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A B S T R A C T   

Since biodiversity often increases ecosystem functioning, changes in tree species diversity could substantially 
influence terrestrial carbon cycling. Yet much less is known about the relationships between forest structural 
diversity (i.e., the number and physical arrangement of vegetation elements in a forest) and carbon cycling, and 
the factors that mediate these relationships. We capitalize on spaceborne lidar data from NASA's Global 
Ecosystem Dynamics Investigation (GEDI) and on-the-ground forest inventory and analysis (FIA) data from 1796 
plots across the contiguous United States to assess relationships among the structural and species diversity of live 
trees and aboveground carbon storage. We found that carbon storage was more strongly correlated with struc
tural diversity than with species diversity, for both forest inventory-based metrics of structural diversity (e.g., 
height and DBH diversity) and GEDI-based canopy metrics (i.e., foliage height diversity (FHD)). However, the 
strength of diversity‑carbon storage relationships was mediated by forest origin and forest types. For both plot- 
based and GEDI-based metrics, the relationship between structural diversity (i.e., height diversity, DBH diversity, 
and FHD) and carbon storage was positive in natural forests for all forest types (broadleaf, mixed, conifer). For 
planted forests, structural diversity showed positive relationships in planted conifer forests but not in planted 
mixed forests. Species diversity did not show strong associations with carbon storage in natural forests but 
showed a positive relationship in mixed coniferous-broadleaf planted forests. Although plot-based structural 
diversity metrics refine our understanding of drivers of forest carbon balances at the plot scale, remotely sensed 
metrics such as those from GEDI can help extend that understanding to regional/national scales in a spatially 
continuous manner. Carbon storage showed stronger associations with plot-based structural diversity than with 
stand age, soil variables, or climate variables. Incorporating structural diversity into management and restoration 
strategies could help guide efforts to increase carbon storage and mitigate climate change as nature-based 
solutions.   
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1. Introduction 

Increasing carbon storage in forests presents an opportunity for 
climate mitigation as a nature-based solution (Fargione et al., 2018; 
IPCC, 2021). Changes in forest carbon storage could influence the global 
climate, since forests cover approximately 30% of the world's lands and 
store 45% of the world's terrestrial carbon (Bonan, 2008). In addition to 
research on the general environmental conditions that influence forest 
carbon storage, considerable work has explored relationships between 
biodiversity and ecosystem functions and services (e.g., productivity, 
carbon storage, nutrient uptake, water quality, and pollination) (Grace 
et al., 2016; Liang et al., 2016; Naeem et al., 1994; Tilman and Downing, 
1994), in part to assess when the twin goals of sustaining biodiversity 
and maintaining ecosystem services such as carbon storage may be 
aligned (Mori et al., 2021). Many experimental and observational 
studies have found positive associations between biodiversity and 
ecosystem functions (Cardinale et al., 2012; Hooper et al., 2005; Jochum 
et al., 2020), although the strength and significance of these relation
ships may vary among functions and ecosystems and across spatial 
scales (Gonzalez et al., 2020; Ricketts et al., 2016). However, fewer 
studies have examined relationships with structural diversity—which in 
forests can refer to the variation in tree heights, stand density, clumping, 
canopy cover, and/or spatial heterogeneity in vertical arrangement (e. 
g., rugosity) (Atkins et al., 2018). 

The theory underpinning biodiversity-ecosystem functioning 
research suggests that, on average, ecological communities with more 
species should be more productive than comparable communities with 
fewer species (Loreau et al., 2001; Hooper et al., 2005). Since individual 
species have different niches, communities with many species can use 
available resources more completely and efficiently than communities 
with few species, which in turn leads to higher productivity in species- 
diverse communities than in species-poor communities (Tilman et al., 
2014). Although it may be true that more species can indeed use 
available niche space and resources more fully and complementarily, 
measuring all axes of the niche space and all resource use is intractable 
in real-world ecosystems. Biodiversity metrics such as species richness 
provide a proxy for the potential of species to occupy different niches in 
the community. Metrics of diversity that serve as better proxies for 
resource use and efficiency within communities should show stronger 
associations with ecosystem functioning. Structural diversity may be a 
better predictor of some ecosystem functions than biodiversity (Ali, 
2019; Dănescu et al., 2016; Gough et al., 2019; Hardiman et al., 2011; 
Silva Pedro et al., 2017), as structural diversity may provide a more 
direct indicator of the niche space occupied within a community (LaRue 
et al., 2019; LaRue et al., 2023). For example, forest communities with 
differences in tree crown sizes and shapes have greater light absorption 
and stem biomass than forest communities where trees have similar 
crown architectures (Williams et al., 2017). More specifically, forest 
canopies with substantial vertical stratification, complementarity of 
crown shapes and heights, and phenological differences among trees 
may lead to higher light use efficiency, resulting in higher biomass 
productivity (Forrester and Bauhus, 2016). 

While scientists have developed numerous metrics of structural di
versity (e.g., MacArthur and Horn, 1969; Staudhammer and LeMay, 
2001), metrics are derived from two main sources of data: traditional 
plot-based measurements and lidar (light detection and ranging) remote 
sensing-based measurements. Traditional forest inventory data collected 
by field crews (e.g., manual height and diameter measurements) often 
provide information on the species' identities, stem diameters, and 
heights of trees in each forest plot (Burrill et al., 2021). Indices of 
structural diversity can be created from the heterogeneity (e.g. standard 
deviation) in tree stem diameters and heights, number of size and height 
classes, or with composite metrics combining different characteristics 
(Bohn and Huth, 2017; Storch et al., 2018; LaRue et al., 2023). Inventory 
and monitoring programs provide critical data but can be time- 
consuming and costly to collect and curate, resulting in limited 

sampling in both space and time. Remotely sensed data, however, can 
bridge these gaps by offering substantial spatial coverage at landscape 
(e.g., air- and uncrewed aerial vehicles or UAVs) to global (e.g., satellite 
and other spaceborne platforms) extents. The combination of traditional 
stand structural data from inventory programs with remotely sensed 
data may help provide additional, important information about forest 
health, productivity, and carbon storage (Beland et al., 2019; Wehr and 
Lohr, 1999) while extending the utility of each across space and time. 

Here, we use spaceborne lidar from NASA's Global Ecosystem Dy
namics Instrument (GEDI), which provides near-global (between 51.6◦S 
and 51.6◦N latitude; Fig. 1) estimates of forest structure (see Dubayah 
et al., 2020 for GEDI details). Although GEDI has been used for appli
cations such as estimating forest canopy heights (Liu et al., 2021; 
Potapov et al., 2021), estimating biomass and fuel loads across large 
areas (Dubayah et al., 2022; Duncanson et al., 2022; Leite et al., 2022), 
and coupling the structural information provided by GEDI with addi
tional datasets to predict the biodiversity of trees and birds (Burns et al., 
2020; Marselis et al., 2022), to our knowledge, our study is the first 
effort to examine the relative roles of structural and species diversity in 
explaining aboveground carbon storage with GEDI data. Building on 
previous work that found positive associations between structural di
versity and net primary production using either lidar (Gough et al., 
2019; Hardiman et al., 2011) or forest inventory data (Dănescu et al., 
2016; LaRue et al., 2023), our study integrates GEDI and forest in
ventory data to examine diversity‑carbon storage relationships across 
the entire USA. Understanding how well GEDI-based metrics of struc
tural diversity align with and/or complement plot-based metrics of 
structural diversity—and assessing relationships between metrics of 
structural diversity and carbon storage—could provide key insights 
when scaling up from individual forests plots to provide estimates of 
diversity and carbon storage across large spatial scales. 

Relationships between diversity and ecosystem functioning (e.g., 
carbon storage) may vary across different types of forests and between 
natural and planted forests. Scientists have proposed that the impor
tance of plant species diversity for ecosystem functioning may be greater 
in more stressful environments than in more benign environments 
(Warren et al., 2009). In support of this hypothesis, some studies found 
that biodiversity-productivity relationships vary among tropical, 
temperate, and boreal forests and among different regions (e.g., 
Paquette and Messier, 2011; Liang et al., 2016), but it remains unclear 
how much these relationships vary across the broadleaf, coniferous, and 
mixed forests of the USA (Atkins et al., 2022). Since broadleaf and 
coniferous trees have very different shapes, the ways that individual 
trees interact and compete for resources are anticipated to differ across 
broadleaf and coniferous forests, promoting different 2D and 3D ar
rangements of the vegetation, thus leading to different relationships 
between structural diversity and carbon storage. In addition, historical 
conditions may affect ecosystem functioning and could lead to differ
ences in the relationships between diversity and carbon storage between 
natural and planted forests or between newly established and mature/ 
old growth forests. Although evidence in grassland communities sug
gests that experimental and observational studies may show similar 
magnitudes of effects (Jochum et al., 2020), differences between natural 
and planted forests remain uncertain, but could be important due to the 
legacies of human actions. The majority of research on biodiversity- 
ecosystem functioning in forest communities has largely been conduct
ed through observational studies in forests with little active manage
ment. Yet understanding differences between natural and planted forests 
is critical, as restoration projects present key opportunities to apply 
knowledge of relationships between biodiversity and ecosystem func
tioning (Srivastava and Vellend, 2005). 

While we expect structural and species diversity to influence carbon 
storage at the site level (LaRue et al., 2023), other factors such as climate 
and soil conditions may influence forest biomass and carbon storage at 
the country-wide level (Pan et al., 2013; Xu et al., 2020). Temperatures 
vary greatly across latitudes and elevations in the USA, and warmer 
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temperatures are often associated with greater forest biomass in 
temperate forests (Keith et al., 2009). As temperate forests are mainly 
limited by water availability, increased precipitation generally leads to 
greater forest biomass (Stegen et al., 2011). Although in some forests 
climate variables matter more than soil characteristics (Bennett et al., 
2020), soil fertility is often associated with increased forest biomass 
(Paoli et al., 2008; Yuan et al., 2019). Nutrients such as nitrogen and 
phosphorus provide key elements for growth, while soil texture can 
influence the water availability for root uptake (Hofhansl et al., 2020; 
Laurance et al., 1999; Xu et al., 2020). Accounting for these additional 
factors that affect forest biomass can help clarify the relationships be
tween structural diversity, species diversity, and carbon storage—the 
focus of this study. 

In this paper, we explore the relationships of structural and species 
diversity with aboveground live tree carbon storage, an ecosystem ser
vice of critical importance for global climate change policy. First, we 
capitalize on detailed forest inventory program data and the newly 
available satellite-based GEDI data to assess the relative importance of 
structural and species diversity for aboveground carbon storage across 
the contiguous USA. Second, we investigate whether there are sub
stantial differences in relationships between structural diversity and 
carbon storage when using plot-based versus GEDI-based structural di
versity metrics. Third, we then explore whether relationships between 

diversity and aboveground carbon storage vary across different forest 
stand origins (natural or planted) and forest compositions (broadleaf, 
mixed, or conifer trees). Using observational rather than experimental 
data in this study, we do not directly evaluate directions of causality; we 
report the statistical relationships between diversity and carbon storage 
from spatial data across the USA. 

2. Methods 

Our study included data from the forested regions of the contiguous 
USA, with forest plots spanning 13 different EPA level II ecoregions (U.S. 
Environmental Protection Agency, 2018; Fig. 2). Based on the Daymet 
climate data (Thornton et al., 2020), the mean minimum annual tem
perature varied from − 5.4 ◦C to 15.8 ◦C, the mean maximum temper
ature from 6.1 ◦C to 29.1 ◦C, and annual precipitation from 218 mm to 
3742 mm over the past ten years at our forest plots. Individual forest 
plots contained 1 to 15 species, and all plots in the study region that 
were included in our analyses collectively contained 188 species. The 
analyses proceeded in three main steps: (1) we selected suitable forest 
plots (section 2.1); (2) we extracted GEDI satellite data (2.2); and (3) we 
conducted statistical analyses to evaluate the effects of biological and 
structural diversity (2.3) (Fig. 3). We conducted the analyses described 
below using R version 4.1.2 (R Core Team, 2021). 

Fig. 1. The GEDI sensor provides estimates of structural diversity. (a) The GEDI sensor has coverage tracks over the contiguous United States (and other regions 
between 51.6◦S and 51.6◦N latitude). (b) For each GEDI track, there are eight beams spaced 600 m apart. (c) Within each beam there are footprints with a 25 m 
diameter spaced 60 m apart. We extracted GEDI footprints that were within a 100 m buffer zone of the FIA forest plots (hypothetical forest plots that were not 
included are marked with an X). (d) Examples of different forests with low to high structural diversity. Indices of structural diversity can be generated from (e) the 
GEDI data and the lidar waveform, which is based on the return energy from all aspects of vegetation within the GEDI footprint (e.g., leaves, branches, tree trunks), or 
from (f) forest inventory plot data using metrics based on the relative frequency of individual tree heights (or DBHs). 
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2.1. Plot-based variables from forest inventory data 

We relied on Forest Inventory and Analysis (FIA) data to calculate 
estimates of aboveground carbon storage, metrics of species diversity, 
plot-based structural diversity metrics, and other explanatory variables 
(Burrill et al., 2021). Administered by the United States Department of 
Agriculture Forest Service, the FIA program provides the most 
comprehensive forest inventory database currently available in the 
United States (Tinkham et al., 2018). The FIA program created a 
country-wide tessellation of hexagons that are 2428 ha in area, and then 
randomly selected the location of a sampling plot from forested areas 
within each hexagon, resulting in a national sample intensity of 
approximately one plot per 2428 ha (sampling ratio to total land of 
roughly 0.0028%; Bechtold and Patterson, 2005). Forest land is defined 
as having at least 10% tree or woody canopy cover (or formerly having 
such cover that will be naturally or artificially regenerated) and is at 
least 0.4 ha in area and 37 m wide (Burrill et al., 2021). This in
corporates both timberland and non-timberland, which includes 
woodland vegetation and reserved forest land (Oswalt et al., 2019). 

We selected forest plots that were surveyed in 2017–2020, as these 
years corresponded most closely with the GEDI data (2019–2021) and 
provide a sample size of 1796 corresponding plots. The sampling pro
tocols for these plots encompassed four subplots of 7.3 m in diameter for 
a total of 0.0672 ha per FIA forest plot (FIA plot design codes: 1, 501, 

502). We selected FIA plots in which all four subplots contained trees 
and where at least 90% of the plot was specified as covered by forest. 
Our selection of FIA plots for the main analyses was further refined by 
the availability of GEDI data, as described in Section 2.2, but we also 
evaluated the representativeness of the sample of plots that spatially 
matched with GEDI footprints by using the most recent inventory 
measurement from all FIA plots that satisfied the above criteria (see 
Supplemental Information Section B for further details). Data for each 
subplot includes living trees that had a diameter at breast height (DBH) 
of at least 12.7 cm (5 in.). We excluded any trees in the FIA ‘macroplots’ 
(for plot design codes where macroplots existed)—regions surrounding 
the area of the ‘subplots’. The FIA database uses allometric equations 
from Jenkins et al. (2003) to provide estimates of biomass for different 
components of the tree—the stem, tops and limbs, and stump of each 
tree (see Woodall et al., 2011 for details). A conversion factor of 0.5 was 
used to estimate carbon storage from biomass, since carbon is roughly 
50% of the tree biomass (but can vary between 46%–55%; Lamlom and 
Savidge, 2003). We aggregated the carbon storage estimates for each 
living tree with a DBH >12.7 cm to obtain aboveground carbon storage 
for each forest plot. 

We calculated species diversity for each forest plot using metrics of 
species richness (simply a count of the number of species) and Shannon 
diversity, which weights species by their relative abundances according 
to Eq. (1): 

Fig. 2. Our analysis includes 1796 Forest Inventory and Analysis (FIA) plots across the western and northeastern forests of the USA in 13 different EPA Level II 
Ecoregions. FIA plots are displayed using the publicly available perturbed coordinates. 
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Diversity = −
∑

i=1
Pi*log(Pi) (1)  

where Pi is the proportion of species (i.e., relative abundance) of species i 
within each forest plot. We report results from Shannon diversity in the 
main text, since it facilitates direct comparison with the plot-based and 
GEDI-based metrics of structural diversity described in the next para
graph and next section, but we include results from species richness in 
the supplemental information (Figs. S5, S6). 

Using the FIA plot-based data, we calculated structural diversity 
metrics for height and DBH diversity. For each forest plot, first we 
allocated trees into height classes with increments of 3.048 m (10 ft), 
and into DBH size classes with increments of 12.7 cm (5 in.). We used 
these bin widths to provide a range of size class values across the forest 
plots (1 to 14 and 1 to 10 size classes for height and DBH, respectively) 
comparable to the range of values species diversity (1 to 15 species). 
Then we calculated height and DBH diversity for each forest plot based 
on the Shannon diversity formula used for species diversity (Eq. (1)), but 
in this case Pi now represents the proportion of trees within size class i. 

For calculations of other explanatory variables, the FIA dataset 
provides information on different forested conditions (i.e., subsections 
within subplots of the overall forest plot characterized by different stand 
ages, soil types, and/or levels of human influence). We calculated the 
stand age of each forest plot using a weighted average, where age was 
weighted based on the area covered by each forested condition. We 
classified each forest plot into different forest compositions, where a 
forest plot was deemed ‘broadleaf’ if at least 70% of the total number of 
stems were broadleaf trees, ‘conifer’ if at least 70% of the stems were 

coniferous trees, and ‘mixed’ if conifer and broadleaf composition were 
between these two percentages (sensu Bonan et al., 2002). We catego
rized forests as ‘natural’ if the FIA data did not indicate any planted 
areas (0%) within the forest plot, and as ‘planted’ if >98% of the area 
was planted. Since there were few plots between these percentages, we 
excluded those plots from analyses and treated forest origin (natural/ 
planted) as a categorical variable. Here, ‘planted’ forests are not 
necessarily ‘plantations’ and may contain multiple different species, 
including trees from natural regeneration. For disturbances, we included 
all plots in the results presented in the main text. In the supplemental 
information we provide results where we excluded any forest plot where 
the database indicated >5% disturbance (e.g., ice storm, fire, insect 
damage) (Fig. S10). We used the USA EPA Ecoregions of North America 
dataset to identify the ecoregion associated with each forest plot (U.S. 
Environmental Protection Agency, 2018). We report results from level II 
ecoregions since our initial analysis showed that using level II (with 13 
ecoregions in our study region) data explained more of the variation in 
carbon storage than the broader level I ecoregion categories or an east/ 
west division. 

2.2. GEDI-derived structural diversity metrics 

With each overpass, GEDI collects data along 8 ground transects 
spaced approximately 600 m apart, with footprints of 25 m in diameter 
spaced every 60 m along each transect (Fig. 1). GEDI provides full 
waveform lidar returns from which metrics of forest structure are 
calculated. We used data from the GEDI Level 2B version 2 products 
(Dubayah et al., 2021), using the LPDAAC data prep scripts to find 

Fig. 3. Schematic showing input data and how we selected appropriate plots for our main analyses and supplementary analyses. “Covariates” indicate datasets used 
to generate additional explanatory variables for the statistical modelling. Blue boxes indicate input datasets. Green boxes indicate selection criteria. Yellow boxes 
indicate results that are reported, with the results reported in the main text indicated in darker yellow and bold text. This figure is illustrative, not exhaustive, of all 
sensitivity analyses (see supplemental figures). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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suitable GEDI tracks (Krehbiel, 2019) and the ‘rGEDI’ package in R to 
extract and process the data (Silva et al., 2021). We downloaded data for 
our study region during the years 2019, 2020, and 2021 for the months 
of July and August, peak summer months with leaf-on conditions in 
broadleaf forests. We then followed the latest GEDI user guide (Beck 
et al., 2021), selecting GEDI footprints where the algorithm and quality 
flags indicated that the measurements were suitable (values of 1), and 
where the footprints had at least a 95% beam sensitivity rating (i.e., the 
canopy cover percentage through which the beam would be able to 
detect the ground 90% of the time; Hancock et al., 2019). At lower beam 
sensitivities where the beam does not reach the forest floor, the relative 
height values provided in the GEDI data may not match on-the-ground 
conditions, and estimates of forest height and structural diversity may 
not be accurate representations. Because GEDI data cover all areas of the 
world (forests, cropland, urban areas, etc.), we extracted GEDI footprints 
that lined up with pixels that were classified as ‘forests’ on the ‘LCMAP’ 
national land cover map from 2019 (30 m resolution; U.S. Geological 
Survey (USGS), 2021). 

The GEDI 2B provides metrics of forest structure and diversity, such 
as canopy gap fraction, plant area index (PAI), and foliage height di
versity (FHD). The PAI is similar to the traditional concept of leaf area 
index (i.e., leaf area per unit ground area), but PAI incorporates all 
vegetation components (leaves, branches, and stems) as these compo
nents cannot be distinguished with GEDI (Tang and Armston, 2019). 
FHD measures the vertical heterogeneity of vegetation within the GEDI 
footprint by applying the Shannon diversity formula (Eq. (1)); using bin 
widths of 1 m (Tang and Armston, 2019), Pi indicates the proportion of 
the PAI profile within the ith vertical height band. 

We extracted GEDI footprints that aligned with the FIA plots, where 
the footprint center was within a 100 m buffer zone around the center of 
the FIA plot (Fig. 1). If there were multiple, suitable GEDI footprints 
within a given FIA buffer zone, we averaged these metrics of structural 
diversity across the footprints. By assessing the correlations between 
GEDI-derived height measurements (i.e., RH98 from the GEDI 2A 
version 2 product; Fig. S2) and the maximum tree height (i.e. height of 
the tallest living tree in the plot) in the FIA data, we found that choosing 
a reasonable buffer size involved a balance between the accuracy of 
GEDI measurements (i.e., better with a small buffer and with multiple 
GEDI footprints within the buffer region) and the sample size available 
for analyses (i.e., better with a larger buffer and a minimum of one GEDI 
footprint; Fig. S3). Sensitivity analyses with different buffer sizes—using 
a 50 m buffer and a minimum of one GEDI footprint, a 100 m buffer and 
at least three GEDI footprints, and a 200 m buffer with at least three 
footprints—showed similar associations between metrics of diversity 
and carbon storage (Figs. S7-S9); we report results in the main text using 
a buffer of 100 m and a minimum of three GEDI footprints within each 
FIA buffer zone, which provided a total of 1796 plots suitable for our 
subsequent analyses. 

2.3. Statistical analyses 

We applied a generalized additive model (GAM) to model the re
lationships between carbon storage, species diversity, structural di
versity, and other covariates. Using climate data from the Daymet 
dataset at a 1 km2 pixel resolution (Thornton et al., 2020), we extracted 
the average annual temperature and precipitation at each forest plot 
over the past 10 years (2011− 2020). We extracted soil data from the 
SoilGrids 2.0 database at a 1 km2 resolution for pH, bulk density, clay 
and sand percentages, coarse fragments, and cation exchange capacity 
(ISRIC (International Soil Reference and Information Center), 2022; 
Poggio et al., 2021). To approximate normal distributions for subse
quent analyses, we log transformed carbon storage, mean annual 
maximum temperature, and precipitation, and square root transformed 
elevation. We scaled all variables to a mean of zero with unit variance, 
so that relationships of all variables with carbon storage could be 
compared on a common scale. 

We built statistical models of increasing complexity to examine the 
associations between diversity metrics and carbon storage and the 
amount of variation (i.e., R2 value) explained by each variable or 
combination of variables. First, we modelled each of the metrics of 
structural diversity, species diversity, mean tree height, top canopy re
turn (RH98), and other variables (i.e., climate, soil, and site character
istics) individually to predict carbon storage. We then ran models that 
included both a height metric and a structural diversity metric as 
explanatory variables; this included mean tree height and height di
versity or DBH diversity for the plot-based models, and RH98 and FHD 
for the GEDI-based model. We then ran models with several explanatory 
variables that included multiple metrics of diversity both with and 
without covariates; we conducted two full GAMs, where all variables 
remained the same except for the data source for structural diversity and 
for height: one model used plot-based structural diversity (i.e., height 
and DBH diversity) and mean tree height and a second model used GEDI- 
based structural diversity (i.e., FHD) and RH98. These full GAMs 
included carbon storage as the dependent variable and several explan
atory variables and their interactions, including: smooth terms for spe
cies diversity and for structural diversity that simultaneously varied by 
forest origin (natural/planted) and forest composition (broadleaf, 
mixed, conifer); a smooth term for stand age; smooth terms for the 
pairwise interactions between stand age, structural diversity, and spe
cies diversity; and the factor variables forest origin, forest composition 
and EPA Ecoregion level II. We ran the GAM models with the ‘mgcv’ 
package v1.8.38 (Wood, 2011) using restricted maximum likelihood 
(REML) to estimate the model parameters. To compute these models 
within a reasonable time, we initially specified the number of basis di
mensions at k = 4 for each parameter, checked whether the basis di
mensions of the resulting model were adequate, and increased k as 
necessary for each parameter. No evidence of spatial correlation was 
found via testing the residuals of the models with a Moran’s I index 
(Moran, 1950). To examine whether relationships between diversity and 
carbon storage varied by geography or by climate, we re-ran the models 
with an interaction term between each of the three diversity variables (i. 
e., DBH, height, and species diversity) and ecoregion, and also between 
the three diversity variables and climate categories; see supplemental 
information section C for further details. We visualized the GAM results 
with assistance from the ‘gratia’ package (Simpson, 2022). We tested for 
differences among the groups for the factor variables (forest origin, 
forest composition, and ecoregion) using a Kruskal-Wallis test with 
pairwise testing adjusted for multiple tests with Holm’s procedure 
(Holm, 1979). In the following sections, the results were ‘significant’ if P 
< 0.05, but we recognize that P-values are only one part of the overall 
relationships that we examined in this study. 

3. Results 

3.1. Associations between diversity and carbon storage 

We found that structural diversity (both GEDI-based and plot-based 
metrics) explained more of the variation in carbon storage than did 
species diversity (Fig. 4). When modelling each of the variables indi
vidually with carbon storage, FIA plot-based structural diversity metrics 
of height diversity and DBH diversity both explained 49.4% of the 
variation in carbon storage. A model that only included the mean tree 
height explained 61.2% of the variation in carbon storage, but adding 
height diversity or DBH diversity to this model increased the explana
tory ability of the model to 68.2% and 72.0%, respectively. GEDI-based 
metrics of FHD, PAI, and canopy gap fraction individually explained 
37.9%, 21.2%, and 22.1% of the variation in carbon storage, respec
tively. A model with the canopy height (RH98) explained 45.8% of the 
variation in carbon storage, and adding FHD to the model only increased 
the explanatory ability to 46.7%, while adding the gap fraction 
increased the explanatory ability to 47.1%. Species diversity (Shannon 
index) and species richness showed weaker associations with carbon 
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storage than did any metric of structural diversity; species diversity and 
richness explained 4.8% and 6.1% of the variation in carbon storage, 
respectively. Similar to these results with each of the variables indi
vidually, the GAM using FIA plot-based metrics of structural diversity 
(height and DBH diversity) plus additional covariates (i.e., stand age, 
forest composition, forest origin, ecoregion, soil, climate variables) 
explained a higher proportion of the variation in carbon storage than the 
GAM using GEDI-based metric of structural diversity (i.e., FHD) with the 
same covariates (71.6% vs. 61.2% respectively). 

3.2. Relationships among metrics of structural diversity 

The data show reasonable correlations between plot-based and 
GEDI-based metrics of structural diversity (Fig. 5; see also Fig. S1). In 
general, FHD saturates and levels off at higher levels of height diversity 
and DBH diversity, but we note that there are also fewer GEDI footprints 
that have the highest levels of FHD. Despite positive correlations, there 
remains considerable scatter in the pairwise relationships between the 
three metrics (FHD, height diversity, and DBH diversity), indicating that 
they capture different aspects of structural diversity. 

3.3. Plot-based models of structural diversity 

Partial effects plots from the GAMs illustrate that the magnitude and 
significance of relationships between diversity and carbon storage 

varied between metrics of diversity and between natural and planted 
forests (Fig. 6). With the FIA plot-based models, structural diversity 
metrics of both height diversity and DBH diversity showed positive as
sociations with carbon storage across all forest types (broadleaf, mixed, 
and conifer) in natural and planted forests (GAM; P < 0.001 for all, 
except for height diversity in planted mixed forests where P = 0.10). We 
could not estimate diversity‑carbon storage relationships in planted 
broadleaf forests since there was only one such plot in our dataset. 
Species richness did not show significant relationships with carbon 
storage in natural forests. Species richness showed a non-significant 
relationship in planted mixed forests, and a significant negative rela
tionship in planted conifer forests (P < 0.001). In addition to these re
lationships between diversity and carbon storage, the mean values of 
height diversity, species diversity, and carbon storage were all slightly 
higher in natural forests than in planted forests (Fig. 6; Kruskal-Wallis; P 
= 0.049 for carbon storage, and P < 0.001 for all others). 

3.4. GEDI-based models of structural diversity 

Metrics of GEDI-based structural diversity showed contrasting results 
across broadleaf, mixed, and conifer forests (Fig. 7). In natural forests, 
the partial effects of structural diversity (i.e., FHD) showed a positive 
significant relationship with carbon storage in all forest types (GAM; P 
< 0.001). In planted forests, FHD showed a significant positive rela
tionship with carbon storage in conifer forests (P < 0.001), but no 

Fig. 4. The amount of variation in carbon storage (adjusted R2) explained by each variable individually or with one variable plus a height measurement (left-hand 
bars: “individual correlations”) and by models that included two or more diversity variables (right-hand bars: “multiple variables”). The “Full Model” included all 
variables (i.e., stand age, ecoregion, forest origin, forest composition, soil, and climate variables) and the interactions examined in this study when using the plot- 
based metrics of structural diversity and when using GEDI-based metrics. The axis label “composition” means forest composition (broadleaf, mixed, or conifer). 
Height indicates the mean tree height. 
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significant relationship in mixed forests. As above, we could not estimate 
relationships in planted broadleaf forests as there was only one forest 
plot. In natural forests, species diversity showed positive associations 
with carbon storage in broadleaf forests (P = 0.019), and no association 
in mixed forests or conifer forests. In planted forests, species diversity 
showed no association with carbon storage in conifer forests and a 
positive association in mixed forests (P = 0.027). 

3.5. Ecoregions 

The mean values and degree of variation in carbon storage, structural 
diversity, and species diversity varied among some of the 13 EPA level II 
ecoregions (Fig. 8). For example, the Marine West Coast Forests (region 
7.1) had higher carbon storage and height diversity than the Atlantic 
highlands (region 5.3). The Upper Gila Mountains (region 13.1) had 
lower species diversity than regions such as the Atlantic highlands (re
gion 5.3) and the Appalachian forests (region 8.4). Although forests of 
the Temperate Prairies (region 9.2) showed relatively high variation in 
species diversity and DBH diversity between forest plots in this region, 
the temperate prairies had low variation in height diversity. 

3.6. Stand age 

Stand age was a strong driver of carbon storage, as we found that, 
individually, stand age explained 14.1% of the variation in carbon 
storage. The amount of variation in carbon storage explained by the 
plot-based metrics of structural diversity, height diversity (49.4%) and 
DBH diversity (49.4%), was greater than the variation in carbon 

explained individually by stand age (14.1%), soil variables (23.3%), or 
climate variables (27.8%) (Fig. 4). 

For some metrics of diversity, the relationships between diversity 
and carbon storage varied modestly with forest stand age (Figs. 9, S6). 
There were positive interaction effects on carbon storage (i.e., a more 
positive effect than expected based on the values of either variable on 
their own) for young stands with either very high or very low height 
diversity and for both very young and very old stands with low FHD. 
There were negative interaction effects for old stands with high height 
diversity and with high FHD. That said, the interaction effects of di
versity and stand age on carbon storage were subtle compared to the 
main effects of these variables individually and incorporating in
teractions into the model added a minimal increase in the overall 
explanatory ability of the model. 

4. Discussion 

4.1. Structural vs. species diversity 

Our results based on FIA and GEDI data show that structural diversity 
explained more of the variation in carbon storage (i.e., higher R2 values) 
than did species diversity, suggesting important considerations for 
management. Although we cannot measure species' niches directly in 
this observational study, our results are consistent with the idea that 
structural diversity may provide better estimates than species diversity 
of the niche space occupied by the community (LaRue et al., 2023). 
Previous work has demonstrated that structural diversity enhances light 
and resource use efficiencies, potentially explaining relationships with 

Fig. 5. The main metrics of structural diversity used in this paper (FHD, height diversity, and DBH diversity) show positive correlations, although scatter in the 
relationships indicates that the metrics capture different aspects of structural diversity. 

E.T.H. Crockett et al.                                                                                                                                                                                                                           



Remote Sensing of Environment 295 (2023) 113703

9

higher productivity and carbon storage (Atkins et al., 2018; Hardiman 
et al., 2013). One challenge of species diversity is that it remains difficult 
to partition the effects of composition versus the effects of diversity 
(Isbell et al., 2018; Loreau and Hector, 2001); differences in composition 
between sites could confound relationships between diversity and 
functioning. However, structural diversity approximates how the phys
ical volume of a forest is utilized more directly, potentially reducing this 
challenge. From a management perspective, incorporating estimates of 
structural diversity into management considerations could help enhance 

carbon storage and mitigate climate change. 

4.2. FIA plot-based vs. GEDI-based structural diversity 

FIA plot-based and GEDI-based metrics of structural diversity 
explained substantially different amounts of the variation in carbon 
storage, potentially because of uncertainty in the GEDI data, spatial and 
temporal differences in data collection, and distinctions between what 
aspects of the vegetation plot-based and GEDI-based metrics capture. 

Fig. 6. Partial effects plots from a GAM model using plot-based metrics of structural diversity show the relationship between diversity and carbon storage across 
forest types in (A) natural versus (B) planted forests. Boxplots (A and B subpanels) show the distributions of diversity metrics. Relationships different than 0 at the P 
< 0.10 level are shown with a *, and at the P < 0.05 level with a **. 
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Similar to previous studies (Fayad et al., 2021; Wang et al., 2022), we 
found that GEDI height measurements (RH98) did not match perfectly 
with the maximum tree heights in the FIA plots (Figs. S2, S3). Accurately 
estimating the canopy heights from GEDI requires accurate elevations of 
both the ground returns and top returns. The number of peaks in the 
lidar waveform, slope and elevation at the site, and forest canopy cover 
can all introduce errors in the GEDI canopy height estimates (Adam 
et al., 2020; Wang et al., 2022). At the same time, tree heights measured 
by field crews are also not perfect, and measurements taken from below 
versus above the canopy are usually slightly different. Plot-based met
rics of structural diversity measure diversity at the same location as the 
carbon storage estimates. On the other hand, some of our GEDI-based 
measurements come from adjacent locations (i.e., within the 100 m 
buffer region), and may or may not overlap directly with the trees used 
to calculate carbon storage. Geolocation uncertainty of up to 10 m in the 
GEDI footprints and up to 7 m in the FIA field data further complicates 
comparing FIA and GEDI data directly and may contribute to these 
differences between the relationships in plot-based and GEDI-based es
timates of structural diversity on carbon storage (Dubayah et al., 2020; 
Roy et al., 2021); however, similar associations between diversity and 

carbon storage with the 50 m, 100 m, and 200 m buffer regions (Figs. S7- 
S9), suggest that geolocation uncertainty likely had only minor effects 
on the core results. Similarly, plot-based measurements of structural 
diversity and carbon storage estimates are based on data collected at the 
same time. However, when relating GEDI-based structural diversity to 
carbon storage, there may be up to a four-year time difference between 
when data used to calculate structural diversity were collected by GEDI 
versus when field data used to estimate carbon storage were collected at 
the FIA plot. In addition to ongoing growth during this period, any 
disturbances during the intervening years could affect the strength of the 
structural diversity‑carbon storage relationships. Since aggregating data 
from multiple GEDI footprints reduced the noise associated with indi
vidual data points (Fig. S3), uncertainty in the GEDI height measure
ments due to site characteristics and spatial and temporal mismatches 
between plot and GEDI data collection—which in turn influence FHD 
values—could have led to the stronger associations observed in plot- 
based diversity than GEDI-based structural diversity. 

Notwithstanding uncertainty in the contributions of different vege
tation elements to carbon storage (Radtke et al., 2017), the plot-based 
measurements of structural diversity are based on components of 

Fig. 7. Partial effects plots from a GAM model with GEDI-based measurements of structural diversity and with plot-based measurements (B) show the relationship 
between diversity and carbon storage across forest types in (A) natural and (B) planted forests. Boxplots (A, B subpanels) show the distributions of carbon storage and 
diversity. Relationships significantly different than 0 at the P < 0.05 level are shown with a **). 

E.T.H. Crockett et al.                                                                                                                                                                                                                           



Remote Sensing of Environment 295 (2023) 113703

11

forests—the diversity of tree heights and DBHs—which one would 
expect to be closely related to carbon storage. However, all the vege
tation elements in the plot, collectively influence the vertical distribu
tion of lidar return energy, and thus determine the GEDI-based FHD 
metric. While the leaves, small twigs, and shrubs greatly affect the lidar 
waveform, these vegetation elements do not contribute nearly as much 
to carbon storage as the large branches and tree stems. As metrics of 
structural diversity from plot and remote sensing data are correlated but 
not identical (Fig. S1; Fischer et al., 2019; Knapp et al., 2020), these 
differences in what components of the vegetation most influenced the 
FIA plot-based and GEDI-based metrics of structural diversity could 
explain why plot-based metrics explained much more of the variation in 
carbon storage. 

Although the FIA plot-based metrics explained a greater fraction of 
the variation in carbon storage, the GEDI-based metrics showed quali
tatively similar relationships to those from plot-based metrics (Figs. 6, 
7). GEDI data could be coupled with other satellite data (e.g., Landsat, 
Sentinel, NISAR, Tandem-X; Choi et al., 2021; Duncanson et al., 2020) 
and other data products to interpolate between GEDI footprints and 
provide spatially continuous estimates of forest structure and diversity 
in areas without forest inventory plots. While airborne lidar provides 
more detailed forest information than data from the GEDI satellite, data 
from satellite sensors such as GEDI, and ICESat provide 3D structural 
information across large areas of the world that is freely and openly 
accessible—information that is highly useful for estimating carbon 

storage across entire countries and continents. 

4.3. Planted vs. natural forests 

Natural forests may have shown stronger associations with carbon 
storage than did planted forests for plot-based structural diversity (i.e., 
DBH diversity) due to management activities or systematic differences in 
species composition. If human influence on carbon storage through 
management activities substantially outweighed the influences of 
structural and species diversity, diversity‑carbon storage relationships 
may appear weak (Guo and Ren, 2014). These ‘planted’ forests are not 
necessarily ‘plantations’, and the degree of human influence in each 
forest plot remains difficult to ascertain; some planted forests have 
experienced no management since planting, while others have been 
actively managed (Burrill et al., 2021). Thinning or harvesting in plan
ted forests transfer carbon out of the forest plot and also affect structural 
diversity, thus confounding the relationship between the two. In addi
tion, forest managers often select and plant species that are particularly 
suited to the local environmental conditions and/or plant species with 
fast growth rates and high commercial value (e.g., for the purposes of 
timber harvesting). We found higher relative proportions of species such 
as Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), loblolly pine (Pinus 
taeda L.), western hemlock (Tsuga heterophylla (Raf.) Sarg.), bigleaf 
maple (Acer macrophyllum Pursh), and red alder (Alnus rubra Bong.) in 
planted forests than in natural forests (Fig. S11). These (non-random) 

Fig. 8. The distributions of (a) carbon storage, (b) species diversity, (c) GEDI-based structural diversity (FHD), (d) FIA plot-based height diversity, and (e) FIA plot- 
based DBH diversity across the 13 EPA Level II Ecoregions. The number of forest plots in each ecoregion is shown above panel (e). 
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systematic differences in species composition between planted and 
natural forests can confound diversity‑carbon storage relationships 
(Sonkoly et al., 2019). This combination of management actions and 
species composition differences could explain the one negative rela
tionship observed in this study—between species diversity and carbon 
storage in conifer-dominated planted forests (Fig. 6 b3). Future research 
could explore the role of disturbances and management legacies, and 
should aim to understand relationships in planted forests since resto
ration work provides an important application of biodiversity-ecosystem 
functioning research (Srivastava and Vellend, 2005). 

4.4. Future research directions and implications for restoration & 
management 

Although theory suggests explanations for why higher diversity may 
increase carbon storage (i.e., more efficient and complete resource use) 
(Hooper et al., 2005; Tilman et al., 2014), in this observational study we 
cannot determine the directions of causality in relationships between 
diversity and carbon storage, but the strength of their associations across 
space. Future experimental studies that intentionally create commu
nities with different levels of structural diversity could help elucidate 
whether there is a causative effect. In addition, just as research has 
sought to disentangle the effects of species diversity versus species 

Fig. 9. Partial effects plots showing inter
action effects between stand age and di
versity on carbon storage when using models 
with (A) plot-based metrics of structural di
versity and (B) GEDI-based metrics of struc
tural diversity. Warm (red) colors indicate 
positive interaction effects, while cold (blue) 
colors indicate negative interaction effects. 
Numbers next to the colour bar indicate the 
combined effect of stand age and diversity 
metrics on carbon storage. Areas in dark grey 
indicate too few data points to make 
reasonable estimates in those regions. In
teractions that were not significant are indi
cated by light grey numbers beside the scale 
bar. (For interpretation of the references to 
colour in this figure legend, the reader is 
referred to the web version of this article.)   
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composition (Grime, 1998), future work could examine trade-offs and 
synergies between promoting structural diversity versus particular 
structural attributes (e.g., maximum height) for increasing forest pro
ductivity and maximizing resilience in the face of changing global 
conditions. 

While forest management plans often include provisions for biolog
ical diversity and climate change, our results indicate that incorporating 
structural diversity into management decisions could help bolster car
bon stocks and help meet climate change mitigation targets. For 
example, in forest restoration projects where planting many tree species 
may not be feasible (i.e., specific species are desired, leading to low 
species diversity), planting seedlings of different sizes and ages, or 
continuing to plant in subsequent years to create uneven-aged stands, 
could increase forest structural diversity (Laiho et al., 2011). In addition, 
management actions geared at fostering resilience in highly stocked 
and/or fire-prone stands might consider increasing the structural 
complexity of residual trees to encourage higher rates of carbon accrual. 
Management actions that consider how forest canopies will develop in 
decades to come (i.e., planning how tree heights, crown shapes and sizes 
will develop and occupy space) could promote greater light-use effi
ciency and in turn prompt greater productivity and carbon storage 
(Atkins et al., 2018, 2022). 

5. Conclusions 

The combination of spaceborne lidar data from GEDI and ground- 
based data from FIA enabled us to assess relationships of structural 
and species diversity with aboveground carbon storage for forests across 
the contiguous United States. Our results showed strong relationships 
between plot-based metrics of structural diversity and carbon storage. 
We found that the amount of variation in carbon storage explained by 
structural diversity was greater than the variation explained individu
ally by stand age, soil conditions, and climate variables—variables all 
known to substantially influence carbon storage. Both plot-based and 
GEDI-based metrics of structural diversity showed positive relationships 
with carbon storage in natural forests and in planted conifer forests, but 
showed non-significant relationships in planted forests of mixed 
broadleaf and conifer trees. Plot-based metrics of structural diversity 
provided stronger associations with carbon storage than did species 
diversity or GEDI-based metrics of structural diversity, but using 
satellite-based lidar measurements of forest structure and diversity in 
concert with field-based measurements may be useful for large-scale 
monitoring programs that strive to estimate carbon storage across the 
world's forests. Incorporating structural diversity alongside species di
versity and climate considerations into management and restoration 
strategies could help guide efforts to increase carbon storage and miti
gate climate change through nature-based solutions. 
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