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Abstract: Wildfire occurrences have increased and are projected to continue increasing globally.
Strategic, evidence-based planning with diverse stakeholders, making use of diverse ecological and
social data, is crucial for confronting and mitigating the associated risks. Prescribed fire, when
planned and executed carefully, is a key management tool in this effort. Assessing where prescribed
fire can be a particularly effective forest management tool can help prioritize efforts, reduce wildfire
risk, and support fire-resilient lands and communities. We collaborated with expert stakeholders to
develop a Bayesian network model that integrated a large variety of biophysical, socioecological, and
socioeconomic spatial information for the Southeastern United States to quantify where risk is high
and where prescribed fire would be efficient in mitigating risk. The model first estimated wildfire risk
based on landscape-scale interactions among the likelihoods of fire occurrence and severity and the
people and resources potentially exposed—accounting for socioeconomic vulnerabilities as well as
key ecosystem services. The model then quantified the potential for risk reduction through prescribed
fire, given the existing fuel load, climate, and other landscape conditions. The resulting expected
risk estimates show high risk concentrated in the coastal plain and interior highland subregions of
the Southern US, but there was considerable variation among risks to different ecosystem services
and populations, including potential exposure to smoke emissions. The capacity to reduce risk
through fuel reductions was spatially correlated with risk; where these diverged, the difference was
largely explained by fuel load. We suggest that both risk and the capacity for risk reduction are
important in identifying priorities for management interventions. The model serves as a decision
support tool for stakeholders to coordinate large-landscape adaptive management initiatives in the
Southern US. The model is flexible with regard to both empirical and expert-driven parameterizations
and can be updated as new knowledge and data emerge. The resulting spatial information can
help connect active management options to forest management goals and make management more
efficient through targeted investments in priority landscapes.

Keywords: adaptive management; Bayesian network model; prescribed fire; risk; spatial assessment;
spatial planning

1. Introduction

The nature of fire and its impacts in forest landscapes have undergone change during
recent decades due to multiple interacting factors, including the accumulation of fuels from
decades of fire suppression, a changing climate with more drought and rising temperatures,
and rapid population growth along the wildland urban interface (WUI) [1–3]. Fire is an
intrinsic part of most forest landscapes and is important for maintaining ecological diversity
and function [4], but wildfires also pose increasing threats to people and resources and can
be socially and economically catastrophic. Wildfires cause human fatalities, impose health
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and safety risks from smoke exposure, damage structures and property, and disrupt eco-
nomic activities [5]. Wildfire also carries negative consequences for some forest ecosystem
services. Increased runoff and erosion from severely burned areas can affect the quality
and quantity of water supplies from forest land. Wildfires also release carbon stored in
forest biomass to the atmosphere, contributing to greenhouse gas concentrations.

Strategic, evidence-based planning with diverse stakeholders will be crucial for con-
fronting the ongoing wildfire crisis [2]. Managing wildfire risk is highly complex and
subject to uncertainties, requiring information on where fires are likely to occur, the inten-
sity at which they might occur, and the impacts they may have on vulnerable people and
resources, at a minimum [6]. Quantitative wildfire risk assessments provide an integrated
picture of the various social and ecological landscape conditions that influence the potential
for hazardous fires and the possible social and ecological consequences if one occurs [7–10].
They support strategic planning for risk reduction by providing information, even when
strong uncertainties exist, about where management interventions are most needed and
what their likely outcomes would be [11].

Scenario-based risk assessment can be used to evaluate how wildfire risk may change
in response to alternative management scenarios. This approach can serve as an important
decision support tool for implementing cost-effective risk mitigation measures, such as
planning for prescribed fire management decisions under uncertainty [11]. Prescribed
fires are controlled applications of fire used to reduce woody and herbaceous fuels and
suppress the potential for wildfires with far greater hazard potential. Prescribed fire is
now widely used as a management tool to achieve the social, economic, and ecological
benefits of fire while reducing the risks associated with uncontrolled wildfires [12–15].
Wildfires that burn in areas where prescribed fire has been used to suppress fuels can
have lower intensities and extents, cause less damage, and be easier to control [16–19].
In WUI landscapes, prescribed fire can provide a buffer against wildfires and help create
open spaces that allow for increased flexibility in wildfire management [18,20]. Assessing
landscape conditions to understand where prescribed fire can be a particularly effective
forest management tool can aid strategic planning to manage risk and support fire-resilient
lands and communities.

Bayesian network (BN) models are used for problem solving in a wide range of disci-
plines, including natural resource management and policy, particularly where the focus is
on the interface between science and management [21,22]. BN models have been used in
wildfire management research, including efforts to model wildfire behavior and its drivers,
the response of vegetation to fire, and the impacts of wildfires on people and ecological
resources [23–27]. A BN model is a graphical structure that defines causal probabilistic
relationships among variables within a system [28]. The use of BNs as a modeling tool
in resource management decision making has been important for (i) integrating infor-
mation about a system through combinations of empirical data and expert knowledge,
(ii) graphically representing complex relationships and decision problems, (iii) addressing
uncertainties in a structured way, (iv) allowing for the flexibility to adjust to new/missing
data, and (v) fostering communication with a variety of audiences or project participants,
including both expert and non-expert stakeholders [21,29,30].

These qualities make BN models ideal for risk analyses in complex environmental
systems such as wildfires. Their capacity to quantify the possible outcomes of different
management decisions probabilistically provides a robust way to assess options for risk
reduction such as the application of prescribed fire and other fuel reduction methods. To
date, BN models have rarely addressed spatial variability in the multiple socioeconomic and
biophysical characteristics that influence wildfire risk [25]. Spatial information is crucial to
inform risk management efforts, including targeting landscapes where enhanced active
management investments are most needed and can be most effective [31,32]. Addressing
the spatial dimension in a BN modeling framework can integrate the assessment of both
where to focus active management and why from a data-driven, socioecological perspective.
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We collaborated with regional fire management experts to develop a BN model that
integrated spatial data to estimate wildfire risk for forests across the Southeastern United
States and evaluate the role that prescribed fire can play in managing risk. The Southeastern
US serves as a model region for the widespread use of prescribed fire to manage wildfire
risks and forest ecological conditions [14,33]. Enhanced investments in risk management,
including active management to reduce fuels in forest landscapes, will be required to
confront growing risks. In particular, it is likely that the importance of prescribed fire for
building resilience to wildfire will only increase, even as a changing climate and growing
populations present increasing constraints on its use [3].

The main objective of this study was to produce spatial information to inform where
management interventions, such as prescribed fire to reduce fuel loads, can most efficiently
reduce risks associated with wildfire. Our model is tailored for analyses at large landscape
scales to aid regional planning, recognizing that at more local scales, additional consider-
ations not accounted for in our model are required for effective ecosystem management.
In this sense, the model serves as a decision support tool for stakeholders to understand
regional variability and coordinate large-landscape initiatives. We expect that the model
will be updated as new social and ecological data inputs become available, as understand-
ings of the drivers of risk and the impacts of management responses are advanced, and as
landscape conditions change over time.

2. Materials and Methods

Figure 1 shows the conceptual model for this study. It consists of three major compo-
nents: (i) expert elicitation; (ii) model development; and (iii) spatial application. Expert
elicitation facilitated data aggregation and synthesis, model building, and an analysis plan
for wildfire risk assessment. Working with expert participants, we developed a BN model
structure to provide probabilistic estimates of risk, based primarily on the mental models
of experts and literature review. We then fed the model spatial data, quantifying variables
in the resulting model, and generated probabilistic spatial outputs for all landscapes in the
study area. Experts provided feedback on the plausibility of the model’s parameterizations
and provisional spatial outputs at multiple stages of the model’s development [34].
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ecological characteristics, which, taken together, are important for understanding how fire 
and its associated risks operate as a human–environment system [38,39]. As such, 
firescapes provide a broad-scale context for considering risk and appropriate risk man-
agement strategies in different landscapes. We did not use the firescape classification di-
rectly in the present risk analysis, but to further characterize the firescapes and describe 
the geography of risk in the region, we summarize our spatial results for the firescapes. A 
brief description of each firescape class is presented in Table 1.  

Figure 1. Wildfire risk assessment with Bayesian network modeling included expert elicitation, model
development, and spatial application of the model using a large-landscape, regional data synthesis.
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2.1. Study Area

The study area included the thirteen states in the Southern United States that comprise
the Southern Region administrative unit of the USDA Forest Service (Figure 2). We limited
our analysis to landscapes in the region with at least 25% forest cover. Forests in this region
are among the most productive and biologically diverse in North America, providing a
wide range of ecosystem services. Broadly speaking, the region’s forests are fire-adapted,
and fire is an important driver of overall forest health. Contemporary fire regimes are
governed primarily by management decisions, and prescribed fire is widely used to manage
forest ecosystems, with 8 to 10 million acres burned annually [35,36]. Significant damages
from wildfires nonetheless occur every year, and changes in climate and landscapes are
heightening wildfire threats.
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ers or other potential end-users in all stages of a project [40–42]. Ongoing engagement 

Figure 2. The study area included all lands in thirteen states in the Southern United States with
at least 25% forest cover within 1000-hectare landscapes. In a separate analysis, landscapes were
classified into nine firescapes, each having distinct social and ecological characteristics relevant to fire
and its associated risks [37]. Firescape class numbers correspond to the descriptions in Table 1.
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Table 1. Firescape classification of landscapes with at least 25% forest cover in the Southern US,
generated from factor and cluster analyses of 73 spatial variables, as described by Gould et al. [37].
Spatial distributions of these firescape classes are shown in Figure 2. We summarize risk assess-
ment results for these firescape classes to help support their interpretation and use by natural
resource managers.

Firescape Description

1 History of wildfire, potential for intense fire
2 Cool and wet broadleaf mountain forests
3 Rural pine forest, conversion to agricultural lands
4 Urban periphery landscapes
5 Rural agriculture, vulnerable communities, and low wildfire potential
6 Rural mixed forests with hazardous fire potential
7 Warm and dry, mixed woodlands
8 Rural pine forests, intense fire and vulnerable communities
9 Semi-rural with low social vulnerability and moderate climate

In a separate study, we classified the same landscapes evaluated in this study into
distinct firescape classes [37]. Firescapes are landscape types defined by unique social
and ecological characteristics, which, taken together, are important for understanding
how fire and its associated risks operate as a human–environment system [38,39]. As
such, firescapes provide a broad-scale context for considering risk and appropriate risk
management strategies in different landscapes. We did not use the firescape classification
directly in the present risk analysis, but to further characterize the firescapes and describe
the geography of risk in the region, we summarize our spatial results for the firescapes. A
brief description of each firescape class is presented in Table 1.

2.2. Expert Elicitation

Social–ecological systems research can be improved by integrating resource managers
or other potential end-users in all stages of a project [40–42]. Ongoing engagement from
such partners helps improve models when they are both data-driven and informed by
the mental models of system experts; helps ensure that outputs are appropriate for spe-
cific decision-making contexts; and helps achieve buy-in from end-users [34]. We used
an informal, start-to-finish expert elicitation process by including an interdisciplinary
group of regional fire management experts in all project meetings. The group included
key representatives from the Fire and Aviation Management and Regional Information
Management programs of the USDA Forest Service Southern Region (Region 8) and the
Southeast Regional Coordinator of the National Cohesive Wildland Fire Management
Strategy [39]. Through this collaborative working group with weekly meetings, the experts
helped identify important model variables and data sets and engaged in ongoing discus-
sions that informed the model parameterizations on the basis of knowledge about variable
influences, i.e., causality in the system. In concert with information from the available
literature, experts’ advice on representing risk, management options and impacts, and
uncertainties was important for structuring the model, interpreting the model outputs,
updating provisional model versions, and identifying useful future research (next steps).

2.3. Data Aggregation and Synthesis

Informed by expert elicitation, we aggregated spatial data across all forest lands in
the study region, as reported by Gould et al. [37]. The spatial data included indicators for
components of social vulnerability, fire-adapted communities, fire dynamics and history,
forest properties, forest watersheds, biodiversity, climate, and land use/land cover. We
summarized the data on a grid of 1000 ha contiguous hexagons covering the study area
and limited the analysis to hexagons with at least 25% forest cover. The complete data set
included 73 variables [37].
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Gould et al. [37] used a factor analysis to identify key dimensions of variability in
the data set as a whole. The factor analysis produced eight factors explaining 45% of the
total variance in the data. These factor variables generally corresponded to themes that
were readily interpretable and relevant for assessing fire and fire-adapted landscapes in the
region. We named and described the factors based on the loadings of the original variables
to clearly convey the meaning and interpretation of each factor [37]. Of the eight factors,
we identified four that corresponded to landscape properties important for constructing
our BN model, as described below. Additional data inputs important for the BN were also
drawn from the original set of variables.

2.4. Bayesian Network Model

The first component of a BN is a graphical structure that qualitatively captures the
components of the system and how they are related. The graphical structure consists of
variables represented by nodes. If there are directional and functional relationships between
two variables, the corresponding nodes are connected by an arc. The second component
of a BN is the set of conditional probabilities that quantify these causal relationships
among variables in the network. Conditional probabilities are particularly useful for
handling uncertainty and are usually represented in conditional probability tables (CPTs).
They can be drawn from expert knowledge or derived empirically from data [22,43]. The
outcome of a BN model is a distribution over the possible values of each variable, given
the data, from which we can estimate the expected value and the uncertainty associated
with a prediction [44]. Probability distributions are therefore defined for each node in
the graph, with the probabilities of ‘child’ nodes conditional on those of their ‘parent’,
i.e., antecedent nodes.

2.5. Model Components and Data

Expert knowledge and literature review resulted in a BN model structure (Figure 3)
consisting of multiple nodes, whose connections represent hypotheses about the system’s
function. Our intention was for as many model nodes as possible to be informed empirically
by including variables in our data set that matched corresponding model nodes, including
factors from the factor analysis (Figure 4). We set up the BN within a risk framework
(Figure 3). The risk assessment in this study integrates biophysical and social risk subsys-
tems that are key for evaluating and supporting fire-adapted landscapes [8]. Assessing risk
involves quantifying the vulnerability of people and resources to fire and their potential
exposure to hazardous fire, with risk being an outcome where vulnerability and exposure
co-occur [6,45]. The model provides quantitative, probabilistic estimates of risk and the
potential for risk reduction through management intervention, both conditional on the
various landscape characteristics represented by variables in the BN. We built the model
and performed model runs using Netica software (Netica 6.07) [46]. Netica is one of the
most widely used platforms for BN analyses. A graphical user interface allows users to
build a model structure and CPTs defining probabilistic relationships among variables.
Netica can process large numbers of cases rapidly, even for complex models, and the
software also provides tools for sensitivity analyses [47–50]. Our full model is available
as a Netica file [51]. The following sections provide details for model components and
input data.

2.5.1. Potential for Hazardous Fire

The potential for hazardous fire (Figure 3) is conditional on wildfire potential and
probable burn intensity, which in turn are conditional on fuel load, recent climate, and
related variables that helped to define the wildfire potential and burn intensity factors.
Specifically, those two factors from the factor analysis by Gould et al. [37] had some
of their highest loadings for variables directly representing burn probability and flame
length exceedance (a proxy for burn intensity), but they also included high loadings for
other associated variables, including forest types, forest diameter size classes, and long-
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term climate variables (Table A1 in Appendix A). The burn probability, flame length
exceedance, and other fire related variables used in the factor analysis were obtained from
already existing datasets, usually based on mechanistic and process-based fire modeling
approaches (e.g., the Wildfire Risk to Communities project) [31]. Our integrated BN model is
designed to leverage a combination of these multiple information sources for a broad-scale
risk analysis.

To represent the forest fuel load (Figure 4), we used the total available fuels updated
for the year 2022 within the Landfire project’s Fuel Characteristic Classification System
(FCCS) [52]. The FCCS classifies various fuelbed components such as soil, litter, and under-
story available fuels; we summed all classes within the forest component of our landscapes.
Climate also strongly influences hazardous fire potential, and we structured the model to
capture the influence of climate anomalies and a drought index during the most recent three
years [53]. Based on expert elicitation, we included 2019–2021 anomalies for the monthly
minimum relative humidity, which influences fuel flammability, and the monthly maximum
temperature. We also included the Standardized Precipitation–Evapotranspiration Index
(SPEI), a standard drought index which has been correlated with wildfire occurrence and
severity [54]. We used observed climate data from the downscaled MACAv2-METDATA
dataset archived by the USDA Forest Service for use in the 2020 Resource Planning Act
(RPA) Assessment, updated to include data through 2021 [55–57]. The details of the base-
line 30-year climate normal development are in [37]. We calculated z-score anomalies for
the most recent three years as the standardized difference between the recent and normal
values. Similarly, a 3-year SPEI was modeled using the long-term baseline as the reference
period [58]. Additional details of biophysical data preparation and the summarization of
variables to the 1000 ha spatial units of analysis are provided by Gould et al. [37].
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and the utility of fuel reductions for reducing risk. Blue boxes represent data inputs—the model
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(business as usual). A utility node (yellow box) quantifies the value placed on a risk outcome, given a
decision made. Netica version of the BN model is included in Appendix B.
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Figure 4. Input variables for the Bayesian network model quantifying wildfire risk. These variables
are shown in blue in Figure 3. The four variables described as factors are results of the factor analysis
of a large set of relevant spatial variables [37].

2.5.2. Vulnerable People and Ecosystem Services

We defined people and ecosystem services potentially at risk as (1) the human popu-
lation and infrastructure/development directly exposed to wildfires, (2) people exposed
to smoke from wildfires, (3) forest carbon stocks potentially lost during wildfires, and
(4) important areas for surface-water-derived drinking water, where water quality could
potentially be compromised. We implemented model runs to assess risk for each of these
four vulnerabilities separately and for all four combined. For combined risk, we used the
following weights based on expert elicitation: population and infrastructures (3.0); smoke
exposure (2.0); forest carbon (1.0); and water (1.0). In this study, direct impacts on people
and structures were considered to be the highest concern and smoke exposure to people the
next-highest, whereas ecosystem services were considered important, but not as important,
to managers tasked with protecting people and resources from wildfire impacts.

A key component of our model involved quantifying not only the human population
density but also the social vulnerability of those populations. The potential harm to people
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from wildfires is not evenly distributed among populations, depending on vulnerabilities
related to economic status, housing type, mobility, language and minority status, and other
factors [59,60]. The factor analysis by Gould et al. [37] resulted in a social vulnerability
factor (Table A1), which we used in the BN to condition the population and infrastruc-
ture variable and the watershed importance for drinking water variable (Figure 3). The
factor analysis also produced a population and infrastructure density factor characterized
by housing density, population density, and the proportion of the hexagon classified as
WUI (Table A1). This factor was used in the BN to represent human populations and
infrastructure potentially directly exposed to wildfires.

Smoke exposure was also conditioned by social vulnerability prior to inclusion in
our model. This variable represented the potential for smoke plumes from simulated
high-intensity fires in a given 1000 ha landscape to reach human populations at smoke
concentrations above the EPA safety standards [60]. Simulated plumes could potentially
affect populations in any nearby landscape, depending on the plume characteristics, popu-
lation density, and social vulnerability; details of the smoke modeling effort are reported
elsewhere [37].

For forest carbon stock estimates, we used a spatial data product modeled by the
USDA Forest Service’s Forest Inventory and Analysis (FIA) program using field plot data
under the FIA Big Data, Mapping, and Analytics Platform (BIGMAP) program [61,62].
BIGMAP is a collaboration between FIA and Esri that provides a cloud-based computing
platform for the modeling, mapping, and analysis for US forests. We calculated the mean
tons/ha using total live and dead forest carbon estimates [37]. The watershed importance
for drinking water variable came directly from the USDA Forest Service’s Forests to Faucets
2.0 data product [63]. This index estimates the importance of local HUC12 watersheds
based on the number of people who depend on downstream surface water outtakes from
a watershed for drinking water. We used the mean importance value within our 1000 ha
hexagons [37]. Additional details on data preparation and the summarization of variables
to the 1000 ha spatial units of analysis are provided in Gould et al. [37].

2.5.3. The Utility of Fuel Reduction to Reduce Risk

The model estimated the potential for risk reduction through active management
(prescribed fire) through the implementation of a decision node that influenced the fuel load.
The decision node represents the choices available to a decision maker that can influence
outcomes (i.e., risk) through its influence on conditional probabilities in the BN [22]. Our
model evaluated a simple binary choice to either enhance investment in prescribed fire in
the landscape or not—the latter representing ‘business as usual’. The ‘enhanced investment’
decision was designed not to represent a single decision to implement a prescribed burn
but instead represented a broader investment in prescribed fire in the landscape, which
could include multiple burns over the next five to ten years. While highly generalized,
this operational definition was considered appropriate in expert elicitation for aiding
investment prioritizations at the regional scale. In the model, the ‘enhanced investment’
decision probabilistically reduced existing fuels by approximately half.

We implemented a utility node in the BN to represent the value attributed to the
risk outcome, given the decision made (enhanced investment vs. business as usual). The
utility of prescribed fire is therefore based on the estimated risk, with lower-risk outcomes
suggesting a higher utility of the decision made. The relative utility quantifies the degree to
which outcomes under one decision are more desirable than under the alternative decision.

Relative utility =
Utility (enhanced investment)

Utility (business as usual)

2.6. Sensitivity Analysis

Relationships between input parameters and model outcomes are not known a priori.
We assessed how sensitive the risk and utility estimates were to the model parameters
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and across the ranges of values in the input data. This allowed us to examine which input
variables were the most critical to the results. We first conducted a basic model sensitivity
analysis from the model itself based on the possible data ranges of the input variables
and the model’s conditional probability tables. We recorded the ranges of variation in
the estimated overall (combined) risk for the possible values of each input variable while
holding all other inputs at their uninformed prior value. We used the mutual information
metric to estimate the predictability of risk, given the variation in the input variable. Mutual
information is a general measure of dependence between random variables that quantifies
the amount of information one shares with the other [64,65]. It describes the uncertainty
about a variable—or, conversely, its predictability—given the knowledge of another. It can
be interpreted as a measure of correlation, but it is sensitive to any functional relationship,
not just linear relationships [65]. We then further explored the roles of climate and fuel
load—two of the most important factors driving hazardous fires—by examining scatter
plots and the Pearson correlation between these data inputs and the model findings, using
the full complement of data values across all landscapes.

3. Results

The results are focused primarily on the spatially explicit outputs from the BN model.
We produced maps for the key model outputs, including the expected values for risk, the
relative utility of fuel reductions for reducing risk, and antecedent model nodes influencing
those. Model nodes aside from data inputs took a relative index value from 0 to 100;
the expected values are the estimated highest-probability values in that range. We also
summarize the risk results for the firescape classes shown in Figure 2 and present the model
sensitivities to the input variables.

3.1. Potential for Hazardous Fire

The model results showed the highest values for hazardous fire potential concentrated
in Florida and the Atlantic and Gulf coastal plains, extending into southeastern Texas
(Figure 5A). Interior highlands subregions, including the Ouachita, Ozark, and southern
Appalachian Mountains and eastern Kentucky, also had elevated hazardous fire potential,
although generally lower than the coastal plains. Recent climate conditions—especially
drought—and fuel load were both important drivers of hazardous fire potential (see
sensitivity findings in Section 3.5). The model’s recent climate node (Figure 5B) was
influenced by the 3-year SPEI drought index and anomalies for the minimum relative
humidity and maximum temperature. During this period, unusually hot and dry conditions
occurred in a band from south–central Texas along the Gulf Coast to south Florida. These
conditions contributed to higher values for the estimated potential burn intensity and
wildfire potential variables along the coastal plains (Figure 5C,E). In the interior highlands,
a high fuel load and consequently high wildfire potential contributed to hazardous fire
potential (Figure 5D,E). With some important exceptions, such as the North Carolina coastal
plain forests, climate appeared to be a crucial driver of hazardous fire potential in the coastal
plains and Texas, whereas the fuel load was more important in the interior highlands.

3.2. Vulnerable People and Ecosystem Services

The results for the overall spatial distribution of vulnerable people, infrastructure, and
ecosystem services across the study region (Figure 6A) are based on combined vulnerabili-
ties, with the strongest weights on the potential for direct impacts on people and structures
(Figure 6C) and the potential for smoke emissions that reach vulnerable populations at
unsafe levels (Figure 6E). Many subregions with high vulnerabilities were in areas char-
acterized by rural poverty, including parts of eastern Kentucky, eastern North Carolina,
southeast Texas, and other areas. This was driven in part by the social vulnerability factor in
the model (Figure 4), and that influence often only reinforced vulnerabilities resulting from
the concentration of important watersheds, forest carbon, and the potential for hazardous
smoke emissions in these same areas (Figure 6B–E).
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Figure 5. Potential wildfire exposure and its determinants corresponding to latent BN model nodes
with the same names as in Figure 3. (A) Potential for hazardous fire conditioned on wildfire
potential and probable burn intensity; (B) recent climate; (C) burn intensity; (D) fuel load; and
(E) wildfire potential.
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The spatial correlation between vulnerable forest carbon and the potential for haz-
ardous smoke emissions was largely related to heavily forested landscapes with mature
(large diameter class) forests and high fuel loads. Differences between those two vul-
nerabilities (e.g., in eastern Virginia and North Carolina) arose from differences in the
likelihood of forested landscapes contributing smoke to nearby populated places and from
the social vulnerabilities of those populations. Important watersheds for drinking water
were distributed mainly in uplands in the northeastern part of the region, in part because
populations in the coastal plains rely more heavily on groundwater than surface water
sources for drinking water supplies [63].

3.3. Wildfire Risk

The wildfire risk maps in Figure 7 show the estimated spatial distribution of wildfire
risk, based on the exposure of vulnerable people and ecosystem services to hazardous
wildfire potential. Landscapes with an unusually high estimated overall risk (i.e., all
vulnerabilities combined) were concentrated in Florida and the Atlantic coastal plain.
Southeastern Texas and the Gulf coastal plain, and the interior highlands, including the
Ouachita, Ozark, and southern Appalachian Mountains and eastern Kentucky, also showed
high risk. Our results suggest that wildfire risk in different subregions is driven by different
biophysical and socio-economic factors. In Florida and the coastal plains, the expected risk
generally follows the distribution of hazardous fire potential (Figure 5). In the interior high-
lands, where hazardous fire potential was more moderate, especially in eastern Kentucky
and the southern Appalachians, risk was heightened by the concentration of vulnerable
people and ecosystem services (Figure 6). There were exceptions to these patterns; for
example, some parts of the Atlantic coastal plain were characterized by the co-occurrence
of nearly all the contributing factors to risk that we quantified.

There was variation in risk among landscapes within any given firescape class and
among the different firescape classes (Figure 8). High risk was mainly concentrated in
firescape classes containing WUI-dominated peri-urban landscapes (firescape 4), coastal
plain forests (firescapes 8 and 6), and broadleaf montane forests (firescape 2). The potential
risk reduction under the enhanced investment in fuel reduction model scenario also varied
within and among firescape classes (Figure 8). For example, in firescapes 4 and 7, the
difference in the mean estimated risk between the two management scenarios was small.
This resulted primarily from the total fuel loads being comparatively low in these two
landscape types, with risk driven by other factors—mainly the density of people and
housing (firescape 4) and the climate (firescape 7).

3.4. Utility of Fuel Reduction

The relative utility of fuel reductions for reducing risk (Figure 9) generally followed
the spatial pattern of overall risk, as expected, given the parameterization of utility to favor
risk reduction where risk was highest (compare Figures 7A and 9A). Figure 9B shows this
strong correlation (Pearson’s R = 0.76). However, there was variation in the relative utility
among landscapes with similar levels of risk. For landscapes with above-average risk, this
variation represented a considerable fraction of the total variation in relative utility (Figure 9B)
(Appendix C shows the variation in relative utility among different vulnerabilities).

We also examined the variation in relative utility among firescape classes. The relative
utility was positively correlated with risk among firescapes, but the relationship varied
among the different social and ecosystem service vulnerabilities we examined (Figure 10).
The relative utility was also positively associated with the mean fuel load among firescapes
(also see fuel sensitivities, Section 3.5). For some vulnerabilities, the utility was lower
or higher than expected on the basis of risk alone. For example, firescape 4 (peri-urban
landscapes with high WUI proportions) showed a high risk for people and structures and
for potential smoke exposure, but a lower than expected utility of fuel reductions to reduce
these risks. This appeared to be related to the mean fuel load: low existing fuel loads
constrained the capacity for fuel load reduction to influence the estimated risk.
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carbon stocks; and (E) risk from unsafe smoke emissions reaching human populations, weighted by
social vulnerability. Legend applies to all five maps.
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Figure 9. Relative utility of fuel reduction for reducing wildfire risks. (A) Relative utility for reducing
combined risks from smoke exposure and direct fire exposure to people and structures, forest
carbon, and important watersheds. (B) Relative utility was generally high where risk was high,
but considerable variation in utility existed for a given level of risk. Each point in the chart is an
individual 1000 ha landscape with at least 25% forest cover.
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Figure 10. Variation among firescape classes in the mean relative utility of fuel reductions for reducing
risk (y-axes). Utility was positively correlated with mean risk (x-axes) among firescapes, but this
relationship varied among the different vulnerabilities we examined. Low utility was generally
associated with low fuel load. Circle numbers and colors correspond to firescapes (Figure 2).

3.5. Sensitivity Analysis

The model sensitivity analysis showed that risk variation was most sensitive to changes
in the fuel load (Figure 11), which is consistent with the observation of fuel sensitivities.
Fuel load was clearly an important variable driving the model outputs, showing strong
positive correlations with hazardous fire potential, all categories of wildfire risk, and the
relative utility of fuel reduction (Table 2, Figure 12). The correlation with the relative
utility of fuel reduction is consistent with the expectation that where a high fuel load is
a driver of risk, there is the capacity to reduce risk by reducing those fuels. Among the
variables representing recent climate extremes, the single strongest correlation was the
negative correlation between the SPEI drought index and hazardous fire potential (Table 2,
Figure 12). More-negative SPEI values indicate stronger drought. The monthly maximum
temperature anomaly also showed moderate correlations with risk (Table 2).

Table 2. Pearson correlation coefficients between (1) major BN model outputs representing hazardous
fire potential, various components of wildfire risk, and the utility of fuel reduction for reducing risk;
and (2) inputs representing total available fuels and recent climate extremes. Monthly minimum
relative humidity and maximum temperature are both 3-year anomalies (2019–2021), and the SPEI
drought index is over the same time period.

Model Output Minimum
Rel. Humidity SPEI Drought Maximum

Temperature Total Fuel Load

Potential for hazardous fire −0.01 −0.32 0.06 0.51
Overall risk 0.064 −0.074 0.13 0.54
Risk to people and structures 0.022 −0.11 0.075 0.30
Risk to people from smoke 0.075 −0.042 0.12 0.51
Risk to forest carbon stocks 0.12 −0.077 0.11 0.61
Risk to important watersheds −0.042 0.071 0.13 0.40
Relative utility of fuel reduction 0.09 −0.0042 0.077 0.69
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Figure 12. Relationships between model outcomes, climate variables, and total available fuels. Points
are individual 1000 ha landscapes. The SPEI drought index is for the 2019–2021 period. Forest fuel
load is in tons. Risk is overall risk, combining the four people and ecosystem service vulnerabilities
examined in this study. Relative utility of Rx refers to the utility of fuel reductions (via prescribed
fire) for reducing overall risk.

4. Discussion

The model developed in this study and its associated spatial outputs can provide
decision support for efforts to prioritize investments in wildfire risk management at broad
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spatial scales. The outputs quantify multiple distinctive spatial distributions of risk, de-
pending on the different social and ecological values considered. Model estimates of the
probable utility of fuel reduction suggest that the potential impact of fuel treatments also
varies depending on landscape conditions, even among landscapes with similar levels of
risk. Traditional risk assessment methods in the southern US region have been based on
wildfire simulation models that examine fire likelihood and fire behavior but have not ad-
dressed spatial variation in socio-economic vulnerabilities, potential smoke exposure, or the
role of fuel reduction in reducing risks to both people and ecosystem services [31,32,66–68].
We incorporated evidence from these and other studies to drive the BN model and quantify
a broader set of risk measures, as well as potential outcomes from different management
scenarios. We suggest that both traditional risk assessments, in which only risk is quanti-
fied, and explicit assessments of management scenarios are crucial for risk management
decision making and provide complementary information [32,69].

Comparative risk assessments across landscapes are important because land man-
agement agencies have limited funds, typically insufficient to sustain treatments across
all lands, and prioritizing landscapes becomes imperative to maximize effectiveness and
efficiency [70]. Even if the funding and capacity to sustain treatments and other risk man-
agement strategies are significantly increased, decision support tools to inform strategic
investment in those expanded efforts are still key for efficiency and accountability.

Florida and the Gulf and Atlantic coastal plains showed the highest values for haz-
ardous fire potential and overall risk in the region. In the firescapes analysis that generated
the factor variables used in our risk analysis, longleaf/slash pine and loblolly/shortleaf
pine groups were important in the burn intensity factor, which also had its highest values
in the coastal plains and Florida [37]. The pine-dominated forest and savannah systems in
these areas have been considered to be among the most fire-prone systems in the world, and
they depend on frequent, low-intensity fires (including prescribed fire) for the maintenance
of system structure, function, and composition [71].

Although the mean precipitation can be high in these coastal plain systems, intermit-
tent drought is an important factor driving fire frequency and severity, and climate change
will likely continue to increase drought frequency and severity in the region [53]. Eastern
Texas and Oklahoma also showed high values for hazardous fire potential and overall risk,
partly driven by the hot and dry recent climate. This region experienced a historic drought
in 2011, causing massive wildfire events, and again experienced a widespread drought in
2022 [72]. Climate change is a key factor driving growth in wildfire risk globally, and while
we did not assess change over time in this study, it is plausible that the climate influences
we quantified in these southern and western extremes of our study region are indicative of
the future role of climate in some other parts of the region [53].

Because the estimated risk values are conditioned by social vulnerabilities, our re-
sults can help to identify communities at risk that are characterized by limited resources
to prepare for, respond to, and recover from wildfire events. Social and infrastructure
vulnerabilities weaken communities’ capacity to prevent and respond to the impacts of
wildfire, and vulnerable communities are likely to need support before, during, and after
wildfire events. Attention to broad-scale social vulnerability can inform risk management
strategies, such as investments in prescribed fire in high-vulnerability landscapes. For
example, the estimates of the relative utility of prescribed fire were comparatively high in
the interior highlands of our study region, especially in the Ouachita, Ozark, and southern
Appalachian Mountains. These areas are characterized by forests with high fuel loads,
and there may therefore be a high capacity for risk reduction from a strictly biophysical
perspective. These regions also show comparatively high social vulnerabilities (e.g., eastern
Kentucky and eastern Oklahoma). Robust and carefully planned prescribed fire programs
can be an important component of broader strategies in such locations to help communities
prepare for, manage, and live safely with fire.

We used an all-forest-lands approach to estimate wildfire risks and the potential of
fuel treatments to mitigate risk. Most forest lands in the Southern US are privately owned
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(86%), and ownership is highly fragmented, making it crucial to support coordinated
landowner planning with public information resources that highlight the shared nature
of wildfire risks in a landscape context [73,74]. Indeed, our findings suggest that while
wildfire risks can vary locally across landscapes, the predominant drivers of risk operate at
much larger spatial scales in the region, typically implying that the social and ecological
drivers of risk and the capacities to manage risk are often shared across local ownership and
jurisdictional boundaries.

The modeling approach used in this study is based on expert knowledge and stake-
holder participation at all stages of research, with the goal of producing spatial information
for prescribed fire planning in the Southern US. Given the diversity of forest landscapes,
forest ownership, and forest management goals in the region, a collaborative approach
can help identify shared or complementary objectives and structure an expert-driven and
transparent analysis [39,75]. Collaboration not only tends to result in research outcomes
that reflect the concerns of diverse stakeholders but can also improve planning coordination
among groups [75,76]. Collaborative approaches to wildfire management have been shown
to enhance community preparedness to confront risk, as well as the implementation of fuel
reduction across different ownership types [77].

Prescribed fire management plans can be improved through the spatial and temporal
scalability and transferability of the underlying analyses—both of which improve gener-
alizability and adaptability [78]. Our model was designed with generality so it could be
adapted to other geographic regions or scales or to different spatial units such as watersheds
or other units commonly used for planning and decision making. However, the model’s
variables, structure, and conditional probabilities are tailored to large landscape scales; we
developed the model for a moderately broad level of spatial analysis (1000 ha hexagons). Its
adaptation to finer scales might be parameterized differently depending on the operative
variables and their causal relationships at those scales. Data availability may create limita-
tions in regions where, for example, detailed fuel, social vulnerability, or smoke exposure
data do not exist. But, key biophysical and social data, such as climate, wildfire potential,
terrestrial carbon storage, population density, WUI, and urban development information,
may be readily available from global or local products. Bayesian network models provide
flexibility for such limitations, making them useful for adapting existing models to new
contexts where more limited data can still be leveraged to provide meaningful wildfire
risk information from simpler or coarser-scale models. Careful attention should be paid to
potential re-parameterizations, informed by interactions with collaborating system experts
and relevant empirical evidence, when considering model scalability and transferability.

A factor influencing the success of this assessment effort was the sufficiency and
availability of scale-appropriate spatial data, given our goal of quantifying geographic
gradients in risk and, ultimately, identifying target areas for fire management planning [79].
The BN model in this study combines spatial data from disparate sources, is flexible to
the incorporation of new spatial variables, and is robust to missing values in the spatial
inputs. The model can readily be updated as new spatial information becomes available,
potentially representing changing conditions through time. For example, the model used
recent climate inputs, but nodes for the climate variables can accept updated inputs in
future years or inputs representing future climate projections. This makes the BN approach
amenable to risk estimation in a monitoring framework or for projections under various
scenarios of future change. The lack of representation of temporal variability (change over
time) is indeed a limitation of our current model application. In addition to the possible
monitoring and projection applications of our fixed model, a more detailed, explicitly
dynamic BN model could be developed to quantify cumulative change across time steps.
Dynamic BN models use time series probabilistic inference and still provide the advantages
of network-based causal analyses under system uncertainty [80–83].
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5. Summary

Assessing wildfire risk is a crucial component of wildfire management and risk mit-
igation planning. This study provides a systematic and flexible approach to evaluating
comparative risk across landscapes and provides spatial information that can inform strate-
gic investment in interventions such as prescribed fire. The collaborative, data-driven
assessment approach leverages expert knowledge and rich regional landscape data to
quantify spatial gradients in the potential impacts of wildfires on vulnerable people and
ecosystem services. It also highlights the potential for cost-effective, targeted management
investments to reduce risks. The model can serve as a decision support tool for stakeholders
to coordinate strategic, large-landscape adaptive management efforts.

We found that, overall, wildfire risk is highly heterogenous across the Southeastern
US, with the highest-risk landscapes concentrated in the coastal plains, Florida, and the
interior highlands. Furthermore, the individual risk components (direct risk to people
and structures, risk of smoke exposure, and risks to forest carbon and water) each showed
distinctive distributions, potentially complexifying regional strategies to manage risks. The
relative utility of fuel reductions for managing risk also showed strong spatial variability
and could even vary locally among landscapes with similar levels of risk—suggesting
that strategic targeting could improve the efficiency and effectiveness of management
investments at broad scales.

The flexibility of our approach and model makes them adaptable to various contexts
or extensions, including applications in other regions, at different spatial scales, at multiple
time periods, and to evaluate different management objectives and options. The model
could be applied in other geographic regions, subject to modification, to represent the
most important dimensions of risk and landscape variability in the study region and to
accommodate regional data availability. Even within a given region, as landscapes and
climates continue to change, the approach can be used periodically to keep abreast of
data updates and changing risk management challenges, to monitor management effec-
tiveness, or to project dimensions of risk under future scenarios. Ecosystem management
objectives and the tools for advancing those objectives also vary across landscapes and
over time. These differences can be addressed through deliberation with stakeholders
to implement appropriate model structures and management scenarios. In all cases, an
integrated approach that makes full use of available knowledge and data, accounts for
multiple dimensions of risk, and assesses potential risk management options is the key to
moving forward.
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Appendix A

Factors used in Bayesian network model structure.

Table A1. Factor variables used in the Bayesian network model and their variable loadings, from
Gould et al. [37]. Negative (inverse) loadings are indicated by negative values. Note that the Wildland
urban interface (WUI) risk variable indicates higher risk with more negative values, so a negative
loading indicates greater risk.

Factor 2: Wildfire Intensity
and Fire-Prone Forests Loadings

Factor 4: Population,
Infrastructure and
WUI

Loadings
Factor 6:
Wildfire
Potential

Loadings Factor 7: Social
Vulnerability Loadings

Longleaf/Slash pine 0.613 Housing unit density 0.989 Risk to potential
structures 0.945 SVI overall 0.967

Proportion of watersheds
with high-to-very high
wildfire harzard potential

0.557 Population density 0.989 Burn Probability 0.937 SVI socio
economic 0.811

Flame length exceedance (8 ft) 0.554 Developed land
cover 0.856 Wildfire hazard 0.718 SVI housing and

transportation 0.755

Flame length exceedance (4 ft) 0.536 Proportion
impervious 0.672

Threatened and
endangered
wildlife species

0.341
SVI household
composition and
disability

0.604

Small non-stocked size class 0.536 Wildland urban
interface 0.350

Threatened and
endangered
species total

0.314
SVI minority
status and
language

0.428

Max downward radiation 0.463 Wildland urban
interface risk −0.651

Maximum temperature
normal 0.436

Loblolly/Shortleaf pine 0.409
Bottomland/Moist soil
hardwood 0.378

Wildfire hazard 0.344
SVI minority status and
language 0.343

Natural-caused fires,
2000–2018 0.330

Upland hardwood −0.819
Downstream drinking water
population −0.719

Watershed importance for
surface drinking water −0.623

Large forest stand size −0.407
SPEI normal (30-yr) −0.328
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Appendix B

Bayesian network model in Netica software platform.

Utility of Fuel Reduction

Fuel Load Mod

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10

17.5
17.1
15.5
12.7
9.59
7.03
5.59
5.09
5.21
4.69

57,900 ± 91,000

Fuel Load

0 68,500

Wildfire Potential Mod

Low 1
Low 2
Medium 3
Medium 4
High 5
High 6

3.00
20.5
35.4
30.0
10.1
0.96

46.1 ± 18

Min Humidity

−3 2.99

Max Temp

−3 2.09

SPEI Drought

−3.1 5.74

Recent climate

Cool wet 1
Cool wet 2
Moderate 3
Moderate 4
Hot dry 5
Hot dry 6

3.12
16.7
30.2
30.2
16.7
3.13

50 ± 20

Risk

Low 1
Low 2
Med 3
Med 4
High 5
High 6

0.25
10.5
47.6
36.6
5.02
0.09

47.6 ± 13

Potential for Hazardous Fire

Low 1
Low 2
Medium 3
Medium 4
High 5
High 6

1.46
17.5
42.4
30.8
7.36
0.45

46.1 ± 16

Forest Carbon

0 679

Smoke / SV

0 6.24

Management Decision

No enhancement
Enhance Rx

6.8541
7.3172

Burn Intensity Mod

Low 1
Low 2
Medium 3
Medium 4
High 5
High 6

3.00
20.5
35.4
30.0
10.1
0.96

46.1 ± 18

Burn Intensity Init

−2.78 6.18

Watershed / SV

Low 1
Low 2
Medium 3
Medium 4
High 5
High 6

6.78
18.5
24.7
24.7
18.5
6.78

50 ± 23

Structures & Population / SV

Low 1
Low 2
Medium 3
Medium 4
High 5
High 6

6.78
18.5
24.7
24.7
18.5
6.78

50 ± 23

Social Vulnerability

−3.68 4.29

Wildfire Potential Init

−6.95 55.71

Vulnerable People & Ecosystem Services

Low 1
Low 2
Med 3
Med 4
High 5
High 6

1.15
12.9
36.0
36.0
12.9
1.15

50 ± 17

Watershed Importance

0 100

Stuctures/Pop Dens

−0.99 28.79

Figure A1. Bayesian network model as structured in the Netica software platform. Meter symbols
indicate input variables represented as nodes with range of values for each input. The nodes are
connected by arcs/links to show functional relationships between the variables. The decision node
(blue box) includes two management scenarios: enhancement of fuel reduction program in the
landscape, and no enhancement (business as usual) while the utility node (pink box) represents the
value placed on a risk outcome, given a decision made.
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Appendix C

Relative utility of fuel reduction to reduce risk to people and ecosystem services.
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