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Abstract 
Context Quantifying the interactions between 
land disturbances and energy and water balances, 
particularly evapotranspiration (ET), is helpful for 
understanding the land-atmospheric interactions and 
assessing the effects of urbanization on local climate 
and hydrological processes at a landscape scale.
Objectives To investigate the mechanisms of ecohy-
drological response to urbanization from the perspec-
tives of ET or energy balances in a distributed fashion 
at the watershed scale. To identify spatial ‘hot spots’, 
in which ET, and thus watershed hydrology, are most 
pronounced in response to land use change so that 

limited watershed landscape management resources 
can be applied efficiently.
Methods This process-based research quantified 
spatial patterns of ET and other energy fluxes in a 
rapidly urbanizing rice paddy-dominated watershed, 
Qinhuai River Basin (QRB), using a spatially explicit 
land surface energy balance model (SEBAL).
Results The QRB experienced a rapid land 
use change in urban–rural interface (URI) area, 
resulting in a significant reduction in actual ET 
(−  9.4  mm   yr−1) but a significant increase in sensi-
ble heat (3.71 W  m−2  yr−1) and soil heat fluxes (0.85 
W  m−2  yr−1) during the growing season from 2001 to 
2019. The change in energy partitioning at the water-
shed scale was dominated by URI area identified as 
the ‘hot spots’ of ecohydrological change within a 
heterogeneous basin.
Conclusions Knowledge gained from this study 
improves parameterizing distributed watershed eco-
hydrological models (e.g., ET processes) to guide 
urban planning. Effective watershed landscape man-
agement and planning that aims at mitigating the 
negative impacts of urbanization should focus on URI 
by preserving vegetation and local wetlands (e.g., rice 
paddies).
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Introduction

Our previous studies have documented that rapid 
urbanization in humid regions of southern China 
and the United States has caused a series of nega-
tive climatic and hydrological consequences (Hao 
et al. 2015; Li et al. 2020a, b). These impacts include 
‘Urban Heat Island (UHI) (Zhou et  al. 2016a; Hao 
et  al. 2018), ‘Urban Dry/Wet Island (UDI/UWI)’ 
(Hao et al. 2018; Huang et al. 2022), elevated storm 
runoff and flood risks (Hao et al. 2015; Zheng et al. 
2020; Fang et  al. 2020), the loss of ecosystem pro-
ductivity, and water quality (Li et  al. 2020a, b; Sun 
and Lockaby 2012). The observed and simulated 
meteorological, hydrological, and ecological changes 
in urbanized areas have been linked to the changes in 
land surface processes, actual evapotranspiration (ET) 
in particular (Sun et al. 2011a; Hao et al. 2015, 2018; 
Li et  al. 2020a, b; Wu and Hobbs 2002; Wu 2013). 
These ‘Black Box’ watershed studies suggest that the 
feedbacks of ecohydrological cycle, including ET, on 
urbanization-associated land cover change are par-
ticularly evident in humid regions where forests or 
natural or constructed wetlands dominate (Hao et al. 
2015; Sun and Lockaby 2012). However, few stud-
ies have examined the mechanisms of ecohydrologi-
cal response from the perspectives of ET or energy 
balances in a distributed fashion at the watershed 
scale (Zheng et al. 2020; Fang et al. 2020; Gao et al. 
2017). It is important to identify spatial ‘hot spots’, in 
which ET, and thus watershed hydrology, is most pro-
nounced in response to land use change so that lim-
ited watershed management resources can be applied 
efficiently.

Process-based studies on water and energy bal-
ances are available to explain observed environmen-
tal impacts, such as UHI, UDI/UWI, and ecohydro-
logical changes due to watershed disturbances (e.g., 
urbanization, forest removal, and climate change) 
(DeWalle 2000; Ebel and Mirus 2014; Jackson et al. 
2009; Vose et al. 2011; Wang et al. 2012a; Yang et al. 
2017, 2020). A study in China found that the land 
use and land cover changes induced by rapid urbani-
zation has affected ET and hydrological cycle from 
2000 to 2013 (Li et al. 2017; Xu et al. 2015). Zheng 
et  al. (2020) found that converting rice paddies into 
urban uses in the Yangtze River Delta (YRD) region 
in southern China had greater impacts than climate 
change resulting in a decrease in ET. Urbanization 

altered the surface energy fluxes, resulting in an 
increase in sensible heat flux, and a decrease in net 
surface shortwave and long wave radiation over east-
ern China (Chen et al. 2015). Due to the urbanization 
of the Pearl River Delta in southern China, the latent 
heat flux showed a negative trend from 1988 to 2010 
(Tse et al. 2018). In addition, Zhou et al. (2016a) con-
cluded that the urbanization would cause a decrease 
in surface energy input in southeastern China.

However, previous ‘Black Box’ studies at a field 
or watershed scale have rarely focused on the spa-
tial differential responses of water and energy bal-
ances to urbanization, which usually occurs in criti-
cal zones such as urban–rural interface (URI) (Sun 
and Lockaby 2012). The URI represents a tapestry of 
multiple interacting networks linking urban and rural 
areas (Browder 2002). Forests and wetlands in URI 
provide important ecosystem services such as recrea-
tion, water supply, and climate regulation (Hara et al. 
2005; Fang et al. 2005; Vejre et al. 2010). Land use 
/ Cover Change (LUCC) in URI areas is usually the 
most dramatic change in a large basin (Wang et  al. 
2004), which likely causes disproportionally greater 
impacts on water and energy balance over time than 
in well-developed urban areas or underdeveloped 
rural areas.

To better quantify the impacts of land disturbance 
on water and energy balance at a large area, various 
modeling tools have been developed in the past two 
decades. These models typically combine land sur-
face features derived from remote sensing imageries 
and local meteorological data. Singh et  al (2008) 
and Bastiaanssen et al (2005) compared several such 
models and indicated that the Surface Energy Bal-
ance Algorithm for Land (SEBAL) model (Bas-
tiaanssen et  al. 1998a, b) performed relatively well. 
The SEBAL model has been successfully applied to 
various ecosystems in more than 30 countries with 
an accuracy of 85% at daily and 95% at seasonal 
scale for the regional ET estimates (Bastiaanssen 
et  al. 2005; Tang et  al. 2013). The SEBAL model 
was also applied to wetland ecosystems, for exam-
ple, Nansi Lake Wetland of China (Sun et al. 2011b), 
alpine grassland-wetland ecosystems in the headwa-
ters of the Yellow River (Li et  al. 2013), the Upper 
Pangani River Basin in Eastern Africa (Kiptala et al., 
2013). In China, SEBAL has been applied to the Yel-
low River Delta (Wang et  al. 2012b), Huang-Huai-
Hai Plain (Yang et al. 2015) in East China, Sanjiang 
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Plain, southern Xinjiang (Liu et al. 2004), the upper 
reaches of Shule River Basin (Chang et al. 2017), the 
middle reaches of Heihe River Basin (Li and Zhao 
2010) and the main stream of Tarim River Basin (Li 
et al. 2011) in north China. However, these previous 
studies mostly focused on arid and semi-arid regions 
in northern China, were limited to a short period, 
and only used MODIS remote sensing products with 
coarse spatial resolutions.

This study focused on the ‘energy limited’ humid 
regions in southern China, which has experienced 
rapid urbanization in the past two decades. Unlikely 
many regions in China, the ‘water rich’ Yangtze 
River Delta (YRD) region represent the few regions 
that have not been ‘greening up’, but have been turn-
ing ‘browning’ caused by urbanization (Zhang et al. 
2021, 2022; Hao et al. 2018). The densely populated 
YRD is facing frequent floods and droughts (Guan 
et al. 2014; Wu et al. 2016), water shortage and pol-
lution (Liu et  al. 2007), UHI, and UDI due to the 
combined influences of climate change and land use 
change (Hao et  al. 2015, 2018). The present study 
represents our continuous efforts (Hao et  al. 2015, 
2018; Qin et al. 2019; Zheng et al. 2020; Fang et al. 
2020) to mechanistically quantify the environmen-
tal effects of climate and land use change from the 
energy balance perspectives. Our research water-
shed, the Qinhuai River Basin (QRB) in the YRD, 
is experiencing rapid climate warming, urbanization, 
industrialization, and population expansion (Gu et al. 
2011). We focused on spatial distributions of water-
energy coupling at the watershed level by integrating 
advanced techniques including eddy flux observa-
tions, remote sensing, and simulation using a widely 
used SEBAL model (Bastiaanssen et al. 2005).

Our guiding hypothesis was that the temporal 
effects of urbanization on energy balance varied in 
space across a large basin (QRB), and these spatial 
differences can be sufficiently identified by a spa-
tially explicit land surface energy balance model 
(SEBAL). The specific objectives of this study were 
to: (i) evaluate the SEBAL model to quantify the spa-
tial distribution of ET and surface heat fluxes during 
the growing season over the QRB; (ii) examine how 
urbanization over the past decades (2001–2019) has 
affected the ecohydrological characteristics and sur-
face heat fluxes of the QRB; and (iii) identify the 
‘hot spots’ of urbanization effects on the energy and 
water balances in a paddy field dominated watershed. 

Our goal was to provide better knowledge for urban 
planners and land managers to minimize the negative 
environmental effects of urbanization through water-
shed management.

Material and methods

Study area

This modeling study domain was the Qinhuai River 
Basin (QRB) with an area of 2,588  km2 encompass-
ing several emerging cities in Jiangsu Province, 
southern China (Fig.  1). Our previous watershed 
scale hydrologic research on the QRB during the 
past decade focused on overall streamflow response 
to urbanization and climate change (Hao et al. 2015; 
Zheng et  al. 2020; Fang et  al. 2020). As a typical 
paddy field-dominated river basin, QRB has expe-
rienced rapid urbanization in the past two decades 
amid the economic boom in the YRD region. The 
QRB climate is dominated by the East Asian sum-
mer monsoon climate with a hot and humid grow-
ing season for crops such as rice and vegetables. The 
multi-year (2003–2013) mean annual precipitation is 
about 1,134 mm and 70% of which falls from May to 
October (Hao et al. 2015). The mean annual air tem-
perature is about 15.6  °C and potential ET is about 
1,075  mm (Gu et  al. 2011; Hao et  al. 2015). In the 
past two decades, QRB has experienced global warm-
ing with mean air temperature increased at a rate of 
0.44  °C per decade (Hao et  al. 2015). During the 
same time, the urban area tripled with a decrease in 
paddy fields by one third (Hao et al. 2015; Fang et al. 
2020; Zheng et al. 2020). QRB has heterogenous land 
uses dominated by croplands (irrigated and non-irri-
gated) followed by urban uses and water bodies.

This study focuses on the growing season, which is 
locally defined as May–October when rice paddies are 
subjected to irrigation. The growing season showed 
the most pronounced contrast in surface energy bal-
ances between rice paddies and urban uses (Hao et al. 
2015). We used recent LUCC data (2013) to delineate 
rural, urban, and URI areas. In this study, we assumed 
that rural areas were likely be converted to other 
land cover type (for example, urban land) while the 
original urban areas remained to be relatively stable 
over the study period. We used urban development 
intensity (UI) to categorize the entire QRB into three 
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zones with different land uses. The UI was defined as 
the proportion of built-up land areas in each 1 × 1  km2 
grid cells that were scaled up from built-up land cover 
maps at a 30 m spatial resolution (Zhou et al. 2014; 
2016a, b). Consequently, these three distinct zones for 
our analysis included Urban, Urban–Rural Interface 
(URI), and Rural with UI > 0.5, 0.15 < UI < 0.5, and 
UI < 0.15, respectively (Fig. 1).

The SEBAL model

The SEBAL model is a one-source model developed 
from simplified land surface energy balance princi-
ples (Bastiaanssen et al. 1998a):

where LE is the latent heat flux (W   m−2); Rn is the 
net radiation flux (W   m−2); G is the soil heat flux 
(W  m−2); H is the sensible heat flux (W  m−2). Once 
instantaneous Rn, G, H are determined, LE and the 
ratio of LE/(Rn–G) or evaporative fraction can be 
derived. The modeling processes are illustrated in 

(1)LE = Rn − G − H

Fig. S1 and key algorithms are briefly presented 
below.

Net radiation flux (Rn) is calculated by the empiri-
cal formula:

where α α is the surface albedo which is calculated by 
an empirical formula with 6 bands in MOD09A1; Kin 
is the incoming short-wave radiation (W  m−2); Lin is 
the incoming long-wave radiation (W  m−2); Lout is the 
outgoing long-wave radiation (W  m−2); εa is the sur-
face thermal emissivity computed by the normalized 
difference vegetation index (NDVI).

Kin is calculated as:

Gsc is the solar constant (1367 W   m−2), � is the 
solar zenith which can be obtained from MOD09A1. 
dr is the solar-terrestrial distance factor. �sw is a func-
tion about elevation of basin.

Lin is calculated as:

(2)Rn = (1 − �)Kin +
(

Lin − Lout
)

− (1 − �a)Lin

(3)Kin = Gsccos�dr�sw

Fig. 1  Watershed locations and installations of meteorological 
station and eddy flux tower in Qinhuai River basin of south-
ern China. The insert maps showed the spatial distribution of 

Urban, Urban–Rural Interface (URI) and Rural area based on 
the urban development intensity (UI) gradient in 2013
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�0 is the atmospheric emissivity computed by the 
�sw . � is the Stefan–Boltzman constant (5.67 ×  108 
W   m−2   K−4). Ta is a function about mean air 
temperature.

And, Lout is calculated as:

Ts is land surface temperature (K) derived from 
remote sensing data. The Land Surface Temperature 
(LST) is the radiative skin temperature of the land 
surface, as measured in the direction of the remote 
sensor. LST is a mixture of vegetation and bare soil 
temperatures.

Soil heat flux (G) is estimated by the following 
empirical formula:

For water bodies, G is simplified as 0.41Rn –51 
(Burba et al., 1999) and G = 0.3Rn for built-up areas. 
More details about modeling Rn and G in SEBAL 
can be found in numerous literature (Bastiaanssen 
et  al. 1998a; Li and Zhao. 2010; Mkhwanazi et  al. 
2015). NDVI (Normalized Differential Vegetation 
Index) is derived from remote sensing data.

The SEBAL model requires two extreme crucial 
references representing the ‘hot’ and ‘cold’ pixels 
over a study area to model sensible heat flux (H) 
(Fig. S1). Based on NDVI, LST and land cover 
data, the cold pixel was selected in areas with well-
watered healthy crops or shallow water bodies and 
the hot pixel was selected in areas with bare field or 
an urban area (Bastiaanssen et  al. 2005; Lee et  al. 
2016). These two contrasting pixels were applied to 
compute the temperature difference (dT) between 
the two reference heights (Z1 and Z2), usually 0.1 m 
and 2  m. The SEBAL model assumes that dT is a 
linear function of Ts:

where a and b are the linear relationship constants 
which are defined by the two ‘anchor’ points where 
a value for H can be reliably estimated. Then, dT is 
used to compute H:

(4)Lin = �0�T
4

a

(5)Lout = �a�T
4

s

(6)

G

Rn

=
Ts − 273.15

�

(

0.0038� + 0.0074�2
)(

1 − 0.98NDVI4
)

(7)dT = aTs + b

where ρa is the air density (kg  m−3); Cp is the air spe-
cific at constant pressure (1004  J   kg−1   K−1); rah is 
the aerodynamic resistance to heat transport (s   m−1) 
which is calculated as:

in which K is the von Karman’s constant (0.41) and u* 
is the friction velocity (m  s−1) calculated by:

where Ux is the wind speed at a 200 m height com-
puted by the measured wind speed at the ground 
meteorological station; Z0m is the surface roughness 
length (m). The details in computing Ux and Z0m can 
be found in the previous literature (Yang et al. 2015; 
Bastiaanssen et al. 1998a; Li and Zhao 2010).

The SEBAL model adopted the Monin–Obukhov 
length (L) to examine the stability conditions of the 
atmosphere and then corrected the u* and rah with the 
stability correction factors ψm(200), ψh(Z2), and ψh(Z1). 
The three factors are calculated following Bastiaans-
sen et al. (1998a, b) and Yang et al. (2012). The cor-
rected u* and rah are used to recalculate H, in order 
to make rah stable (Bastiaanssen et al. 1998a, b; Yang 
et al. 2012).

The LE or ET estimated by a remote-sensing-
based model such as SEBAL represents an instanta-
neous energy flux. To estimate daily (denoted as  ETd) 
or longer period ET, the instantaneous LE or ET must 
be extrapolated temporally for a period of 24  h or 
more. In this study, we followed the evaporative frac-
tion method (Jackson et  al. 1981, 1983) to estimate 
 ETd assuming that the evaporative fraction (EF) (LE/
(Rn–G)) remained constant throughout a day (Crago 
1996). Therefore, we can calculate  ETd on the daily 
scale.

where, 86,400 is the number of seconds in a 24  h 
period, Rnd is daily net radiation flux (W  m−2) calcu-
lated by an empirical equation (Allen et al. 1998), Gd 

(8)H =
�aCpdT

rah

(9)rah =
1

u∗K
ln

(

Z2

Z1

)

(10)u∗ =
KUx

ln(
Zx

z0m
)

(11)ETd =
86400 × EF × (Rnd − Gd)

�
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is daily soil heat flux (W  m−2) and is negligible in a 
24 h period (Bastiaanssen et al. 2002, 2005), and λ is 
the latent heat of vaporization, 2.45 J  kg−1. EF can be 
calculated as:

Similar principle was used for estimating actual 
ET at a certain period. Du et al. (2013) suggests that 
the ratio of actual ET  (ETa) to FAO Grass Reference 
ET ( Rday = ETa∕ETo ) throughout a day is rather 
similar. Thus,  ETa determined at any time of the day 
by SEBAL can be conveniently scaled up to the daily 
(24 h) time scale using Rday and reference ET  (ETo). 
The reference ET  (ETo) was calculated by the FAO-
56 Penman–Monteith model (Allen et al. 1998) with 
meteorological data alone.

In this study, we calculated the total  ETa for a cer-
tain period assuming a constant Rday for that period 
(Du et al. 2013; Yang et al. 2012). The total  ETa for a 
certain period  (ETperiod) was computed as following:

ETperiod is the total ET in a certain period, n is the 
number of days in the period, generally 8–16 days in 
this study.  ETo_day is the daily  ETo in the period. Rday_s 
is the daily Rday in this period and Rday_s is estimated 
by linear interpolation using the start and end Rday 
values.

Remote sensing data

In this study, we used Terra MODIS remote sensing 
data to drive the SEBAL model. Data sets included 
8-day albedo (MOD09A1) at a spatial resolution 
of 500  m, 8-day NDVI (MOD09Q1) with a reso-
lution of 250-m and 8-day land surface tempera-
ture (MOD11A2) with a 1000  m resolution. Three 
MODIS products were downloaded from Land Pro-
cesses Distributed Active Archive Center (https:// 
lpdaac. usgs. gov/ data_ access/ data_ pool) and resam-
pled at a 250-m spatial resolution using the MODIS 
Reprojection Tool. The land use conversion maps 
with a 30-m spatial resolution were derived from the 
Landsat 7 ETM + image (2000–9-16) and Landsat 8 
OLI (Operational Land Imager) image (2013–8-11) 

(12)EF =
LE

Rn − G

(13)ETperiod =

day=n
∑

day=1

ETo_dayRday_s

(Fig.  2b, c) provided by USGS Earth Explorer 
(https:// earth explo rer. usgs. gov/). The daily meteoro-
logical data for the study area were provided by the 
China Meteorological Data Sharing Service System 
(http:// data. cma. cn/ en). The daily meteorological data 
during 2001 to 2019 from 137 standard weather sta-
tions (http:// data. cma. cn/) in or around the QRB were 
interpolated to 250  m for running SEBAL model. 
Necessary variables included wind speed (m/s), rela-
tive humidity (%), sunshine duration (h), maximum 
and minimum temperature  (Tmax and  Tmin, °C), and 
air pressure (hPa).

Eddy covariance measurements of energy and water 
fluxes for model validation

An eddy covariance measurement system was 
installed to monitor the surface heat and water fluxes 
at a rice paddy site managed by the Lishui Plant 
Research Station of Jiangsu Academy of Agricul-
tural Science (31°36′N, 119°12′E). The system was 
equipped with CNR4 (Kipp and Zoneb, Nether-
lands), CAST 3 (Campbell Scientific, USA), LI-7500 
(LI-COR, USA). Measured Rn, LE (i.e., ET), and H 
during 2016 – 2018 were used to evaluate the per-
formance of the SEBAL model. The SEBAL results 
were spatial averaged across 3 × 3 paddy field pixels 
in QRB compared with Lishui flux tower in growing 
season.

The 30-min eddy covariance energy flux data were 
processed with the EddyPro software (Fratini and 
Mauder 2014). The linear regression of least square 
and energy residual methods were used to evaluate 
the energy balance closure and quality of flux data 
for the rice growing season (Verma et al. 1986). The 
slope of the fitting line of the 2018 observation data 
is 0.52, the intercept is 27 W   m−2, and the determi-
nation coefficient  R2 is 0.82 (Fig. S2a). The energy 
residual D indicates energy balance closure. The 
average daily change range D is –56 ~ 219 W   m−2, 
with the average value of 38.6 W  m−2 (Fig. S2b). The 
D value during night is negative with little fluctua-
tion, while D value at day time is positive with great 
fluctuations. At sunrise and sunset, the D value is the 
smallest while the maximum value of D occurred in 
middle day. These energy flux and balance measure-
ment statistics of  R2 and regression slops for energy 
closure were comparable to that in Liu et  al. (2017) 
who conducted a similar study for paddy fields in the 

https://lpdaac.usgs.gov/data_access/data_pool
https://lpdaac.usgs.gov/data_access/data_pool
https://earthexplorer.usgs.gov/
http://data.cma.cn/en
http://data.cma.cn/
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same region. The low  R2 at a 30-min time scale was 
mainly due to 1) the complex underlying surface of 
paddy field where unaccounted surface water and soil 
heat storage change can be an important component, 
and 2) inherent measurement errors of the eddy flux 
system and equipment for measuring net radiation.

Remote sensing-based estimates of ET for model 
validation

For validating the SEBAL model, in addition to use 
site-level eddy flux measurements, we also used two 
remote sensing ET products at the watershed level. 
The improved MOD16 data sets provide consistent 
estimates of global actual ET at an 8-day and 1-km2 
resolution (Mu et al. 2011). Actual evapotranspiration 
(ET) at monthly and 1-km2 resolution data based on 
the Operational Simplified Surface Energy Balance 
(SSEBop) model (Senay et  al. 2013) was also used 

to validate the SEBAL model and identify ET trend 
from 2003 to 2019. The SSEBop dataset includes 
ET estimates over urban areas in contrast to the raw 
MODIS ET products (i.e., MOD16A2) that exclude 
urban areas (Mazrooei et  al. 2021). SSEBop ET 
results compared reasonably well with monthly eddy 
covariance ET data explaining 64% of the observed 
variability across diverse ecosystems in the CONUS, 
which suggested that this dataset is reliable for con-
tinental studies and applications (Senay et al. 2013).

Land use change across the watershed

Land uses changed dramatically within the QRB dur-
ing the study period 2000–2013 (Fig. 2a). The area of 
Paddy Rice Field was 1092  km2 (42.2% of the whole 
basin) in 2000 and decreased by 21.1% to 861  km2 
(33.2% of the whole basin) in 2013. The Paddy Rice 
Field had the largest relative reduction mainly due to 

Fig. 2  a The Circos image (created at http:// mkweb. bcgsc. ca/ 
table viewer/ visua lize/ (Krzywinski et  al. 2009)) presents the 
area of LUCC conversion in Qinhuai River Basin. Land use 

conversion patterns based on b paddy rice fields, and c built-up 
lands from 2000 to 2013. The spatial resolution is 30 m

http://mkweb.bcgsc.ca/tableviewer/visualize/
http://mkweb.bcgsc.ca/tableviewer/visualize/
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conversion to Built-up and Other Agricultural Land 
(217  km2) (Fig.  2c, b). The Built-up land was 245 
 km2 (9.5% of the whole basin) in 2000 and increased 
by 156% to 627  km2 (24.2% of the whole basin) in 
2013. The Built-up land was mainly converted from 
Paddy Rice Field (216  km2) and the Other Agricul-
tural Land (192  km2) (Fig.  2a, c). The conversion 
from Rice Field to the Other Agricultural Land mod-
erated the reduction of the Other Agricultural Land 
(Fig.  2). Additionally, conversions from vegetated 
covers to the Built-up land mostly occurred within the 
URI area (Fig. 1).

Results

Model validation

We used the measured  ETa in three years, 2017, 2018 
and 2019, to assess SEBAL performance at a daily 
scale. There were significant correlations (p < 0.05) 
between the simulated and measured  ETa  (R2 = 0.84) 
(Fig. 3). The mean relative error of the simulated  ETa 
was 17.7% (Fig.  3). Overall, across the QRB, mod-
eled  ETa by the SEBAL model was 16.2% higher than 
that MOD16 ET during the rice-growing season at 
the basin scale from 2003–2019. Annually (growing 
season only), the average absolute mean difference 
was 72.9  mm (Fig. S3). This difference was likely 
caused by the fact that MOD16 ET products do not 
include built-up areas (Fig. S4a, b) such as urban 
centers, e.g., the cities of Nanjing, Jiangning, Lishui 
and Jurong (Fig.  1). We also compared the SEBAL 
 ETa with SSEBop  ETa products. The result presents 
better between these two actual ET products. The 
average absolute mean difference was 31.1 mm (Fig. 
S3) and SEBAL  ETa was higher than SSEBop  ETa 
(about 6.8%).

Surface heat fluxes by land cover type

In the growing season, there were large differences 
among the surface energy fluxes among land use 
types (Fig.  4). The spatially averaged Rn was about 
609.1 W  m−2 over QRB with the highest value found 
in Woodlands (619 W  m−2) (Fig. 4a). The lowest Rn 
was found in the Built-up Land and Other Agricul-
tural Land with the values of 599.9 and 607.5 W  m−2, 
respectively (Fig.  4a). The spatial averaged H was 

234.8  W   m−2 in this basin and the highest H was 
found over the Built-up Land with the mean value 
of 294.9  W   m−2 (Fig.  4b). It was much higher than 
that over the other land use types with the values 
between 168.8 W  m−2 (Woodland) and 217.1 W  m−2 
(Other Agricultural Land) (Fig.  4b). In contrast, LE 
was the lowest (225.7 W   m−2) in the Built-up Land 
(Fig.  4c). For the other land use types, LE ranged 
from 300 (Paddy field Land) to 385.9 W  m−2 (Wood-
land) (Fig. 4c). The spatially averaged soil heat flux G 
was about 75.3 W  m−2 which was the smallest among 
all the surface heat fluxes. The order of the soil 
heat fluxes G in different land use types was: Built-
up Land > Paddy Rice Field > Other Agricultural 
Land > Woodland, with the values of 82.1, 75.4, 73.1 
and 62.9 W  m−2, respectively (Fig. 4d).

Changes of energy balances

Spatial and temporal trends of surface heat fluxes 
and energy balances

The growing season Rn had a decreasing trend in URI 
but was stable in most of the Urban and Rural areas 
during 2001–2019 (Fig.  5a). The sensible heat flux 
(H) had an increasing trend over the URI area and 

Fig. 3  Comparisons of daily actual evapotranspiration  (ETa) 
between SEBAL estimated and eddy covariance flux measured 
in Lishui Station (location see Fig. 1) in the growing seasons 
(May–October) from 2017 to 2019
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a decreasing trend in the areas around basin’s edges 
(Fig. 5b). In contrast, the latent heat flux (LE) exhib-
ited an increasing trend over the areas in which the H 
decreased. The growing season LE decreased over the 
URI area (Fig. 5c). As mentioned above, the soil heat 
flux G increased over most areas (Fig. 5d).

The spatial mean Rn significantly decreased 
(p < 0.05) in the URI area at a rate of 
− 1.38 W   m−2   yr−1. For the Urban and Rural areas, 
the spatially averaged Rn decreased by lower slopes 
of − 0.93 and − 0.8 W  m−2   yr−1. All these changes 
led to the decreased Rn (− 0.9 W  m−2  yr−1, p < 0.05) 
at the basin scale (Fig. 6a). The spatial mean H dis-
played positive trends and negative trends over the 
Urban and Rural areas with a rate of 2.1 and −  1 
W  m−2   yr−1, respectively, while it increased by 3.71 
and 0.2 W  m−2  yr−1 over the URI area (p < 0.05) and 
the whole basin (Fig. 6b). Similar to Rn, a decreasing 
trend (p < 0.05) of spatially averaged LE was found 
over the URI area at a rate of − 5.82 W  m−2  yr−1 dur-
ing 2001–2019. Less decrease over Urban area and 
Basin were also found to be − 3.31 W  m−2  yr−1 and 

− 1.94 W  m−2  yr−1 (Fig. 6c). It was noticed that the 
spatially averaged soil heat flux (G) in the rural area, 
URI area, Urban area and the whole basin all showed 
increasing trends (p < 0.05), with a rate of 0.34, 0.85, 
0.83 and 0.49 W  m−2  yr−1, respectively. (Fig. 6d).

The mean Bowen Ratio (BR) (H/LE) at the water-
shed level showed a significant positive trend over 
the URI area. However, BR had little change in most 
Rural areas (Fig.  5e). Correspondingly, the spatially 
averaged BR over URI and Urban area had increas-
ing trend (p < 0.05) with the slope of 0.11   yr−1 and 
0.14   yr−1. The spatial averaged BR over Urban area 
increased (p < 0.05) with a slope of 0.04   yr−1. There 
was slightly change in averaged BR at the basin scale 
(Fig. 6e).

Changes of energy flux relative to  Rn

During 2001–2019, the proportion LE to Rn (LE/Rn) in 
the growing season ranged from 51.5% (2001–2003) 
to 48.7% (2017–2019) over QRB with a decrease 
rate of −  0.21%   yr−1. In contrast, H/Rn at the basin 

Fig. 4  Comparisons of a net radiation flux Rn, b sensible 
heat flux H, c latent heat flux LE, and d soil heat flux G for 
the growing season over different land covers (2014) in Qin-

huai River basin. The reason for choosing 2014 is that in 2014, 
the available remote sensing data is the most reliable without 
cloud interference
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level increase at a rate of 0.11%  yr−1. H accounted for 
the second largest proportion of Rn and ranged from 
36.7% (2001–2003) to 37.5% (2017–2019) (Fig.  7). 
The soil heat flux G accounted for the smallest pro-
portion of the Rn (11.2–14.9%) and increased by 
0.1%  yr−1 over QRB (Fig. 7). From the perspective of 
basin scale energy balance, the decreased LE, which 
was dominated by the decline of LE in the URI area, 
resulted in an upward trend in H and G at the basin 
scale, and the rising rate of H is much higher than G.

Spatial and temporal trends of  ETa in three land use 
zones

Because that 2002 and 2014 had the most reliable 
cloud-free satellite imageries than other years, we 
examined the change in spatial distribution of  ETa in 
the growing season for these two years (Fig. 8). The 
highest  ETa (> 600 mm) was found in the Rural area 
that was dominated by Woodland, Other Agricultural 

Land, and Paddy Rice Field with months of irriga-
tion. The lowest  ETa was found over Urban area 
(< 340 mm). The  ETa rates in the URI area surround-
ing the Urban area were intermediate. Due to the 
rapid expansion of Build-up Land in our study period 
(Fig. 2), the area with low  ETa (< 340 mm) in 2014 
was much larger than that in 2002.

The URI area showed a decreasing trend in  ETa 
during 2001–2019 while most of the Urban area 
showed an increasing trend.  ETa was stable over most 
Rural Zone except for the southeastern of the basin 
where  ETa showed an increasing trend (Fig. 5f). On 
average,  ETa in the URI Zone had a significantly 
decreasing trend (p < 0.05) with a rate − 9.4 mm  yr−1 
(Fig.  6f). Totally,  ETa decreased from 510  mm in 
2001 to 340.8 mm in 2019. In addition, spatial aver-
aged  ETa of Urban Zone showed a decreasing trend 
with the slope of −  6.2  mm   yr−1 during the period 
of 2001–2019 (Fig.  6f). The Rural Zone had a 
slightly decreasing rate of spatially averaged  ETa 

Fig. 5  The spatial distribution of modeled trends of a net radi-
ation flux (Rn), b sensible heat flux (H), c latent heat flux (LE), 
d soil heat flux (G), e Bowen ratio (BR), and f actual evapo-

transpiration  (ETa) for the growing season in Qinhuai River 
basin from 2001 to 2019.The Urban and Urban–Rural Interface 
outlines were delineated using 2013 land cover data
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(−  1.7  mm   yr−1) over the Rural area. For the entire 
basin as a whole, a significant  ETa decreasing trend 
(− 3.7 mm  yr−1, p < 0.05) was mainly caused by the 
sharp decrease in  ETa in URI area and decreasing 
trend in the Urban Zone (Fig. 6f).

We also calculated the proportion of annual  ETa 
of three zones to the total annual  ETa in the whole 
basin respectively to estimate its actual impacts in an 
absolute term from the changes in URI at the basin 
scale (see Fig. S3 in Supplementary Information). We 
found that the proportion of  ETa in URI to the total 

Fig. 6  Variations of the spatial averaged a net radiation flux 
(Rn), b sensible heat flux (H), c latent heat flux (LE), d soil 
heat flux (G), e Bowen ratio (BR), and f actual evapotranspi-
ration  (ETa) for the growing season over Urban area, Urban–

Rural Interface (URI) area, Rural area and the whole Qinhuai 
River basin from 2001 to 2019. The linear fitted trends are pre-
sented for the growing season actual evapotranspiration  (ETa)
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 ETa in the whole basin was decreasing most from 
2001 to 2019. This result supports our conclusion 
again that the change in energy partitioning at the 
watershed scale was dominated by URI area.

Influences of meteorological factors on  ETa 
under urbanization

To tease out the meteorological effects as represented 
by  ETo on  ETa and to examine the effects of land 
cover change alone, we randomly selected 200 sam-
ple points in the paddy rice fields that did not change 
over time and areas that converted to urban built-up 

from paddies during 2001–2019 (Fig.  9). The  ETo 
increased at a rate of 0.3  mm   yr−1, presumably due 
to climate warming (Qin et al. 2019; Hao et al. 2015). 
Similarly,  ETa for the selected paddy rice fields 
showed an upward trend while the rising rate of  ETo 
was 2.9 mm  yr−1. However, areas where paddy fields 
were converted to build-ups,  ETa had a decrease rate 
of − 4.6 mm  yr−1.

In general, regional annual ET is controlled by 
 ETo, precipitation, and land surface conditions (Sun 
et al. 2005; Xiang et al. 2020). A decrease in  ETa is 
normally caused by a decrease in precipitation and/
or  ETo. Our data suggested that the decrease in  ETa 

Fig. 7  The mean propor-
tions of each surface heat 
fluxes of the net radiation 
flux (Rn) over the Qinhuai 
River basin from 2001 to 
2019

Fig. 8  The spatial distribution of SEBAL estimated actual evapotranspiration  (ETa) for the growing season in Qinhuai River basin in 
a 2002 and b 2014. The Urban and Urban–Rural Interface outlines were delineated using 2013 land cover data
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in URI and Urban areas was not caused by  ETo or 
precipitation because the  ETo had an increased trend 
while overall precipitation did not change signifi-
cantly (Hao et al. 2015; Zheng et al. 2020).

Discussion

Terrestrial ET variations are often a result of com-
bined effects of climate change and land cover change 
(Yang et al. 2016). Using the distributed energy bal-
ance model and long-term meteorological data, we 
showed that  ETa changed both spatially and tempo-
rally as a result of the combined effects of urbaniza-
tion and climate change and variability in a water-
shed dominated by a humid climate. The overall 
decrease in watershed-level  ETa was dominated by 
the decrease in  ETa in URI. Apparently, the effects of 
land use change overwhelmed that of climate change 
in the study basin as indicated by the  ETa and  ETo 
trend analysis (Fig. 9). Our results indicated that cli-
mate warming increased the potential ET and actual 
ET for areas not affected by urbanization. However, 
the reduction of paddy field area led to the overall 
reduction of ET despite the rise in potential ET at a 
watershed scale.

Spatially explicit mapping of energy and water 
fluxes allowed us to pin down the ‘hot spots’ of envi-
ronmental change, and most importantly, the domi-
nant causes behind the energy and water balance 
changes. Previous ‘Black Box’ studies mostly focused 

on climate or land use change alone and thus could 
not tease out the hydrological effects of LUCC from 
climate change (Zhan et  al. 2005; Gao et  al. 2017; 
Yang et al. 2012; Zhang et al. 2017a). Similarly, pre-
vious remote sensing-based studies often had a short 
period with little land-use change and thus could 
not detect large changes in ET trend at the water-
shed level (Li et al. 2010; Sun et al. 2011b; Du et al. 
2013; Yang et al. 2015; Lee et al. 2016). In contrast, 
QRB has gone through both climate change and rapid 
urbanization (Gu et al. 2011) during the study period 
and thus offered a unique opportunity to examine the 
separate effect of climate change and land use change 
on ET and energy fluxes.

Spatial variations of trend of ETa within a watershed

This study showed that the temporal trend of  ETa var-
ied across space. This variable trend among Urban, 
Urban–Rural Interface, and Rural zones was a com-
bined result of climate change and land use change in 
this heterogeneous watershed. In the Urban area and 
whole basin of QRB, the negative trends of ET during 
2001–2019 (Fig. 6f) were consistent with the findings 
in eastern China such as middle part of the Yangtze 
River Basin where urbanization caused ‘browning’ 
and impacts on physical properties and ecohydrologi-
cal processes at the land surfaces (Zhan et  al. 2005; 
Gao et al. 2007; Yang et al. 2012; Zhang et al. 2017a).

We also noticed an increase trend with ET in 
southeastern part of QRB (Fig.  5). This area was 

Fig. 9  Reference evapo-
transpiration  ETo and actual 
evapotranspiration  ETa in 
two types of rice paddy 
fields that experienced dif-
ferent land cover changes 
in Qinhuai River basin 
(2001–2019). Only the 
converted rice paddy field 
areas showed a significant 
decreasing trend in  ETa
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dominated by dry land, paddy field land and forest 
land and less impacted by urbanization. The rise of 
ET was likely due to the accelerated global warm-
ing and increase in atmospheric water demand (Qin 
et al. 2019). For humid regions in southern China, the 
increased temperature and wind speed are responsi-
ble for the positive trend of ET (Zhang et al. 2017b). 
Additionally,  ETo was also considered to be a fac-
tor which produced the major impact on controlling 
the variation of ET over irrigated areas (Yang et  al. 
2012).

In contrast, the sharp decline of ET over URI area 
found in this study was consistent with our previous 
watershed-level, empirical and modeling hydrological 
water balance studies in QRB (Hao et al. 2015; Fang 
et  al. 2020; Zheng et  al. 2020). Decrease trends in 
ET were found in rapid urbanization regions such as 
the North Plain areas around Beijing (Li et al. 2013), 
Haihe River basin of Beijing-Tianjin-Hebei Region 
(Gao et al. 2012), and the most areas of the populous 
eastern and southern China (Gao et al. 2007; Zhang 
et al. 2017a).

Variations of surface heat fluxes explained ETa 
response to land use change and climate change

Quantifying the response of energy fluxes to urbani-
zation helps understanding the hydrological feed-
backs on the rapid expansion of built-up land areas 
(Yang et al. 2017; Li et al. 2017). For this study, the 
changes in  ETa were closely coupled with change in 
energy fluxes (i.e., Rn, H).

Among the three land use zones, URI showed the 
most decrease in Rn (Fig.  6a). This result is gener-
ally consistent with previous urbanization studies in 
three megacities in eastern China (Zhang et al. 2004), 
the Yangtze River basin in southern China (Xu et al. 
2006) and the Jinghe River basin in northern China 
(Wang et  al. 2012b). Our results support the notion 
that urbanization reduces Rn through altering land 
surface albedo and LST (Bastiaanssen et  al. 1998a, 
b; Du et al. 2013; Zhou et al. 2016a). The significant 
increase in albedo and LST due to rapid urbanization 
(Li et al. 2011; Zhou et al. 2016a) would lead to an 
increase in outgoing short-wave and long-wave radia-
tion, followed by a reduction in Rn at the basin scale. 
The decrease in Rn at the basin scale contributed to 
the decrease trend of LE. The growing season sen-
sible heat flux H showed an upward trend over the 

URI and Urban areas during 2001–2019. (Fig.  6b). 
Besides, H showed an increasing trend at the whole 
basin scale in QRB (Fig. 6b). Our results are similar 
to those findings in central and southwestern China 
(Li et al. 2014; Li and Ma 2015). Wang et al. (2013) 
suggested that the variation of H was negatively cor-
related with air temperature and positively correlated 
with wind speed and LST. Land air temperature dif-
ference was also considered to be an important factor 
in variation of H (Huang et al. 2017). Therefore, we 
hypothesized that converting the vegetated surfaces 
into built-up lands within the URI area would cause 
an increase in LST and an increase in H in URI area. 
This further led to the increased H at the basin scale. 
Consequently, the decrease of LE in URI and Urban 
area is the main reason that led to the decreased LE at 
the basin scale in QRB (Fig. 6c). It is worth mention-
ing that the LE and H variation in Rural areas showed 
a slight trend as these areas were mostly affected by 
climate alone. The Rural zone might have contributed 
to mitigating ‘urban heat islands’ in URI and Urban 
Zone (Yan and Zhou 2023).

Soil heat flux (G) is an important component of 
surface energy balance and meteorological modeling 
(Hsieh et  al. 2009). However, compared with the 
other three surface heat fluxes (Rn, LE, H), few stud-
ies have examined the long-term dynamics of soil 
heat flux under environmental change in southern 
China. In this study, the mean watershed-level soil 
heat flux in the growing season showed a significantly 
increasing trend in all three different land use zones 
with most pronounced in URI area (Fig.  6d). The 
increase in soil heat flux in URI was mainly caused 
by the increased LST (Bastiaanssen et al. 1998a, b), 
and the decreased NDVI, both of which were induced 
by rapid urbanization.

Comparison of multiple ET estimation methods

In this study, we used multiple methods to constrain 
the estimates of ET distribution in time and space. 
We compared several ET products derived with dif-
ferent algorithms, such as Penman–Monteith-based 
model (MOD16), surface energy balance-based 
model (SSEBop, SEBAL). We found that there were 
large uncertainties of global ET products used for 
watershed scale ET estimation.

In lieu of spatial measured ET data, we used 
MOD16 ET and SSEBop products to verify SEBAL 
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model. However, such remote sensing-based ET data 
may have uncertainties. For example, Jiang et  al. 
(2017) found that MOD16 ET underestimated ET 
by more than 20  mm per month with bigger errors 
in watersheds with high ET rate in China. Feng et al. 
(2012) also found that MOD16 ET rates were rather 
low in the arid area of the Loess Plateau in China. 
The modeled SEBAL ET rate in this study was 16% 
higher than that of MOD16 ET (Fig S4). Thus, we 
believe that MOD16 ET products also underestimated 
actual ET in QRB where growing season ET was the 
main component of water balance in this humid area.

Thus, based on our study and the literature, we 
argue that the underestimation of MOD16 ET and 
SSEBop might be caused by the following reasons: 
i) the resolution (1  km2) of meteorological reanalysis 
data used in MOD16 and SSEBop is too coarse for 
the local watershed level analysis, such as the QRB 
in this study; ii) the mixed pixels including vegetation 
and impervious surface lead to the underestimation of 
ET due to the low resolution of vegetation data. ET 
estimates may involve large errors for mixed pixels 
with different land use types, especially for the QRB 
with highly fragmented land due to rapid urbaniza-
tion (Fig S5); and iii) simplification and assumption 
in product parameterization schemes may also lead 
to errors. For example, one single parameter value 
for temperature and vapor pressure deficit was used 
globally in MOD16 to determine stomata closure 
for grassland. Such treatments may not be appropri-
ate for modeling ET in humid areas (He and Shao 
2014; Jiang et al. 2017; Wu G. et al. 2013). In sum-
mary, these deficiencies suggest that MOD16 ET 
products are not suitable for assessing the actual ET 
in highly urbanized watersheds. Although the SSE-
Bop ET results compared reasonably well with the 
raw MODIS ET product (i.e., MOD16A2) (Fig S5), 
its low resolution still limits its application in small-
scale (such as watershed scale) urbanization analysis.

Compared with MOD16 ET and SSEBop, our ET 
estimates using the SEBAL model covers all areas 
with or without vegetation and thus are more accurate 
at a watershed level. In addition, our ET estimates 
also have a higher resolution (250 m by this study vs 
1000  m by MOD16 ET and SSEBop), which better 
represents the ET characteristics with different land 
covers. We argue that, compared with global large-
scale ET products, energy balance models might be 
most reliable in estimating ET in urban areas when 

properly parameterized. Our study suggests that only 
comprehensive use of high-precision ground observa-
tion data, land use data and meteorological data can 
accurately estimate ET in urban areas. However, the 
eddy flux network and ET measurements for unban 
conditions are sparse and we have limited knowl-
edge of energy balance in urban areas (Lipson, et al., 
2022).

Uncertainties of the SEBAL model

The main uncertainty of SEBAL model comes 
from remote sensing input data and the accuracy of 
retrieved land surface variables (Li et al. 2009). The 
remote sensing imageries are instantaneous one-shot 
of the Earth surface and were mostly useful dur-
ing clear-sky days. The potential issues related to 
the 8-day MODIS products provided by NASA LP-
DACC and their influences on the accuracy of simu-
lations should not be ignored in spite large progress 
has been made in improving remote sensing products 
(Li et al. 2009).

Another uncertainty in SEBAL model is the 
empirical formulations for estimating soil heat flux 
(G) using a fixed coefficient (i.e., a proportion of net 
radiation). The uncertainty may be particularly large 
when calculating G over water bodies and built-up 
land. Future work should focus on improving the land 
surface parameters required by SEBAL model. The 
present study explored new multiple criteria to select 
hot and cold pixels that are critical for estimating H 
(Long et al. 2011) by integrating land surface temper-
ature, land use characteristics, and NDVI. However, 
when determining extreme pixels, the errors may still 
exist and may affect the model accuracy.

To our knowledge, this study represents the first 
time that SEBAL model was applied in a river basin 
that have experienced long-term rapid urbanization 
and climate change in the humid southern China. 
Future field studies need to further validate the energy 
balances for all land uses (e.g., flux measurements 
across urbanization gradient) and improve the repre-
sentations of ecohydrological processes (e.g., surface 
and subsurface energy and water transport).
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Conclusions

This research quantified spatial patterns of ET and 
other energy fluxes in a rapidly urbanized water-
shed with complex land uses. We parameterized 
the energy balance model SEBAL to explicitly 
explore the long-term (19  years) dynamic connec-
tions between land use change and energy and water 
balance change at the watershed level. This remote 
sensing-based modeling study found that the Qin-
huai River Basin in southern China experienced 
rapid land use change in urban–rural interface 
(URI) area, resulting in a significant reduction in 
evapotranspiration but an increase in sensible heat 
and soil heat fluxes during the growing season from 
2001 to 2019. The change in energy partitioning at 
the watershed scale was dominated by URI area. 
Our study suggests that URI area is the ‘hot spots’ 
of ecohydrological change within a heterogeneous 
basin. The rapid change in energy and water balance 
in URI area is likely to bring a series of chain reac-
tions in environmental changes, such as the increase 
in storm runoff, non-point source water pollution, 
and UHI and UDI as identified in our previous stud-
ies in this basin.

The new process-based understanding reported 
in this study helps properly parameterize regional 
climate and ecohydrological models to guide urban 
planning. Effective watershed management should 
target urban–rural interface areas to mitigate the 
negative impacts of urbanization on both air and 
water. These management measures may include 
minimizing vegetation removal, enhancing urban 
forestry, wetland conservation and restoration, and 
other ‘Nature-based Solutions’ that maximize ET, 
atmospheric cooling, and urban runoff retention.
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