Environmental Pollution 260 (2020) 114075

Contents lists available at ScienceDirect 2

ENVIRONMENTAL
POLLUTION

Environmental Pollution

journal homepage: www.elsevier.com/locate/envpol

Spatiotemporal patterns and drivers of soil contamination with heavy N
metals during an intensive urbanization period (1989—2018) in et
southern China™

Cheng Li ™", Georgina M. Sanchez © ¢, Zhifeng Wu /, Jiong Cheng *°, Siyi Zhang *°,
Qi Wang * b Fangbai Li b Ge Sun ¢, Ross K. Meentemeyer ©

2 Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control, Guangdong Institute of Eco-Environmental Science & Technology,
Guangzhou, 510650, China

b National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China

¢ Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, 27606, USA

4 Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27606, USA

€ USDA Forest Service Eastern Forest Environment Threat Assessment Center, Research Triangle Park, NC, 27709, USA

f School of Geographical Sciences, Guangzhou University, Guangzhou, 510006, China

ARTICLE INFO ABSTRACT

Article history: This three-decade long study was conducted in the Pearl River Delta (PRD), a rapidly urbanizing region in
Received 31 October 2019 southern China. Extensive soil samples for a diverse land uses were collected in 1989 (113), 2005 (1384),
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but pollutant concentrations had not reached levels of concerns for food security or human health. There
was an increasing trend in heavy metal contamination over time and the variations of soil contamination
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were site-, time- and pollutant-dependent. Areas with high concentrations of heavy metals overlapped
with highly industrialized and populated areas in western part of the study region. A dozen SEMs path
analyses were used to compare the relative influences of key environmental factors on soil contami-
nation across space and time. The high or elevated soil contaminations by As, Cr, Ni, Cu and Zn were
primarily affected by soil properties during the study period, except 1989—2005, followed by land use
patterns. Parent materials had a significant effect on elevated soil contamination of Cd, Cr, Ni, Pb and
overall soil pollution during 1989—2005. We hypothesized that other factors not considered in the
present study, such as atmospheric deposition, sewage irrigation, and agrochemical uses, may be also
important to explain the variability of soil contamination. This study implied that strategies to improve
soil physiochemical properties and optimize landscape structures are viable methods to mitigate soil
contamination. Future studies should monitor pollutant sources identified by this study to fully under-
stand the causes of heavy metal contamination in rapidly industrialized regions in southern China.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Soil quality is critical
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ecosystem sustainability. The intensification of urban, industrial,
and agricultural activities degrades soil quality through soil

to food safety, human health, and contamination as measured by concentration of heavy metals (Zeng

et al,, 2018). For example, soil heavy metal contamination has
become a serious environmental concern in southern China amid
the rapid industrialization (Pan et al., 2018; Zhang et al., 2019). The
latest national soil pollution survey showed that 16.1% of lands
Li),  gmsanche@ncsu.edu exceeded China’s maximum pollution limits (GB15168-1995; SEPA,
1995). About 19.4% of farmland sample sites were considered
polluted while 29.4%—36.3% polluted sample sites were for
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commercial, industrial and mining areas (MEP and MLR, 2014). The
soil contamination hotspots concentrated across southern China
such as the Yangtze River Delta and the Pearl River Delta where
rapid industrialization and urbanization were most found in these
regions (MEP and MLR, 2014). Local estimates of pollution rates for
heavy metal concentrations were reported to be even greater than
national average (e.g., 43% for Mercury and 91% for Cadmium in
Shunde city, southeast China) (Cai et al., 2015). Zhang et al. (2015b)
estimated that 13.9% of grain production in China were affected by
high levels of soil heavy metal concentrations in farmlands across
the country. Site-specific soil pollution management and preven-
tion measures require information on where, when, and why soil
contamination threatens crop and human health.

Global studies suggested that accumulations of heavy metals
were site-dependent and spatially heterogeneous, with higher
concentrations in areas with intense human disturbances such as
mining and smelting (Jamal et al., 2019; Li et al., 2014), industrial/
traffic activities (Cai et al., 2019; Kim et al., 2017; Song et al., 2015),
sewage irrigation (Meng et al., 2016), urban development
(Duzgoren-Aydin et al., 2006; Song et al., 2018), and fertilizer and
pesticide applications (Shi et al., 2019b). Due to the concerns of
environmental risks and human health, studies have investigated
the impacts of sewage irrigation (Ai et al., 2018; Delibacak, 2009),
degraded water reuse (Corwin and Ahmadb, 2015), mining activ-
ities (Chandra et al., 2014; Ordoénez Fernandez et al., 2007), inten-
sive agrochemical applications (Gil et al., 2018) and reservoir water
level fluctuations (Pei et al., 2018) through time. However, a com-
mon limitation among these studies is limited by spatial extent and
temporal duration (e.g. < 7 years). Most of these studies show
increased concentrations of heavy metals in areas experiencing
human disturbances over time. However, a few studies also re-
ported a consistent decreased or fluctuating response in agricul-
tural soils for 15—20 years (Li et al., 2015b; Liu et al., 2019a; Shao
et al., 2016). The decrease in soil contamination was generally
associated with enhanced environmental protection efforts such as
land closure or technology upgrade by industries or wastewater
treatment plants, introduction of clean energy production, and
greater regulations of agrochemical uses (Li et al., 2015b; Liu et al.,
2019a; Shao et al., 2016). A few regional or national synthesis
studies using published papers (Shao et al., 2016; Shi et al., 2019a;
Shi et al., 2019b; Yang et al., 2018; Zhang et al., 2019) suggested
there was a large uncertainty in trend of soil pollution due to dis-
crepancies in sampling methods, sample size, and study objectives.
Overall, few studies have addressed the spatiotemporal changes in
soil contamination at a regional scale. An unbiased soil sampling
over a large spatial extent and long-term in-situ soil monitoring are
still lacking due to high soil heterogeneity and high cost and labor-
intensive implementations of large-scale sampling.

Accurate and detailed inventory of soil heavy metals is rather
challenging due to the complex processes of soil contamination and
a wide range of pollutant sources. Multivariate statistical (e.g.,
principal component analysis, cluster analysis, redundancy anal-
ysis, factor analysis, multivariate linear regression) and geo-
statistical analyses (e.g., geographically weighted regression) have
been widely used to explore the proxies or drivers of soil contam-
ination with heavy metals across space and/or time (Cai et al., 2019;
Li et al, 2017; Song et al.,, 2016; Wang, 2016). Previous studies
suggested that atmospheric deposition (Feng et al., 2019), soil
physiochemical properties (Ye et al., 2019), land use and/or its
patterns (Li et al., 2017; Li et al., 2019; Shao et al., 2016), elevation
(Nickel et al., 2014; Zhang et al., 2019), precipitation and temper-
ature (Zupancic, 2017), and socioeconomic conditions (Lin et al.,
2018; Liu et al., 2016; Song et al., 2016) affect soil contamination
to varying degrees. However, the traditional correlation analysis

has limitations in dealing with latent variables (i.e., not directly
observable) and exploring the causations between multiple
dependent variables and independent variables. Structural Equa-
tion Modeling (SEM) is an alternative analytical technique (Grace
et al., 2012) to correlation analysis to overcome some deficiency
of the latter technique. SEM is an established causal model (Grace
and Keeley, 2006; Grace et al., 2012) that is built on the priori hy-
pothesis of the relationships of variables. SEM integrates regres-
sion, path and factor analyses, and has potentials to explore the
direct and indirect effects of environmental variables on soil
contamination. SEM has been widely applied in many fields, such as
soil science (Chen et al., 2015a), disease ecology (Cobb et al., 2010),
health science (Kusurkar et al., 2013), hydrology (Sanchez et al.,
2015), and sustainability science (Liu et al., 2019b). The SEM
model is well suited to reveal the causes of soil contamination in
spite of its limited application at present. The identification of
causations between soil contamination and environmental vari-
ables and the key environmental drivers is beneficial for best
management decisions for soil contamination control and
remediation.

In this study, using a SEM framework, we examined the rela-
tionship between spatiotemporal patterns of soil heavy metal
contamination and environmental factors from 1989 to 2018 in the
Pearl River Delate, in southern China. We address two research
questions: 1) How does the soil heavy metal contamination change
during the past three decades in PRD? and 2) What are the cau-
sations between soil contamination (Ys) and environmental vari-
ables (Xs), especially the relative contributions and direct vs.
indirect effects of Xs on Ys. We hypothesize that “human activities
are the key drivers for elevated soil contamination across both
space and over time” in the study region. Management decisions
for mitigating soil pollution require process-based understanding
of the pollution sources and controlling factors over space and time.

2. Materials and methods
2.1. Study area

The Pearl River Delta (PRD) is located in the south-central
Guangdong Province, adjacent to Hong Kong and Macao in south-
ern China (Fig. 1). Dominated by a hilly and mountainous topog-
raphy, the region resembles a horseshoe-shaped low-lying harbor
crisscrossed by a network of Pearl River tributaries that drain into
the South China Sea. Sediment deposits come from three main
branches of the Pearl River, Xijiang and Beijiang draining from the
west and the north sides and Dongjiang draining from the east side,
forming the alluvial delta (i.e., PRD). Granite, river/sea alluvial de-
posit and sandshale are the three main types of parent rock ma-
terials. A southern subtropical monsoon climate dominates in this
area with mean annual temperature and precipitation of 22°Cand
1900 mm, respectively (Li et al., 2015a).

The PRD is a megalopolis consisting nine major cities: Guangz-
hou (GZ), Shenzhen (SZ), Jiangmen (JM), Foshan (FS), Dongguan
(DG), Zhongshan (ZS), Zhuhai (ZH), and part of regions of Huizhou
(HZ) and Zhaoqing (ZQ). The PRD, dominated by farmlands and
small rural villages in the 1980s, has experienced rapid economic
development, population growth and urban expansion in the past
four decades. By 2017, population and GDP across all nine core
cities, excluding counties and prefectural cities, had reached about
34 million or 37.1% of the provincial total and 90.4 billion US dollars
(or 85.8% of provincial total), respectively (National Bureau of
statistics, 2018). Consequently, urban land cover across the PRD
was notable in extent, increasing from 4346 km? (% 10.5 of the PRD
total) in 1990 to 7239 km? (17.6%) today (2017).
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Fig. 1. Geographic location (A), map of parent materials (B), and land use and land cover maps (C) of the Pearl River Delta, south China.

2.2. Soil sampling and heavy metal content extraction

To characterize soil contamination dynamics through space and
time, we used an extensive dataset of topsoil (0—20 cm) samples
collected in 1989, 2005, 2009, and 2018 (Table S1; Fig. 2). The soil
properties and pollutant parameters in 1989 (Chen et al., 2011),
2005 (Li et al., 2015a), and 2009 (Zhang et al., 2012) are historical
data. We obtained them from Guangdong Institute of Eco-
environmental Science & Technology. The data in 2018 were
collected and chemically analyzed by our research group. The study
purposes and strategies of soil sampling varied over the four pe-
riods. To facilitate the data comparison across different sampling
schemes, we used the tessellation design of soil sampling in 2018
(i.e., 5 km x 5 km grid for urban core areas and 10 km x 10 km for
suburban or rural areas) as a basis. The soil samples in 1989, 2005,
and 2009 were projected into the tessellation (5 km x 5 km or
10 km x 10 km grid). Both the dependent and independent vari-
ables were summarized per soil sampling unit (5 km x 5 km or
10 km x 10 km).

Each soil sample constituted a mixed of 5—15 subsamples at
each site (0—20 cm). Soil samples were pretreated with procedures
including air-drying at room temperature (20°C—23 °C), removing
rocks and debris, sieving with 10 or 100 mesh nylon sieve, and
storing in polyethylene bags before delivering to the laboratory for
chemical analyses. Soil samples were measured for pH with the
potentiometer method, organic matter with the potassium di-
chromate oxidation volumetric method, and soil structure with the
hydrometer method. Soil trace metal concentrations were deter-
mined by Hydrogen-Atomic Fluorescence Spectroscopy (HG-AFS),
Flame Atomic Absorption Spectrophotometry (FAAS), Atomic
Fluorescence Spectroscopy (AFS), and Inductively Coupled Plasma-
Mass Spectrometry, ICP-MS; Table S2). The Chinese standardized
reference materials (GSS-8 for 1989; GSS-1 for 2005; ESS-1 and
GSS-1 for 2009; GSS-24 for 2018), replicates and blank corrections,
were used for quality assurance and quality control (QA/QC) to

ensure high accuracy (i.e., standard deviations < 5%). The recoveries
for the eight heavy metals (five heavy metals in 2005) ranged from
92% to 108% (Cai et al., 2012; CEMC, 1990; Li et al., 2019; Zhang et al.,
2006; Zhang et al., 2012). Detailed soil sampling strategy, heavy
metal concentration extraction, and quality control methods are
found in previous studies (Li et al., 2015a, 2017).

2.3. Data analyses

2.3.1. Soil contamination assessment

Single pollution indices (Igeo) and exceeding standard rate (ES;)
and modified Nemerow synthetic pollution indices of Py, and ESyy,
were calculated as follows:

Igeo = l0g>(C; / 1.5B;) (1)
ES;=G/S; (2)
Pom = power((lgeomax” + lgeoare?) / 2, 0.5) (3)
ESnm = power((ESmax” + ESae?) / 2, 0.5) (4)

where Cj represent soil heavy metal concentrations, B; background
soil heavy metals concentrations of Guangdong Province, China
(CEMC-China Environmetal Mointoring Center, 1990), and S; stan-
dard soil screening concentrations of heavy metals for agricultural
(GB15618-2018) or development land (GB36600-2018) in China (Li
et al., 2019). Igeomax, Igeoave, ESmax and ESyye refer to the maximum
and average values of Igeo and ES;, respectively. The 1.5 in Equation
(1) is a correction factor that considers the changes in background
values due to diagenesis (e.g. sedimentary characteristics and rock
properties). If Igeq Or Py is larger than zero or ES; or ESpy, larger
than one, the soil is determined as polluted (Igeo) or harmful to food
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Fig. 3. Spatial distributions of geo-accumulation indices (Ige,) for As (A), Cd (B), Cr (C), Cu (D), Hg (E), Ni (F), Pb (G), Zn (H), and comprehensive pollution index (Pnm) (I) of Pearl River
Delta region in 2018.
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security or human health (ES). The values of Ige, from low to high
are classified into 6 groups: no pollution (lgeo<0), slight pollution
(O<Igeo<1), moderate pollution (1<lgeo<2), moderate to heavy
pollution (2<lgeo<3), heavy pollution (3<lgeo<4), heavy to extreme
pollution (4<lgeo<5), and extreme pollution (5<lgeo<6) (Li et al.,
2019).

2.3.2. Environmental variable selection and quantification

We selected a pool of 59 commonly used independent variables
(Table 1) and grouped them into six latent variables (i.e., parent
materials, topography/greenness, soil properties, socioeconomic
factors, pollutant sources, and landscape patterns) to examine their
relationship with soil contamination (Chandra et al., 2014; Jiang
et al., 2019; Li et al., 2015a, 2015b; Li et al., 2019; Lin et al., 2018;
Liu et al., 2016; Qiao et al., 2019; Zhou and Wang, 2019). A suite of
landscape pattern metrics such as patch area percentage (i.e.,
PLAND), mean patch area (i.e., AREA), patch density (i.e., PD, ED),
largest patch index (LPI), mean fractal dimension index (i.e., FRAC),
and aggregation (i.e., Al) were computed for forest, farmland,
waterbody, orchard, grassland, and urban land for each sampling
grid across the region (Table 1; Li et al., 2019). The landscape
pattern metrics were quantified using Fragstats 4.2 (Mcgarigal
et al,, 2012); while the other environmental variables were quan-
tified using spatial analysis tools in ArcGIS 10.5.

2.3.3. Structural equation modeling

We used structural equation modeling (SEM) to examine a suite
of conceptual pathway models describing direct and indirect effects
of environmental variables on soil contamination. The model
combines regression, path and factor analyses to examine the
causality between different variables (Grace and Keeley, 2006). The
SEM was conputed in IBM SPSS Statistics Amos (version 24). We
have formulated and tested dosens of SEM models for each
contaminant and each year. We performed multiple SEM models
for the following response variables:1) soil pollution indices (Igeo,
Pnm) at a specific year of 1989, 2005, 2009, and 2018, respectively,
and 2) changes in soil pollution indices (Algeo, APpm) during
1989—2005, 2005—2009, and 2009—2018, respectively. We used
the six latent environmental variables (at a specific year) and their
changes (between the two years; except parent materials) as the
predictors in these SEMs: parent materials, topography/greenness,
soil properties, socioeconomic factors, pollutant sources, and

Table 1
A summary of environmental variables selected for structural equation models.

landscape patterns of land use. Because parent materials change
little through time, this latent variable were kept the same in the
SEMs at each year or time period. All of the response and predictor
variables were summarized using means per sampling unit (5 km x
5 km or 10 km x 10 km).

Prior to conducting SEM modeling, both independent (X) and
dependent (Y) variables were transformed using formulas of
log10(X+ 1 - Xpin) or log1o(Y+ 1 - Ymin) to make sure that Xs or Ys
approximately approached a normal distribution. We conducted
preliminary stepwise regressions using original 59 independent
variables to determine which of our candidate variables from each
category to include in the final path analyses. For the number of
candidate variables in a category more than two, we further ran
dimension reduction analyses to create principal components if
necessary, to represent the latent variable of this category. The
stepwise regression and dimension reduction analyses were con-
ducted in IMB SPSS Statistics (version 25).

3. Results
3.1. Spatiotemporal patterns of heavy metal contaminants

In 1989, both single (Igeo) and comprehensive (Pym) contami-
nation indices suggested that the majority of the region’s soils were
not polluted when compared to background values of Guangdong
Province (Fig. S1). More than half of soil samples suggested high
levels of As and Cd by 2005, and nearly all indices of heavy metals
suggested high levels of pollution by 2009 and 2018 (Fig. 3, S2, S3).
The compounded Py, index indicated that over 96% of soil samples
were contaminated by several heavy metals by 2005, 2009 and
2018. Although the pollution level for any single heavy metal was at
slight to high levels, the comprehensive contamination (Pyp,) was
moderate to high levels. The exceeding rate indices (ES;, ESpm)
indicated that less than 30% of collected soil samples in the PRD
were harmful to food security and human health during the past
three decades. For example, less than 28% of the 421 soil samples
collected in 2018 exceeded the standards with the exceeding rates
from high to low of Cd, ESym, Cu/Pb, As, Zn, Ni, and Cr/Hg (Fig. S4).
Soil samples with high pollution level or exceeding rates were
mainly distributed in the western PRD including Guangzhou (GZ),
Foshan (FS), Zhongshan (ZS), Zhuhai (ZH) and Shenzhen (SZ) (Fig. 3,
S1, S2, S3, S4).

Data Temporal and spatial resolution ~ Variable

Source

Parent materials Vector map

Topography/Greenness DEM, 30 m x 30 m; NDVI,
2005, 2009, and 2018 (1 km x 1
km)

Soil properties 1989, 2005, 2009, and 2018;
soil samples

Socioeconomic factors GDP and POP, 1990/1995, 2005,
2010 and 2015 (1 km x 1 km)
1990, 2005, 2010, and 2018; 30

mx 30 m

Pollution source

Landscape patterns 1990, 2005, 2010, 2017; 30 m x

30m

Percentages of deposit (%Depo), granite (%Gran) and
sandshale (%Sandsh)

Elevation from digital elevation model (DEM) or
normalized difference vegetation index (NDVI)

Organic matter (OM), pH, soil humus content (SHC),
and contents of sand (Sand), silt (Silt) and clay (Clay)
GDP and population density (POP)

Distances to the nearest road (Dis_Rd), mine
(Dis_Mine), industry (Dis_Ind) and waterdody
(Dis_Wat)

Landscape metrics including Percentage (PLAND),
patch density (PD), edge density (ED), largest patch
index (LPI), mean patch area (AREA), mean fraction
dimension index (FRAC), and aggregation index (Al)
for six types of land uses (i.e. Forest, Orchard,
Farmland, Grassland, Waterbody, and Urban land)

Guangdong Institute of Eco-environmental Science
& Technology (GIEST) (Li et al., 2015a; Li et al.,
2019)

DEM from GIEST; NDVI from Institute of
Geosciences and Resources, Chinese Academy of
Sciences (IGR-CAS) (http://www.resdc.cn)

GIEST

IGR-CAS (http://www.resdc.cn); (Liu et al., 2005; Yi
et al., 2006)

Land use or land cover data from Guangdong
Academy of Sciences in China (1990, 2005 and
2010) and Guangzhou University (2017); road and
river maps in 2005 and road map in 2018 by IGR-
CAS (http://www.resdc.cn)

Calculated by Fragstats 4.2 based on land use or land
cover data (Li et al., 2017, 2019)
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Soil contamination levels also changed over the study period.
Both the mean single (Igeo) and comprehensive (Pyy) soil contam-
ination indices increased over time when compared to regional
background values (Figs. S5, S6). The mean comprehensive pollu-
tion indices (Ppm) for the common sampling grids increased from
0.82 + 0.29 (mean =+ Std. Dev.) in 1989, to 0.88 + 0.37 in 2005, to
1.10 + 0.67 in 2009, and to 1.34 + 0.60 in 2018, resulting in a gradual
change from slight to moderate pollution levels (Fig. S5). The soil
contamination level increased for all the heavy metals from 1989 to
2018 with a different magnitude of increase ranging from 0 to 1.2
(Fig. S6). Although concentrations increased over time, the majority
of soil samples did not reach a hazard level especially for As, Cr, Ni
and Pb (Fig. S4).

3.2. Driving forces of soil contamination

The SEM path analyses showed variable impacts of environ-
mental factors on soil contamination across the study region
(Tables S3, S4). Because not all computed SEMs fitted to the data
well (R? < 0.45) (Table S3), we mainly focused on SEMs with a high
(R? > 0.45) explanatory power (Fig. 4, S7-S10). The best-performed
models of 1989, 2005, 2009, and 2018 (As, Cr, Ni, Cu, and Hg in
1989, Cu and Zn in 2009, and As, Cr, Ni, Hg, and Zn in 2018; Fig. 4
and S7) explained from 44% to 68% of variations in soil contami-
nation for each respective heavy metal (p < 0.05). The standardized
path coefficients indicated that soil properties had the greatest
significant direct effect on soil contamination with As, Cr, Ni, Cu,
and Zn, followed by landscape patterns (Tables S3, S4; Fig. 4, S7).
For example, the soil contamination level tended to be lower in
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land use dominated by forest, orchard and grassland as represented
by higher land percentage, (PLAND) and mean path area (AREA)
and the largest patch index (LPI). These factors had significant
direct effects (Fig. 4, S7). For waterbody, farmland and urban land,
higher PLAND, AREA and patch density (PD/ED) tended to have
higher soil contamination levels (Fig. 4, S7). However, the parent
materials and landscape patterns for farmland, forest and orchard
land showed large and direct impacts on soil contamination with
Hg in 1989, with the greatest effects from parent materials (Fig. 4).
Topography, greenness, socioeconomic factors, and pollutant
sources generally had a weak or no significant (p > 0.05) relation-
ship with soil heavy metal contamination (Fig. 4, S7). Compared
with landscape pattern of land uses, pollutant source, and soil
property, indirect effects of parent materials, topography/green-
ness, and socioeconomic factors on soil contamination with As, Cr,
and Ni (e.g., 1989, 2018), Cu and Zn (e.g., 2009, 2018) are relatively
high (Table S4). However, similar to the direct effects, these indirect
effects were not statistically significant (p > 0.05; Table S4).

The dominated factors influencing soil contamination also
changed with time (Fig. S8, S9, S10). For example, at the early stage
of the study period (i.e., 1989—2005), parent materials showed the
greatest direct effect among all the environmental variables on the
changes in comprehensive index of soil contamination (P ), while
landscape patterns showed the greatest effect during the recent
period of 2005—2009 (Fig. S8). Similarly, the parent material
characteristics and/or landscape patterns had the largest impacts
on soil contamination with Cr and Ni during 1989—2005 while soil
properties dominated the impacts during 2009—2018 (Fig. S9).
Parent material characteristics had the greatest effects on elevated
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Fig. 4. The structure of Structure Equation Model (SEM) for assessing the impacts of five groups of independent factors (i.e. parent materials, topography/greenness, socioeconomic
factors, soil property, and pollutant source) on soil contamination of As and Cr (A) and Ni (B) in 2018, Cu and Zn in 2009 (C), and Hg in 1989 (D). Solid line and dash line represent the
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digital elevation model, respectively.
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soil contamination of Cd and Pb during 1989—2005, while soil
properties or landscape patterns showed most effects on elevated
Zn and Hg during 2009—2018 (Fig. S10). Overall, in the early stage of
urbanization/industrialization (1989—2005), the natural lithology
of parent materials generally accounted for the elevated concen-
trations of heavy metals especially for Cr, Ni, Cd and Pb. However,
during the recent time period (2009—2018), soil physiochemical
properties and/or urban landscape had pronounced impacts and
led to higher levels of Cr, Ni, Zn and Hg. Landscape patterns were
secondary in terms of direct and indirect effects on changes in soil
contamination during 2009—2018 (Figs. S9, S10). All the indepen-
dent variables had lower indirect effects than the direct effects on
soil contamination with heavy metals except As, Cr, Ni, Cu and Zn
during 2009—2018 (Table S4).

4. Discussion
4.1. Soil contamination elevated during the past three decades

Our data showed that the distributions and variations of soil
contamination were space-, time- and heavy metal pollutant-
dependent. High pollution levels were found in the western part
of PRD, including Foshan, Zhongshan, Zhuhai, and Shenzhen. This
pattern was consistent with previous findings (Chen et al., 2012; Li
et al., 2015a; Li et al., 2017; Zhang et al., 2014) and was likely
explained by the combined effect of river alluvium from the West
and North Rivers and possibly also by high levels of atmospheric
depositions (Sha et al., 2019; Yang et al., 2007; Zhang and Wang,
2001). The soils in western part of the study region partially
inherited the feature of high concentrations of heavy metals
(especially for Cr, Ni, Cd and Pb; Fig. 1B) from the parent materials
of river alluvium (Yang et al., 2007; Zhang and Wang, 2001). Human
activities, such as mining and smelting, industrial and traffic
emissions, and sewage irrigation might release additional heavy
metals into the soils, especially for Pb and partial Cd, Cu, Zn and Hg
(Zhang et al., 2014; Zhou and Wang, 2019).

Overall, the single pollution level (Igeo) for each heavy metal was
not high as expected. Most of soil sampling grids were classified as
uncontaminated or slightly contaminated for As, Cr, Ni and Pb
across all the four time periods, while Cd levels were classified as
slight to moderate pollution. The soil contamination in the region
was compounded with multiple heavy metals as indicated by the
comprehensive pollution indices (Pnp). Approximately 59.3%—
99.3% of soil samples were contaminated by one or more heavy
metals during the period of analysis and the mean comprehensive
pollution level increased from slight to moderate across the region.
However, compared with China’s maximum allowable concentra-
tion levels of heavy metals in agricultural soils (GB15618-2018) and
urban soils (GB36600-2018), less than 30% of soil samples (e.g. less
than 26.4% in 2018) reached the hazard level to influence food se-
curity or human health. This finding was consistent with recent
studies that reported overall low exposure of heavy metals in food
production systems and human settlements across the study region
(Chang et al., 2014; Li et al., 2014; Zhang et al., 2014).

The Cd, Hg and Cu were the top three pollutants with both a
large magnitude and changes in Igeo, €specially during 2005—-2018.
The pattern was somewhat consistent with previous literature in
China (Chen et al., 2015b; Pan et al., 2018; Zhang et al., 2015b). Cd,
Hg and Cu are generally associated to anthropogenic sources such
as industrial emissions or fertilization (Liu et al, 2016;
Weissmannova et al., 2015). Rapid urbanization and industrializa-
tion have elevated soil heavy mental concentrations considerably
especially for Cd, Hg, Cu, Pb and Zn in the study region during the
past three decades (Lin et al., 2018; Zhang et al., 2015a; Zhou and
Wang, 2019). Similarly, our study also found that human activities

that modified soil properties or landscape patterns for different
land uses were pronounced for Zn in 1989, 2009, 2018, and Cu in
2009, and Hg in 1989. In contrast, previous studies found that
heavy metals such as As, Cr and Ni were primarily derived from
natural sources (i.e., parent materials) (Hu and Cheng, 2013; Liet al.,
2015a). However, in some cases, anthropogenic sources of in-
dustries and transportation were found to be the sources for As, Cr
and Ni (Li et al., 2019). Our study also found that the sources of As,
Cr, and Ni were mixed. The changes in soil contamination with Cr
and Ni during 1989—2005 mainly originated from natural sources
of parent materials (Table S3). For soil contamination with As, Cr,
and Ni in 1989, 2018 and changes in their concentrations during
2009—-2018, landscape patterns and soil properties as influenced by
human activities were the main drivers (Table S3).

4.2. Environmental drivers of soil contamination in both space and
time

As hypothesized, our SEM analyses indicated that human ac-
tivities that altered landscape patterns and/or soil physiochemical
properties were the key factors affecting soil contamination,
especially for heavy metals of As, Cr, Ni, Cu, Zn, Hg over both space
and time. This temporally extended analysis using data from mul-
tiple sampling time periods was consistent with recent findings
that observed larger contributions of soil properties and landscape
pattern to the variations of soil contamination across the space at
local scale using similar methods (Li et al., 2019). Likewise, Jiao et al.
(2018) showed that anthropogenic activities could contribute about
41% of the variations of heavy metal accumulation in farmland soil.
A few other studies also suggested that soil properties such as pH,
OM, CEC and soil texture had notable influences on soil contami-
nation with heavy metals (Kosheleva et al., 2014, 2015; Liu et al,,
2016; Navarrete et al., 2017). One probable mechanism is that soil
conditions affect metal mobility and retention capacity (Mojid
et al., 2016). High pH and organic matters favor the release of
most heavy metals from contaminated soil colloids or heavy metal
immobilization (Gil et al., 2018; Ma et al., 2019; Nedelescu et al.,
2017; Wiatrowska and Komisarek, 2019). Khorshid and Thiele-
Bruhn (2016) and Li et al. (2019) observed higher heavy metal
concentrations in locations where soils had higher pH, and OM and
heavier soil textures. In addition, manganese (Mn) and iron oxides
in soil have strong adsorptions on As and Cd (Ma et al., 2019; Suda
and Makino, 2016). Land uses reflect the intensity of human ac-
tivities. Consistent with previous studies (Li et al., 2017; Li et al.,
2019), our findings suggested that landscape patterns are signifi-
cant in explaining variance in soil contamination, but contributions
of landscape structure were less pronounced than that of soil
properties. Furthermore, our study found that parent materials had
the greatest effect on the elevated comprehensive and single soil
contamination with Ni, Cd and Pb during 1989—2005. This implied
that, at the early stage of urbanization, the pedogenisis of previous
parent materials mainly controlled the increase in soil contami-
nation. However, other factors such as landscape patterns of land
uses and soil properties were more pronounced in affecting soil
contamination through time. Similar to our findings, Jiang et al.
(2019) showed the dominant factors influencing soil contamina-
tion with As, Cr and Hg changed from geological environment in
1983 to human activities in 2010.

Soil contamination involves complex both natural and anthro-
pogenic processes (Karim et al., 2014; Mihaljevic et al., 2019). The
SEMs explained well about the environmental effects on variations
of soil contamination for most heavy metals in 1989 and 2018, and
the temporal changes during 1989—2005 and 2009-2018
(Table S3). However, the SEMs apparently were not able to explain
the all the spatial variabilities (R* < 0.45) of soil contamination for
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most heavy metals in 2005 and 2009, and during 2005—2009
(Table S3). The poor model performances in 2005 and 2009, and
2005—2009 were likely due to uncaptured inventory variables that
represent the entire sources of heavy metal inputs. For example,
atmospheric deposition, fertilization and agrochemical uses and
irrigation of wastewater, were not included in our analysis due to
data availability. The atmospheric deposition and sewage sludge
were documented to be the main sources of most heavy metals in
agricultural soils especially in western PRD (Li et al., 2015a, 2017).
Sha et al. (2019) found high levels of atmospheric depositions in the
western part of the study region based on emission inventory data.
Although we could not include the monitored atmospheric depo-
sition data, we observed the strong effects of landscape patterns
and soil physicochemical properties on soil contamination through
both space and time. The underlying mechanism might be because
land use distributions and soil properties reflected the amount and
absorption capacity of atmospheric deposition, respectively.
Meantime, it is well known that pedogenisis of parent materials is a
long process and heavy metals in parent materials rarely move to
the top soil layer under natural conditions. However, heavy metals
with a source of human activities such as atmospheric deposition
often accumulate into the top layer by soil leaching.

4.3. Implications to soil contamination control measures

Our long-term data show pronounced effects of landscape pat-
terns and soil properties on the distribution and magnitude of soil
pollution. Thus, effective strategies and measures to control
regional soil contamination must reduce soil contamination from
both point (e.g., industry) and non-point sources (e.g., atmospheric,
fertilizers). It is critical to establish a long-term in-situ monitoring
network identify pollution sources and evaluate effectiveness of
land management practices in controlling soil contamination.
Proper reforestation or greening and other urban forestry efforts
that improve soil properties, enhance nutrient and water cycles and
capture or intercept atmospheric deposition may help mitigating
soil contamination problems (Curran-Cournane et al, 2015;
Trammell et al., 2011). Heavy metals are usually high in alluvial
deposition areas due to historical deposition and river sediment
transport. In such areas, restoring natural vegetation covers may be
most effective for soil contamination control. Dou et al. (2017)
suggested that factories that release pollutants should be kept
away at least 50 km away from these parent materials or tidal river
networks. In addition, altering soil properties such as application of
lime-rick materials and organic amendments increasing organic
matters (OM) and clay contents (Khan et al., 2017; Kosheleva et al.,
2014, 2015; Obiora et al., 2019) is helpful to mitigate soil contam-
ination. Recently, biochar has been widely used to immobilize
heavy metals in contaminated soils by significantly changing the
soil pH, OM, CEC and soil redox potential and microbial community
(Meng et al., 2018).

5. Conclusions

Our three-decade (1989—2018) comprehensive regional
assessment of spatiotemporal changes of soil contamination in
southern China found that soil contamination was slightly elevated
for all the heavy metals examined (i.e., As, Cd, Cr, Ni, Cu, Zn, Pb and
Hg) except Cd, Hg and Cu that had moderate contamination.
However, most soils did not reach hazard levels to food security and
human health. Soil samples with high contamination level were
mainly located in the western Pearl River Delta region, coincided
with densely populated areas known for high pollutant emissions
and locations where alluvial deposition and elevated background
concentrations.

Our study generally supports the hypothesis that “human ac-
tivities influencing landscape patterns and/or soil properties are
the key factors affecting soil contamination”. Other factors such as
atmospheric deposition, polluted water from irrigation, and agro-
chemical uses are identified that may also explain the large vari-
ability of soil contamination. In addition, parent materials are
important to explain the changes of soil contamination during
1989—2005. Future research on deeper understanding of soil
contamination dynamics should regularly monitor atmospheric
deposition, soil properties, and land use changes, especially in the
western part of the study region, where high background concen-
trations of heavy metals in soils were found.

Communities aiming at reducing pollutants exposure could
adopt comprehensive management practices such as installing
forest vegetation buffers around heavily polluted factories while
reducing industrial emissions and wastewater discharge and
managing sewage irrigation and cropland chemical uses in agri-
cultural lands. Optimizing landscape patterns through land use
change (e.g., increasing percentage of forest and grassland,
reducing patch density of farmland) and improving soil physi-
ochemical properties (e.g., increasing pH and organic matter) might
be the most effective management strategies in alleviating soil
contamination especially in western Pearl River Delta region.
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