes in response to climate change.

The work presented here responds to two questions: how
well does the LTAR Network represent agricultural pro-
duction regions (i.e., working lands) of the CONUS, and its
corollary, how well are working lands of the CONUS
represented by the LTAR Network? Since LTAR experi-
mental sites represent only a tiny fraction of the actual
production landscape, and since the launching and man-
agement of a national scale network is such a vast and
substantial undertaking, we also investigated the extent to
which sites from the NEON and Long-Term Ecological
Research (LTER) networks could possibly increase the
overall LTAR representativeness using a strategy of cross-
network site sharing. Through this potential “borrowing”
step, we examined how LTAR could strategically partner
with other national network sites to increase its repre-
sentativeness of working lands.

Methods and Materials

Working Lands Masks

Rather than representing all lands, the goal of the LTAR
Network is to specifically represent “working lands”.

Essential systems of concern comprising working lands in
the LTAR Network include croplands, grazinglands and
“integrated systems”. Maps of all three of these types of
working lands were developed as part of a tandem effort,
which we used as masks, constraining our analysis of
LTAR representativeness to areas where agricultural pro-
duction was occurring or could potentially occur. Integrated
systems are a combination of farm level cropping and ani-
mal systems and are areas where cropping and pasture or
grazing systems exist in close proximity in space and time.
Spatially defining integrated systems was complex and was
dependent on knowledge of croplands and grazinglands.
Therefore, the development of analytical masks focused on
mapping croplands and grazinglands and relied upon the
reclassification of multiple years of land cover data using
the USDA Cropland Data Layer (Boryan et al. 2011) for the
croplands mask, and the USGS Land Cover Database (Yang
et al. 2018) for the grazinglands mask (Fig. 10). Croplands
included lands dedicated to annual row crops, tree crops,
hay, and silage. Potential grazinglands included grasslands,
shrublands and emergent wetlands. Working lands origin-
ally developed at 30 m resolution were resampled at 1 km
by identifying the dominant type within each 1 km pixel
consistent with other datasets (Table 1) used in current
analysis. These working lands masks were used to spatially
constrain our quantitative representativeness analysis to
show only areas in the CONUS where agriculture was
occurring or was likely to occur.

Datasets

A set of fifteen bioclimatic, edaphic, and topographic vari-
ables were selected for the analysis (Table 1). The variables
were selected to capture and characterize the primary
growing conditions, or environmental drivers, for working
lands. Temperature and precipitation during the growing
season are primary determinants of crop growth and yield
and were captured by bioclimatic variables: Annual Tem-
perature; Mean Temperature of Warmest Quarter; Mean
Temperature of Coldest Quarter; Annual Precipitation;
Precipitation of Warmest Quarter; and Precipitation of
Coldest Quarter. Agricultural yields are also highly sensitive
to inter- and intra-annual variability and fluctuations in cli-
mate, leading to extreme heat and drought conditions (Eck et
al. 2020; Wolfe et al. 2018). Seasonal to diurnal variability
in temperature conditions have been shown to have sig-
nificant impact on crop yields (Lobell 2007; Xie et al. 2022).
We included Isothermality, Temperature Seasonality, and
Precipitation Seasonality variables to capture the variability
and extremes in the growing conditions. All bioclimatic
variables were derived from the WorldClim v2.1 database
(Fick and Hijmans 2017). Soil properties and fertility are
vital for crop growth and yield and were captured by the

Table 1 Gridded datasets used for the analysis and their sources

Dataset title Source

1 Annual mean temperature WorldClim v2a

2 Isothermality WorldClim v2a

3 Temperature seasonality WorldClim v2a

4 Mean temperature of warmest quarter WorldClim v2a

5 Mean temperature of coldest quarter WorldClim v2a

6 Annual precipitation WorldClim v2a

7 Precipitation seasonality WorldClim v2a

8 Precipitation of warmest quarter WorldClim v2a

9 Precipitation of coldest quarter WorldClim v2a

10 Available water capacity SoilGrids250mb

11 Soil bulk density SoilGrids 2.0c

12 Soil carbon content SoilGrids 2.0c

13 Soil nitrogen content SoilGrids 2.0c

14 pH SoilGrids 2.0c

15 Compound topographic index HYDRO1Kd

a Fick and Hijmans (2017)
bHengl et al. (2017)
cPoggio et al. (2021)
dEarth Resources Observation And Science (EROS) Center (2017)
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SoilGrid 2.0 datasets, including: Available Water Capacity;
Soil Bulk Density; Soil Carbon Content; Soil Nitrogen
Content; and pH (Batjes et al. 2020). The Compound
Topographic Index was included to capture the topographic
and soil wetness conditions (Earth Resources Observation
And Science (EROS) Center 2017). All datasets were pro-
cessed and harmonized to a 1 km x 1 km grid.

To prevent bias due to correlation among the selected set
of variables, a Principal Component Analysis (PCA) was
performed to extract features from the data into independent
principal components. Principal components were calculated
by performing a Singular Value Decomposition of the data
using the PCA module within Python Scikit-learn (Pedre-
gosa et al. 2011). After examining the eigenvalues (Fig. 2a),
the top seven components explaining almost 90% of var-
iance in the data were selected for analysis in this study. All
results and analysis presented hereafter were conducted in
this 7-dimensional Principal Component space.

The first principal component (PC1) explains 28% of the
variance (Fig. 2a) and eigenvectors load primarily on tem-
perature variables (Fig. 2b) emphasizing warm conditions
year-round. The PC1 values represent year-round warm
temperatures, and are high in the southern US, the arid
southwest and the coastal region of the Pacific Northwest
(Fig. 12a). Principal Component 2 (PC2) explains 20% of
the variance (Fig. 2a) and loads positively on precipitation
variables and negatively on temperature (Fig. 2b). The PC2
year-round precipitation values are low in the arid south-
western US, dominated by low height woody vegetation,
while values are high in the wet forested ecosystems of the
Pacific Northwest, northeastern, and eastern US (Fig. 12b).

Principal Component 3 (PC3) explains 13% of the variance
and loads positively on cold season precipitation, but
negatively on warm season temperature and precipitation,
soil bulk density, and compound topographic index. The
PC3 precipitation as snowmelt values are low in the mid-
western US, Mississippi River Basin, and higher in the
Pacific Northwest. Principal Component 4 (PC4) explains
9% of the variance and loads negatively on soil properties,
including bulk density and pH, representing soil con-
solidation and texture conditions. The PC4 values are low in
the sandy coastal plain and the high mountain areas with
uncompacted soils, higher in regions with more friable soils
such as the midwestern US, and very high in urban areas
with highly compacted soils. Principal Component 5 (PC5)
explained 7% of the variance, and load primarily on soil
available water holding capacity. The PC5 values are high
in coastal Washington (WA), Oregon (OR), and California
(CA), while low in the mountainous regions of Appalachia
and large portions of Nevada (NV), Utah (UT), Colorado
(CO) and Wyoming (WY). Principal Component 6 (PC6)
explains 6% of the variance and loads positively on pre-
cipitation seasonality, soil carbon and nitrogen content, and
compound topographic index. Principal Component 7
(PC7) explains 5% of the variance and loads positively on
precipitation seasonality, negatively on soil carbon content,
and positively on nitrogen content.

LTAR Network Experimental Sites

Each LTAR site consists of a set of geographically separate
experimental boundaries that sample a range of

Fig. 2 Principal component analysis of 15 selected environmental driver variables: a Scree plot showing cumulative variance explained by each
component; b Principal component factor loadings
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environmental conditions at the site. These experimental
site locations were taken from the LTAR Standard GIS
Data Layers “Experimental Boundaries” vector polygon
feature class (unmasked version, Armendariz et al. 2021)
with polygon areas ranging from <1 ha plots to entire fields
(>10 ha). To preserve the within-site environmental diver-
sity, the centroid of each experimental polygon boundary
was considered, creating a subnetwork of points for each
LTAR site that was used for all calculations. A total of
1529 centroids in the 18 LTAR subnetworks (Table 2)
were used to calculate the representativeness and con-
stituency of each LTAR site by intersecting them with the
CONUS 1 km grid data (Table 1) and extracting their
environmental driver principal component values. Cen-
troids falling in the same grid cell had identical environ-
mental conditions. The LTAR sites varied widely in terms
of the number and spatial distribution of centroids, making
the sample size within each site different. Mean conditions
were calculated as the mean across all centroids within a
site’s subnetwork. Figure 3 shows the conditions sampled
by every centroid within each LTAR site in the first three
principal components space.

Quantifying Network Representativeness and Site
Constituency

Euclidean distance between two sites plotted in multi-
variate environmental space can be used as an inverse
measure of multivariate similarity to quantify repre-
sentativeness. Close sites in environmental space have a
similar combination of environmental factors, and there-
fore are highly representative of each other. Multivariate
clustering has also been widely used to segment the
landscape, based on selected variables, to identify groups
of map cells having similar environmental characteristics.
Hargrove et al. (2003) used climate, soil, and topography
to stratify the environments within the continental United
States into a set of customized ecoregions using multi-
variate clustering, and then computed the representative-
ness of each resulting ecoregion to the most similar site
within the existing AmeriFlux network. Sulkava et al.
(2011) used a similar clustering approach using climate,
soil, vegetation, and remote sensed data to quantify
representativeness of the European flux tower network.
Such an approach was successfully used to produce the
environmental “domains” for the design of NEON (Keller
et al. 2008; Schimel et al. 2007). Villarreal et al. (2018)
used a maximum entropy approach to examine ecological
functional type representativeness of Ameriflux and
NEON flux tower locations and their core sites for the
CONUS. Malone et al. (2022) applied a clustering-based
approach to assess the representativeness of methane
observing towers. Villarreal and Vargas (2021) used a

random forest-based species distribution model approach
to delineate the spatial distribution of environmental fac-
tors that are similar to the environmental range monitored
by corresponding observation sites in Latin America.
Most of these approaches can be broadly summarized as:
1) classification of multivariate space in clusters/strata
having similar conditions; and 2) assessment of conditions
captured by the observation sites within those clusters/
strata.

Classifying the area intended to be represented in
multivariate space provides generalized, data-defined
clusters/strata, simplifies the computational problem, and
is well-suited for the initial design of a new network, as
was done for NEON. For existing observation networks,
these methods offer a quantification of network repre-
sentativeness relative to a theoretical baseline. These
methods are advantageous for 1) evaluating clustering of
variables for observational network design, and 2) for
evaluating the representativeness of a particular observa-
tion relative to a broader network. However, the goal of
the current study was to quantitatively assess the repre-
sentativeness and constituency of the already-existing
LTAR network of sites. As such, the environmental
conditions at the existing LTAR sites already represent
cluster centroids, even if non-optimal, of regions they are
intended to represent. Hence, no clustering or grouping of
environmental conditions was done here; instead, the
combination of environmental drivers at every 1 km cell
in the CONUS was exhaustively compared with each
centroid from every LTAR site.

Representativeness of the LTAR sites was quantified
through an exhaustive pairwise Euclidean distance calcu-
lation in multivariate space, between the experimental
boundary centroids of each LTAR site (1529 centroids) and
every 1 km cell ( >12 million) across the CONUS. Repre-
sentativeness was calculated at each grid cell as a normal-
ized index between 0 (least representative) and 1 (most
representative) provided in Eq. 1, where Vn refers to the
principal compoonents (n = 1 to 7) of variables in Table 1.
The second term of Eq. 1 represents normalized distance
(between 0 and 1) in 7-dimensional data space. This pro-
duced 1529 1 km gridded maps showing the environmental
representativeness of each centroid at every location in the
CONUS. Representativeness maps pertaining to the group
of centroids comprising each of the LTAR sites were
summed to produce a unique site representativeness layer
for each LTAR site (i.e., one per LTAR site). The 1529
representativeness layers were then stacked, and by select-
ing the maximum value for each 1 km CONUS grid point in
the layer stack, we produced the final map of LTAR net-
work representativeness. Computation of representativeness
and constituency was produced using a parallel analysis
code developed with C programming language, run on a
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Linux-based high performance computing system. All sta-
tistical analysis were conducted using Python-based scripts
(Kumar 2023).

representativeness ¼ 1�
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Network representativeness is from the perspective of all

CONUS locations, but we also considered the perspective
from each LTAR site. For every LTAR site, we identified
the region that is best represented by that particular site,
referred to as the LTAR sites’ constituency, since these are
the set of 1 km grid locations best represented by the
environmental drivers at that particular LTAR site; all
CONUS locations have a single LTAR site that best
represents it. However, the richness of the data allowed for a
deeper look into the representativeness of LTAR sites.
Therefore, in addition to the most representative LTAR site,
we computed a sorted list of the representativeness of all
remaining LTAR sites for each 1 km CONUS grid location.

There was no enforcement of spatial contiguity; any
spatial contiguity in the constituency map emerged due to
the spatial autocorrelation of the environmental drivers
across geographic space. Given the existing constellation of
LTAR sites, the resulting constituency map represents the
areas to which knowledge gleaned from each LTAR site
about crop growth and production might be best general-
ized. The representativeness map shows the potential
validity of such generalizations for each CONUS location,
based on similarity with primary environmental drivers of
production.

Results

Representativeness and Constituency of LTAR Sites

The LTAR Network of 18 sites, with 1529 experimental
boundary centroids, has good overall representativeness (0,
not representative; 1 most representative) for all CONUS
land cover types (mean: 0.78, median: 0.86) with a wide
range of variability (standard deviations: 0.24) (Fig. 4).
Croplands (~ 19.75% of land area) are best represented by
the LTAR Network with mean representativeness of 0.86
(median: 0.90) and a standard deviation of 0.15. Grazing-
lands occupy a large fraction of the CONUS (~ 43.77% of
land area), with a slightly lower mean representativeness of
0.81 (median: 0.87) and a higher standard deviation of 0.18.
Land areas where croplands and grazinglands are highly
integrated and mixed occupy a much smaller area (~ 1.54%
of land area); and they have a mean representativeness of
0.83 (median: 0.88) and a standard deviation of 0.18. Non-
working lands (~ 38% of land area), which are not targeted
by the LTAR Network, are represented relatively poorly,
with mean representativeness of 0.70 (median: 0.82) and a
standard deviation of 0.30. Croplands require more specific
environmental conditions, and so they may be easier to
classify. Although representation of non-working lands is
not a goal of the LTAR Network, the Network’s experi-
mental areas nevertheless capture a fair representation of
these non-target areas.

Results of the analysis produced a map that describes the
normalized representativeness of the LTAR Network (Fig.
5a) for CONUS working lands as defined by the cropland
and grazinglands masks (Fig. 10a). Croplands primarily

Fig. 3 Plots of values for the first three principal components: a PC1 is
interpreted as year-round warmth; b PC2 is year-round precipitation;
and c PC3 is the ability to store winter precipitation in the soil.
Experimental boundaries (red circles) within each site represent a

range of variability in their local LTAR site conditions. Multiple
centroids falling within the same 1 km cell will have identical envir-
onmental conditions
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Fig. 4 Distribution of
normalized representativeness
provided by the LTAR Network
for various land cover types
across the CONUS. The
increased height of the peak
indicates higher normalized
representativeness. Croplands
(green solid line) are best
represented by the network,
followed by mixed-use
(croplands/grazinglands; cyan
solid line), and grazinglands
(dark blue solid line), with
lowest representativeness for
non-working lands (red
dashed line)

Fig. 5 Representativeness and
constituency maps of LTAR
sites: a Normalized LTAR
Network representativeness for
all working lands across
CONUS, showing least
representative (0) to most
representative (1);
b Constituency of 18 LTAR
sites across all the CONUS
working lands. With only a few
exceptions, most of the
environmental driver conditions
within the CONUS are well-
represented by sites within the
LTAR Network. The
constituency map strongly
resembles an ecoregion map, but
each constituency region is
anchored by the environmental
conditions found at a particular
LTAR site
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located in the eastern and midwestern CONUS are well
represented by LTAR sites, with relatively low representa-
tiveness for more isolated croplands in northeast Michigan
(MI) near Lake Huron, northern Vermont (VT) and Maine
(ME). Although thirteen LTAR sites focus on the study of
grazinglands, due to the vast extent and heterogeneity of
this land use, their representativeness is highly varied. In the
eastern United States, grazinglands interspersed between
croplands are generally very well represented. Wetlands on
the Atlantic and Gulf coastal margins, and the Greater
Florida Everglades, considered to be potential grazinglands,
are poorly represented by the mostly inland LTAR sites.
Grazinglands in the Great Plains, including the Sandhill
prairies in Nebraska (NE), show low representativeness.
Beyond the patch of very low representativeness in
Nebraska, a swath of land from northern Montana (MT)
down to southern Texas (TX) has moderate representa-
tiveness (~0.5–0.7). In California, parts of the Sonora-
Mojave desert, and the California Oak Savanna region
(extending into Oregon and Washington; McPherson 1997),
are not well-represented due to the absence of any similar
LTAR site.

Constituency areas vary widely across LTAR sites. The
constituency areas range from less than 10 million hectares
(Mha) up to 90 Mha, and within land use type there is large
variability in how well each site represents the area within
its constituency, described by its mean and distribution
shown in the box and whisker plots (Fig. 6). Grazinglands
have the largest constituency areas, since grazinglands are
more heterogeneous, and the environmental conditions for

both croplands and mixed-use working lands are more
constrained. Together, the GB, CPER and JER con-
stituencies, predominantly grazinglands, occupy the bulk of
the area of working lands in the western CONUS (Fig. 6b),
with CPER representativeness having the highest mean and
lowest variability among them. Among croplands, the
Upper Mississippi River Basin (UMRB) has the largest
constituency area of approximately 29.14 Mha, with mean
representativeness of 0.82 (Fig. 6a). Northern Plains (NP)
represents the second largest cropland constituency repre-
senting almost 14.91 Mha, with a mean representativeness
of 0.88. Ideally, an LTAR site would have a large con-
stituency area, high mean representativeness, and low
variability in representativeness across its constituency.
Such characteristics would indicate that a site is well-
matched for representing specific environmental conditions
occurring over a large area.

Environmental Gradients Captured by the LTAR
Network

Environmental gradients captured by the LTAR Network
can be ascertained from the relationship between con-
stituency areas and principal component values. Most
constituency areas are well-characterized, with limited
environmental variability across the constituency (Fig. 7),
indicated by a narrow range of PC values. ABS-UF has the
largest amount of variability for the first 3 principal com-
ponents in part because its constituency area includes
regions in Florida (FL) and the Pacific Northwest. Similarly,

Fig. 6 Constituency area and within-constituency distribution of
representativeness by land use: a croplands, b grazinglands, and
c mixed-use lands. Plots show the constituency area (in million hec-
tares, top x-axis), as well as the mean and distribution of representa-
tiveness across the constituency. LTAR sites are sorted independently

by constituency area (shown as gray bars) within each land use type.
The colored box and whisker plots show the full range of repre-
sentativeness (90th percentile as a box; mean as a bar; median as a
green triangle)
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CAF has a moderate constituency area, but it is spread
across a wide region, which increases environmental
variability. UMRB, which has the largest constituency area
(Fig. 6a), but whose area is geographically concentrated,
has a large variability of the first principal component (Fig.
7a), because its constituency area includes a pronounced
gradient of precipitation.

Yet constituency area is not related to environmental
variability present at an LTAR site (Fig. 7). Some sites have
a broad range of environmental conditions and still have
limited constituency areas. For example, ABS-UF has a
wide range of conditions in all the first principal compo-
nents, yet its constituency is comparatively limited in area.
Having a broad range of environmental conditions is not
sufficient alone to cause a site to have a large constituency
area.

Leveraging Complementary Sites from Other
Environmental Observation Networks

Other national-scale networks, like the NEON and LTER
networks, have different programmatic criteria than LTAR,
and collect different types of environmental data (Hobbie
et al. 2003; Keller et al. 2008; Schimel et al. 2007). Spe-
cifically, NEON and LTER sites do not set out by design to
represent working lands across the CONUS. Nevertheless,
our analysis considered the possibility of a tactical “shar-
ing” strategy of sites from different networks, to boost the
representativeness of the LTAR Network. At sites within
other networks identified as having environmental condi-
tions that are poorly represented by existing LTAR sites,
LTAR might persuade the sister network into adopting

protocols and making LTAR measurements at those com-
plementary sites. Ostensibly, LTAR might also adopt and
perform alternative measurements at some of its identified
LTAR sites in mutual reciprocity.

Only sites from the other networks that were located in
working lands were considered for such complementary
sharing. Figure 8 identifies some areas for which a site from
the NEON or LTER network represents those CONUS
locations better than any LTAR site. For such locations, the
sharing strategy could be profitable, in which selected sites
are identified in each partnering network to coordinate with
the other, adding particular complementary data. Because
this sharing has benefits to both participating networks
(although the shared identified sites differ), such coordina-
tion has mutual benefits.

Twenty-eight NEON sites (Table 3) thus located were
considered for sharing in this analysis. Of those, sites
located in the Great Plains, intermountain West and Pacific
Northwest, increased the representativeness of the LTAR
Network, denoted by the blue pixels in Fig. 8 and overall
increases in representativeness in those areas (Fig. 9). Of the
three LTER sites located in working lands, the Sevilleta
LTER site in southern New Mexico is the only LTER site
that improves LTAR representativeness. The LTAR Net-
work was designed to represent working lands, which,
according to our analysis, it does. Because NEON and
LTER were not designed with this objective, a network
level comparison of working-lands representativeness is
spurious and not commensurate with their purposes.
Nevertheless, the map in Fig. 8 shows some locations in
blue (and a few in green) where some sites in these net-
works unintentionally provide greater representation of

Fig. 7 Range in environmental gradients available at each LTAR site,
across the top three Principal Component Factors: a PC1 is interpreted
as year-round warmth; b PC2 is year-round precipitation; c PC3 is the
ability to store winter precipitation in the soil. LTAR sites are sorted

independently by constituency area (shown as gray bars) within each
principal component. Red circles show each experimental boundary
centroid, mean as bar, median as green triangle, 90th percentile as box,
with whiskers indicating the full range of values
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working lands than LTAR. Benefits to LTAR representa-
tiveness from sharing NEON sites are potentially greater
than from sharing LTER sites, and disproportionately
accrue to grazing- and mixed-use lands.

Discussion

For this analysis, the selected method evaluated the repre-
sentativeness and constituency of the LTAR Network as it
exists, providing a result that is immediately useful for
scientists and managers to evaluate the similarity of their
own sites to other areas. The pairwise Euclidean distance
was measured between each LTAR experimental boundary
polygon and each 1 km grid cell of the CONUS, across 7
dimensions of environmental principal components. This
method best examines the representativeness of an existing
network and its set of sampling locations, as opposed to
designing a network.

Results describing the variability of principal component
values indicate that the environments for each of the 18
LTAR are well-differentiated (Fig. 3a), and the unique
environmental conditions across the CONUS are sampled
well. As a whole, the LTAR Network representativeness of
environmental conditions across the CONUS was high, but
increased even more after application of masks delimiting
“working lands” of cropping and grazing systems. This
analysis uses climatic and edaphic conditions selected to
reflect primary environmental drivers for agricultural pro-
ductivity, rather than agricultural outputs themselves. Thus,
our analysis represents potential, rather than currently rea-
lized productivity.

Constituencies of the 18 LTAR sites resemble ecoregions
to which they are related. Unlike ecoregions, however, each
constituency region is defined by environmental conditions
at a particular LTAR site. Most constituencies are spatially
contiguous (except where interrupted by the working lands

mask), with a few notable exceptions. The dark purple R.J.
Cook Agronomy Farm (CAF) constituency forms a high-
elevation ring around the area excluded from the cyan Great
Basin (GB) and intermountain west constituency. Most
notably, the light purple Archbold Biological Station –

University of Florida (ABS-UF) constituency is split across
sides of the CONUS. This Florida LTAR site is currently
the best representative LTAR site for locations in the
California Oak Savanna area of the Pacific Northwest. This
result may be surprising until noting that LTAR repre-
sentativeness is lowest in these same Pacific Northwest
locations (Fig. 5a), revealing that, although ABS-UF is the
current best LTAR site representative among all LTAR
sites, its representativeness of these areas is still poor.

Constituencies shown in Fig. 5b will make intuitive
sense to most ecologists. These areas resemble ecoregions
but differ from normal ecoregions by having their envir-
onmental conditions “centered” on those at particular
existing LTAR sites. While intuitive, it would have been
difficult to predict such a constituency map before having
done this analysis. Comparing Fig. 5a, b with the areas
shown in Fig. 1, which were the areas of best representation
presumed by the LTAR site scientists, provides an indica-
tion of the difference between preconceptions and quanti-
tative analyses. On the other hand, our analysis did not
consider key features of LTAR site research programs, such
as the empirical understanding of dominant regional pro-
duction systems and practices related to crop and livestock
management.

Representativeness and constituencies computed here
only reflect similarities in the primary environmental and
edaphic conditions. In most cases, agricultural productivity
will be correlated with primary growing conditions, and it
would be useful to characterize network representativeness
and constituency on that basis. Other important differences
in agronomic practices, or other social, economic or poli-
tical treatments were not considered in this analysis, and

Fig. 8 National map showing
which of three national-scale
networks best represents
working lands across the
conterminous United States
(CONUS). National Ecological
Observatory Network (NEON)
site locations are shown in blue
triangles, and Long-Term
Ecological Research (LTER)
sites are shown as red diamonds.
The color of the areas indicates
which of the three networks best
represent those working lands
locations: yellow is for LTAR,
blue is for NEON, and green is
for LTER
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may dramatically affect, alter or override the similarities in
primary environmental conditions shown here. Hence, the
delineation of constituency areas would likely change if
additional datasets describing a more holistic approach to
socio-agroecosystems were integrated into the analysis. For
example, while the CAF constituency shown here forms a
ring-like feature, the LTAR research at CAF is focused on
cropland production and associated agronomic practices
common throughout the region shown in Fig. 1, a fact that
was noted in the reasoning provided for the initial CAF
boundary delineation (Bean et al. 2021). In contrast,
research at the GB is oriented toward a different set of
agronomic practices focused on grazingland production.
Therefore, if such practices were included in our analysis,
the actual CAF constituency may resemble more strongly
the areas shown in Fig. 1.

Although our goal was not the design of a network de
novo, but instead the analysis of the existing LTAR network
of sites, it identifies poorly represented regions and provides
guidelines for network growth. In Fig. 6, we can distinguish
LTAR sites with large constituencies and high mean
representativeness with low variance across them. The
combination of environmental conditions at these sites
tracks very well with the environments in many locations
across the CONUS so that these LTAR sites have generalist
conditions best-representing expansive areas. In Fig. 6b, the
top six LTAR sites in the grazinglands panel are such
“generalist” sites. But other LTAR sites can be identified
which also have high mean and a narrow range of repre-
sentativeness with smaller constituency areas. Despite

having environments that are just as well-suited to their
constituency locations, these LTAR sites are specialized
environments, and these “specialists” are the best LTAR
representatives for smaller, more focused (and geo-
graphically limited) areas. GACP, UCB, and CMRB are
examples of such specialist LTAR sites for grazinglands
(Fig. 6, left). LTAR sites with a large constituency have
generalist environments, while those with smaller con-
stituency areas have more specialized environmental
combinations.

Generalist sites are not necessarily better to have in a
network than specialist sites, despite the fact that they enjoy
greater constituency area. Unusual or unique areas are
represented better by specialist sites, and networks need
such specialist sites to capture the more unique environ-
ments that they hope to represent. Young networks having
few sites will increase their overall representativeness fast-
est by initially adding generalist sites having average
environments. But, as the network grows, a switch to
accruing specialist sites that are targeted to represent unique
environments, increases the depth of representativeness in
the network. This strategy to add generalist sites first, and
then targeted specialist sites, will serve both new and
existing networks as they grow. Identifying the best targeted
specialists for addition is increasingly difficult without
strategic guidance like that provided by the quantitative
statistical network analysis provided here.

A moderate mean and a wider range with a lower bottom
end representativeness may indicate a generalist site that is
being forced to represent some fairly distinct environments

Fig. 9 Quantifying increased
LTAR representativeness of
working lands by “sharing” sites
from two other national-scale
networks, NEON and LTER. In
the national map (a), LTAR site
locations shown as black dots,
NEON sites shown as blue
triangles, and LTER sites shown
as red diamonds. Insets show
before (b) and after (c) the
addition of NEON and LTER
sites to LTAR
representativeness in Utah
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rather poorly. The lower representativeness in these sec-
ondary locations decreases the mean representativeness and
increases the representativeness range. While this site is still
the best, it is a forced, poor fit in these secondary locations.
Existence of such sites would indicate a strong need for an
additional new site to be added to the network to better
represent the unusual environments in this unique second-
ary area. These forced “double duty” characteristics are
shown in WGEW and CAF, as well as LCB in grazing-
lands, (Fig. 6), and they may be acting as poor repre-
sentatives for portions of their constituencies.

The ABS-UF site has a small constituency that is split
across the width of the CONUS. This site also shows one of
the widest ranges of representativeness across its con-
stituency. In addition to signifying the low (but still best)
representativeness values that ABS-UF has in the Pacific
Northwest, the site itself contains environmental hetero-
geneity across its 33 large experimental boundary polygons.
Two distinct environments comprise ABS-UF: Buck Island
Ranch, in the center of the Florida peninsula, draining into
Lake Okeechobee, and the UF Research Station near Ona,
closer to the Gulf of Mexico coast. This variety of envir-
onmental conditions at this site contribute to its ability to act
as a poorer surrogate for otherwise un-represented CONUS
locations, as well as contributing directly to broadening the
range of representativeness for its constituency. If additional
LTAR sites were added in these poorly represented areas, it
is likely that the range of representativeness for ABS-UF
would then become more defined.

While the LTAR Network is now in its second decade of
existence, the careful addition of targeted, unique specialist
sites would support a strategic approach to increasing
representativeness. One of the best ways to identify poten-
tial locations for these additional needed specialist sites is to
consider the minima shown in the representativeness map,
like the Pacific Northwest or coastal California (Fig. 5a).
Such locations represent theoretical optima, but pragmatic
and infrastructural concerns may preclude the establishment
of new sites at exactly the suggested minimum representa-
tiveness locations. In these cases, nearby compromise
locations could provide nearly as much targeted increase in
network representativeness.

Sources of uncertainty in results were related to the
resolution of the input datasets, which were harmonized to a
resolution of the coarsest datasets (1 km climate). Data were
available for some variables at higher resolutions, e.g., land
cover masks, and the LTAR experimental boundary poly-
gons were mapped at much finer scales. However, the
LTAR polygons were treated even-handedly, with mean
environmental conditions at the polygon centroids used as
the value for those locations, regardless of actual polygon
size. Hence some variability was potentially unaccounted
for during this resampling process. Likewise, interpretations

of these results are constrained to the minimum mapping
unit of the output datasets, and should only be interpolated
to finer resolutions with an additional downscaling step,
which was not done here. For CONUS, the 1 km grid
provided the highest resolution possible using best-available
“state-of-the-art” data.

Conclusions

These analyses were exhaustive and compared every 1 km
map cell location with every other across the CONUS. We
performed no generalizations or classifications from clus-
tering locations with similar conditions together; but rather,
exact multivariate similarities/differences were calculated
between all possible locations in the CONUS. Any errors
and uncertainties inherent in the 15 environmental data
layers were inherited by our analysis. Nevertheless, for its
18 sites, the LTAR Network has good representativeness of
environmental conditions that drive productivity across
the CONUS.

These exhaustive comparisons also permit the study of
within-LTAR site representativeness, through the use of
separate representativeness maps relating to the centroids of
experimental areas within each LTAR site. For example, a
researcher interested in replicating an experiment in a
similar landscape, could use this more detailed information
to evaluate comparable sites within a particular LTAR
region. Similarly, an LTAR site might be guided by their
own within-site representativeness to differentially develop
and enhance experimental support infrastructure for field
research sites in those places that have the greatest potential
for enhanced national representativeness, thereby increasing
impact and service to LTAR stakeholders.

Constituency of LTAR sites can be used to prioritize the
establishment of experimental research at or even within
particular sites, or to identify which sets of experimental
boundaries should be considered when generalizing
knowledge at any point in the CONUS. The constituency
map shown in Fig. 5b is based on the single LTAR site
having the greatest representativeness at that location.
While that single site is the best, most-representative LTAR
site, the 2nd, 3rd and subsequent level constituency sites may
also have good representation for that location. Although
not shown here, a researcher could use these lower-order
constituencies at any set of locations to generate a custo-
mized multiple site constellation of LTAR locations at
which to perform a field experiment designed to maximize
representativeness over a region of the CONUS, taking
advantage of all replication possible within the existing
LTAR network.

Improvement of representativeness could be obtained
through site-sharing collaborations with other research
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networks such as NEON and LTER. Most of the
improvements brought by NEON sites are in the central and
western working lands, including the land overlaying the
Ogallala aquifer, which was poorly represented by LTAR.
However, while representativeness is improved for Cali-
fornia, Oregon, and Washington working lands, the repre-
sentativeness remains poor for a large fraction of those
areas. The US west coast is an overlapping intersection of
many environmental gradients, making representation of
these areas difficult to capture.

Unless different national networks measure the same
variables, benefits resulting from their combination remain
theoretical, and it is unrealistic to expect networks designed
for different monitoring purposes to measure non-target
variables. It may be practicable, however, for networks to
take on measurement of certain complementary variables at
one or a few most-complementary sites, and, through
mutual cooperation, for both networks to realize boosts in
their own national representativeness. Cross-network
representativeness analyses like this one can identify,
direct, and limit the complementary sites for such beneficial
additional measurements, making them achievable and
mutually motivated. Adding measurements at an existing
site in a sibling network may be more effective than
establishing and maintaining a new site in the home net-
work, and will increase the efficiency of limited funding
resources.

As a collection of geographic locations where ecological
samples or measurements are taken, it is a common
requirement for ecological networks to scale measurements
up to broader regions in statistically valid and meaningful
ways. Representativeness and constituency analyses can be
performed on any network, sensu lato. Whether an official
permanent network with considerable developed infra-
structure and resources at each site, or just a set of locations
where samples have been taken, any network is amenable to
this quantitative evaluation. Nor does the spatial extent of
the network affect the applicability of representativeness
analysis; whether comprising a single state (Hoffman et al.
2013), a nation or continent (Sundareshwar et al. 2007), or a
global extent (Kumar et al. 2016; White et al. 2005). Indeed,
global networks like Fluxnet were created by combining
many different individual national-scale flux networks
(Kumar et al. 2016).

While our LTAR Network representativeness analysis
exhaustively considered principal environmental drivers
related to production on working lands, we did not differ-
entiate among LTAR sites with respect to the focal agro-
nomic systems under study, nor the socio-economic context
within which those agronomic systems are embedded.
Environmental similarities, representativeness, and con-
stituencies form a basic and fundamental first-order under-
standing of the production potential of agronomic systems

across the CONUS. Future analyses that combine relevant
features of human dimensions, with realized agricultural
production outputs and environmental characteristics, will
provide further insights into the LTAR Network’s repre-
sentativeness of these national socio-agroecosystems across
the United States.
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Fig. 10 Maps of “mask” datasets
used to limit the analysis:
a croplands mask;
b grazinglands mask
(unpublished data)
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Fig. 11 Distribution of
normalized representativeness
within each LTAR site
constituency for different
network scenarios. While
addition of LTER sites does not
improve representativeness aside
from a small region in JER,
NEON sites improve the
representation of the LTAR
Network significantly in a
number of LTAR site
constituencies
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Fig. 11 (Continued)
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(b)

(c)

(d)

(e)

(f)

(g)

Fig. 12 Spatial representation of top seven principal components used in the analysis (a–g). Components representing various data dimensions
show range of spatial variability and patterns across continental United States. a Principal Component 1 explains 28% of variance in data and is
interpreted as year-round warmth. Eastern and southeastern urban areas show up particularly well. b Principal Component 2 explains 20% of
variance, and is interpreted as year-round precipitation where values are high. Rain in the pacific northwest and snow in the northeast show well, as
do the southern regions where seasonal precipitation patterns are affected by monsoonal and subtropical climatic patterns. c Principal Component 3
explains 13% of variance and is interpreted as the ability to store winter precipitation in the soil. d Principal Component 4 explains 9% of variance
and is interpreted as describing the consolidation and texture of soils. Urban areas show as being highly compacted (high bulk density) and low in
fertility. e Principal Component 5 explains 6% of variance and loads primarily on soil water holding capacity. f Principal Component 6 explains
6% of variance and loads primarily on soil nutrients, precipitation seasonality, and topographic index. g Principal Component 7 explains 5% of
variance and loads primarily on precipitation seasonality, snow, and soil nitrogen without carbon
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