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Three decades ago I became interested in measuring the

spatial patterns of sun-flecks to estimate canopy light

transmission. While many measurement approaches

and pattern metrics had been described (e.g., Peitgen

and Saupe 1988; Glassner 1990; Pickover 1990; Turner

and Gardner 1991; Gonzalez and Woods 1992), there

was no comprehensive software implementation of

them. I wrote a computer program to calculate many of

thosemetrics (and added a few ofmy own) using under-

canopy photographs, but an opportune discussion with

Bob O’Neill resulted in my never applying the program

for that purpose. Bob’s explanation of landscape

ecology was encouraging, and his advice was charac-

teristically sage and succinct: ‘‘The pattern stuff is good,

but you’re working at the wrong scale.’’

I tell that story for two reasons. First, it was how I

discovered landscape ecology, and second, writing the

program taught me some things about the pattern

metrics that were being used in landscape ecology. To

put it bluntly, the program had to measure only four

things—map composition, attribute adjacency, patch

area, and patch perimeter—in order to calculate all of

the landscape ecology metrics. As a result, the metrics

had to be correlated, especially since many of their

computing formulas were only minor algebraic vari-

ations of another metric’s formula. Furthermore, it

was clear from geometric packing constraints that map

composition was a critical aspect of pattern. These

intuitive notions were confirmed by empirical com-

parisons of pattern metrics over the next decade (e.g.,

Gustafson and Parker 1992; Riitters et al. 1995; Cain

et al. 1997; Hargis et al. 1998).

Eric Gustafson’s review (Gustafson 1998) brought

some order to the then-chaotic evolution of landscape

pattern metrics. He noted that no matter how they are

measured, the fundamental elements of landscape

pattern are map composition and spatial configuration.

While Eric was referring to raster and point maps, his

point applies equally well to other data models. For

example, in graph theory (e.g., Keitt et al. 1997; Urban

and Keitt 2001), composition is represented by the

graph vertices and configuration by the graph edges.

For 3-dimensional raster data (e.g., Myers et al. 1997;

McGarigal et al. 2009), composition is analogous to

the surface mean and configuration is analogous to the

surface texture.1 Even the ecological and statistical
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1 There are deeper connections between these data models

because raster maps are spatially-explicit graphs. On a 2-di-

mensional raster map, a focal class cell is a graph vertex and a

patch of focal cells is a connected graph component; a

3-dimensional raster map is a hierarchical graph in which sets

of connected components form an (inverted) dendrogram in the

third dimension.
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discussions of habitat loss versus fragmentation per se

(e.g., Fahrig 2003; Koper et al. 2007) are essentially

concerned with composition (habitat area) and con-

figuration (habitat fragmentation).

By now, it is well established that amount (com-

position) and adjacency (configuration) are funda-

mental, yet investigators often overlook them on the

way to using other metrics that are deemed ‘‘appro-

priate’’ to elucidate the causes or effects of pattern in a

given study. Similarly, it is well established that

pattern is scale-dependent, but that is usually taken as

a reason to choose one particular scale that is deemed

‘‘appropriate.’’ As a result, we know a lot about pattern

analysis and the causes or effects of pattern in

particular circumstances. But I doubt that we will

achieve transdisciplinary integration (sensu Wu 2013)

of that knowledge if our common language (sensu

Ostrom 2009) of pattern is based on potentially

ambiguous metrics (sensu Bogaert 2003) and incon-

sistent implementations of them (sensu Riitters et al.

2000b). In the same way that mutual understanding

requires a common language, transdisciplinary inte-

gration requires consistent methodology, and achiev-

ing that consistency should be a high priority in

landscape ecology. It is appropriate to consider the

characteristics and implementations of landscape

pattern metrics that would help us to achieve Wu’s

(2013) vision of landscape ecology as transdisci-

plinary science.

Wu (2006) recognized that solid disciplinary foun-

dations are essential to the success of transdisciplinary

research. That means we must know how to measure

and interpret pattern per se. But success also means we

must conduct a pattern analysis in a way that

facilitates, or at least does not hinder, integration

between interdisciplinary research (e.g., between

natural and social sciences) and participation from

stakeholders. The larger problem is complicated

because not all the questions about patterns can be

known in advance, there is neither a preferred scale for

measuring the patterns nor a preferred perspective for

interpreting them, and the values placed upon patterns

will vary from place to place. Based on my experi-

ences participating in interdisciplinary ecological

assessments, I suggest the primary objective of a

pattern analysis is to quantify and map fundamental

metrics of pattern in order to answer three questions—

Which patterns occur where? Over what spatial scales

do the patterns exist? How are the patterns changing

over time? The pattern analysis has to be agnostic and

flexible with respect to worldviews, and capable of

being reified and adapted for applications in a variety

of disciplines. Thus, a good metric is robust to pattern,

is transparent and thereby easy to interpret with

respect to pattern, is not redundant of other metrics,

and is interpretable with respect to many discipline-

specific questions as well as questions posed at higher

levels. A good implementation reveals pattern as

landscape context, preserves the spatial resolution of

the input data, is applied at multiple spatial scales,

maintains compatibility between metrics at the ‘‘focal

class’’ and ‘‘landscape’’ levels, and produces maps of

the results.

Given that composition and configuration are the

fundamental elements of pattern, what are the

fundamental metrics of composition and configura-

tion, and how should they be measured? I will

attempt to answer those questions by heuristic re-

interpretation of concepts that are well established in

the literature. For example, Neel et al. (2004)

explored the behavior of a variety of focal class

metrics on simulated binary maps with different

combinations of focal class amount and adjacency.

They showed that the values of many metrics depend

strongly on amount and adjacency, and used the

information to group the metrics according to

behavioral similarity across gradients of amount

and adjacency. Their interpretations were robust and

informative, and they emphasized that amount and

adjacency had to be important because of the way

their simulations were constructed. But a re-inter-

pretation of their results is that, at least for the scope

of patterns measured by all the metrics they consid-

ered, amount and adjacency are the fundamental

metrics of pattern. After all, if amount and adjacency

are a good basis for simulating patterns, then they

must also be a good basis for measuring patterns.

Furthermore, they showed that one has to measure

amount and adjacency anyway, in order to interpret

differences in other metrics. Finally, since they

showed that other metrics can usually be estimated

from amount and adjacency, why measure the

redundant metrics?

What can be inferred about landscape patterns from

measurements of amount and adjacency? Looking at

some example maps may help to answer that question.

Using procedures similar to Neel et al. (2004), I used

the multifractal option in the RULE model (Gardner
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1999) to produce 25 example maps for a factorial

combination of five levels of amount (Px = {0.05,

0.25, 0.50, 0.75, 0.95}) and five levels of adjacency

(Hx = {0.00, 0.25, 0.50, 0.75, 1.00}). In Fig. 1a, the

25 maps are arranged in the metric space defined by

the amount and adjacency of the focal class. Along the

vertical axis, Px (the proportion of the map occupied

by the focal class x) is the measure of amount. Along

the horizontal axis, adjacency is represented by Pxx,

the conditional probability that a focal class pixel is

adjacent to another focal class pixel.2 By just looking
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Fig. 1 a Twenty-five simulated maps are arranged in a two-

dimensional metric space defined by the amount and the

adjacency of the black pixels within each map. Sub-regions of

that same metric space can be labeled according to patch

characteristics (b), edge characteristics (c), dominance (d), and
percolation phase changes (e)

2 In practice, we are interested in measuring patterns rather than

simulating them. In the RULE model, Hx is the Hurst exponent

used to generate a 3-dimensional fractional Brownian surface,

which is then segmented (sliced horizontally) to form a
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at the examples in Fig. 1a, it appears that measure-

ments of amount and adjacency should support

inferences about patches and perforations (Fig. 1b),

edge density and hardness (Fig. 1c), and dominance

(Fig. 1d). None of that is surprising, and there are

other examples of what might be inferred about other

aspects of pattern (e.g., Neel et al. 2004). While fully

accounting for patch-level patterns (e.g., patch

arrangement and perimeter complexity) naturally

requires additional measurements of the patches

(e.g., Hargis et al. 1998), these aspects of landscape

pattern are clearly less fundamental since the mere

existence of patches depends upon both amount and

adjacency.

Percolation theory is another well-known topic in

landscape ecology (Gardner et al. 1987) that invites re-

interpretation. In Fig. 1e, the dotted curve3 is the

domain of percolation phase changes, because a

completely random arrangement of focal class pixels

on a binary raster map guarantees the focal class is at a

tipping point (phase change) of percolation.4 Since

many aspects of pattern are certain to be significantly

affected in predictable ways by phase changes every-

where in this domain (Gardner et al. 1987; Turner et al.

2001; Neel et al. 2004; Riitters et al. 2007), the

interesting question for a landscape near that domain is

not about the existence of a percolating cluster but

rather about which ecological processes are likely to

be affected by a phase change of percolation. For the

ecological processes that are known to depend on

percolation, or on aspects of pattern that are related to

percolation, some answers to that question could be

deduced from the observed Px. For that Px, the phase

change occurs only for specific lattice geometries and

neighbor rules (Plotnick and Gardner 1993). A unidi-

rectional process (e.g., water flow) is impacted at a

larger Px value than an omnidirectional process (e.g.,

pollen dispersal) (Plotnick and Gardner 1993). The

connectivity of the ‘‘core’’ component of a given focal

class is impacted at a larger Px value than the ‘‘edge’’

component (Riitters et al. 2007). The species at risk of

sudden loss of habitat (focal class) connectivity could

be the ones with a corresponding movement rule

(neighbor rule) and home range size (map extent).

Irrespective of the initial landscape pattern, com-

pletely random disturbance (and recovery) will always

drive a landscape towards the domain of phase

changes. It is therefore plausible to measure landscape

pattern resistance to random disturbances (and recov-

ery) by the distance from that landscape to the domain

where phase changes are guaranteed to occur (i.e., by

the length of the arrow in Fig. 1e) (Zurlini et al. 2006).

It is intriguing to contemplate whether that distance is

related to the degree of apparent ‘‘dampening’’ of

percolation-mediated phase changes on maps with

different degrees of adjacency (Neel et al. 2004;

Riitters et al. 2009a).

Turning now to the implementation of pattern

analysis, it is well known that geographic tiling

(including the definition of a specific study area)

invites the modifiable areal unit problem (MAUP)

(Jelinski and Wu 1996), but it is not often acknowl-

edged that the implicit assumption of pattern station-

arity within a tile ignores potential boundary effects.

With a moving window measurement device (Baker

and Cai 1992; Riitters et al. 1997), metrics are

measured within a fixed-area surrounding window

surrounding each focal class pixel, and the results are

mapped at the subject pixel’s location. As a result, the

MAUP is largely postponed until after the patterns are

measured, and landscape patterns are perceived and

measured as contextual attributes which vary contin-

uously over geographic space. When such measure-

ments of Px and Pxx are mapped in the pattern metric

space (Fig. 1), the local pattern context of each pixel is

indicated by its location in the metric space, and the

variance of local patterns is indicated by the dispersion

of pixels across the metric space (Riitters et al. 2000a).

Every landscape ecologist also knows that patterns

change with measurement scale, but if the perception

of landscape pattern by an organism or ecological

process involves ‘‘looking’’ at multiple scales simul-

taneously (Montello 1993), then any single-scale

measurement is at best only a partial description of

pattern. Therefore, it is worth considering which

Footnote 2 continued

2-dimensional binary ‘‘multifractal’’ map containing the target

Px. Unfortunately, it is difficult to reverse the process; a 3-di-

mensional property like Hx is difficult to measure on a 2-di-

mensional map. Pxx is an analogous metric of adjacency which

is referred to in popular software as ‘‘percentage of like adja-

cencies’’ (McGarigal et al. 2012) and ‘‘P22’’ (Vogt and Riitters

2017).
3 Danny C. Lee (personal communication) derived the equation

for the curve in Fig. 1e. For a completely random arrangement

of focal class pixels, and for any neighbor rule or map

extent,Pxx ¼ 1
ð 2
Px
Þ�1

for Px in (0,1].

4 On almost all finite subsets of an infinite map.
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additional aspects of pattern could be measured by

implementing a moving window with several window

sizes.5 Such measurements of Px alone constitute the

probability-density function, the basis for an entire

class of fractal pattern metrics (Milne 1992). By

adding window size as a third dimension to the metric

space in Fig. 1, focal class pixels can be grouped

according to the similarity of their trajectories through

that space to identify and geographically map the scale

domains of focal class patterns (sensu Wu 2004) and

the locations of scale-dependent transitions from

global to local patterns (Zurlini et al. 2007). Such

groupings can also identify patterns that describe the

perimeters and juxtaposition of patches in a landscape

(Riitters 2005; Riitters et al. 2017). Measurement scale

can also be varied in terms of lag distance instead of

window size (Dungan et al. 2002), such that a multi-

scale analysis of Pxx describes the sizes and spatial

distribution of focal class patches (Zhang and Guindon

2017).

The above discussion was developed at the binary

focal class level but it is easily extended to the

landscape level. Briefly, pattern is a landscape prop-

erty, focal class pattern is a subset of landscape

pattern, and binary maps are a special case of

categorical maps. Thus, on categorical maps the

fundamental landscape level metrics are the vector

of proportions Px (x = 1…N classes) and the attribute

adjacency matrix Pxy (x,y = 1…N classes). Pxy is

constructed by tabulating pairs of adjacent pixels

according to their {x,y} identities for some adjacency

rule (e.g., 8-neighbor) (Musick and Grover 1991). At

the landscape level, moving window measurements

are taken in the vicinity of all pixels instead of only

focal class pixels, thus enabling consistency between

landscape-level and class-level analyses. Examples of

applying Px include quantifying and mapping frag-

mentation (Riitters et al. 2002, 2015; Riitters and

Wickham 2012), landscape mosaics (Riitters et al.

2000b, 2009b; Vogt and Riitters 2017), and anthro-

pogenic interface zones (Yemshanov et al. 2015;

Riitters and Costanza 2018). Analysis of Pxy yields

landscape-level and class-level measures of entropy,

texture, and contagion (Riitters et al. 1996; McGarigal

et al. 2012). Because the individual elements of Pxy

provide information about ‘‘unlike adjacencies’’ as

well as ‘‘like adjacencies,’’ information from Pxy can

supports thematic analysis such as riparian forest

(forest–water edges) (Riitters et al. 2011) and the

proximate causes of forest fragmentation (natural–

anthropogenic edges) (Wade et al. 2003).

In conclusion, landscape pattern is fundamentally

information about landscape composition and land-

scape configuration which vary continuously over

geographic space and observation scale. My experi-

ences lead me to use amount and adjacency as the

fundamental metrics of landscape pattern, and a multi-

scale moving windowmeasurement device. Amount is

a more fundamental metric than adjacency because a

change in any other pattern metric cannot be inter-

preted reliably without accounting for changes of

amount. These metrics and this implementation may

constitute a minimum pattern analysis in the sense of

adequately representing many of the known dimen-

sions of pattern, but their sufficiency for representing

all possible dimensions of pattern is necessarily an

open question. Of course, my experiences could all be

misleading because they are based primarily on raster

land-cover maps, macro-scale analysis, and interdis-

ciplinary assessments, but it remains that finding

whatever may be the true simplicity at the core of the

‘‘pattern onion’’ is prerequisite to achieving an unam-

biguous transdisciplinary dialogue.
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